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Unless the poles of a rational function of best approximation are pre-

scribed in advance, the determination of those poles even approximately

may be difficult, yet may be necessary for a complete study of approxi-

mation or convergence. Certain cases where this determination is possible

have recently been considered [l ] by the present author; the object of the

present note is to enlarge the category of those cases, especially to study

approximation on a set having no interior points, and on a set with several

components.

Montessus de Ballore considered in 1902 an analogous situation related

to the Pade table, with analogous results so far as concerns regions of

convergence, but his methods relate to the special properties of the Taylor

development and do not apply to the hypotheses of the present paper.

Here our methods are based primarily on the deeper use of geometric degree

of convergence, in various forms, including methods developed [2] in the

theory of approximating polynomials.

A rational function of the form

a0z'+ axz>'x + ■■■+a,

is said to be of type (j,k), and we study sequences (j—»oo, k constant)

of functions of such type with suitable degrees of convergence; our primary

interest is in functions of given type of best approximation.

If £ is a point set whose complement K is connected, and regular in

the sense that there exists Green's function G(z) for K with pole at infinity,

we denote generically by E, (a > 1) the locus <t>(z) = a in K, *(z) = exp[G(z) ].

Lemma 1. Let the rational functions r„„(z) of respective types (n,i>) satisfy

the inequality

(1) lim sup || rH,(z) ||1/n ^ 1/Pl,      1< Pl g «,
n—' w

where v is constant and the norm is a pth power (p > 0) norm on a closed
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bounded set E (not a single point) whose complement is simply connected.

The norm is defined as the pth root of the integral of the pth power of the

modulus of rnAz) over the boundary of E, assumed rectifiable. Suppose the

finite poles of the rn,(z) are uniformly bounded. Let S be a closed set lying

in the closed interior of the locus E,, 1 < a < pu and containing no limit

point of the poles of the rn,(z). Then the sequence rny(z) converges uniformly

to zero on S, and we have

(2) limsup[max|r„,(2)|, z on S]1/n g alpx.
n— «

The rn,(z) need not be defined for every n.

We interpret r„„(z) as the quotient of a polynomial Pn(z) of degree n

by a polynomial of degree v having unity as the coefficient of its highest

power of 2. For n sufficiently large and for z on S, the latter polynomial

has a positive lower bound mx independent of n, so we have

(3) \rnAz)\ Z\Pn(z)\/mu      z on S.

Likewise, for z on E and for n sufficiently large there exists M2 independent

of n such that we have

(4) \Pn(z)\/M2g\rnAz)\,      2 on E.

By virtue of a known lemma [2, §5.2, Lemma] we may write

(5) [max| Pn(z) |, z on S] z L V|| Pn(z) \\,

where L' is a constant independent of n and the norm is pth power on

E. For the pth power norms on E we clearly have by (4)

(6) \\P„(z)\\/M2g\\rnAz)\\.

Successive application of (3), (5), (6), and (1) now yields (2).

Lemma 1 is the chief tool in the proof of

Theorem 1. Let E satisfy the conditions of Lemma 1, and let the function

f(z) be analytic on E, meromorphic with precisely v poles interior to Ep. Let

the rational functions R„Az) of respective types (n,i>) satisfy

(7) lim sup I f(z) - RnAz) || l» £ 1/p,      1< p ^ co,
n—•«

where the pth power norm (p > 0) is used on E. Let D denote the interior of

E„ with the poles of f(z) deleted. Then for n sufficiently large the function

R„Az) has precisely v finite poles, which approach, respectively, the v poles

of f(z) interior to E„. The functions RnAz) approach f(z) throughout D. For

any closed set S in D and in the closed interior of E„, 1 < a < p, we have

(8) lim sup [max |/(2) - RnAz)\, z on S]Un g a/p.
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It will appear from our discussion that for n sufficiently large i?„„(z)

has no poles on E, since the poles of i?„„(z) approach those of f(z), mul-

tiplicities included.

Let /o(z) denote f(z) minus the sum r0(z) of the principal parts of the

v poles of f(z) interior to E„, and let r„(z) denote the sum of the principal

parts of the finite poles of i?„„(z). There exist [2, §4.5] polynomials p„(z)

of respective degrees n — v such that we have

(9) lim sup I /o(z) -p„(z) || 1/ng 1/p,
n—»oo

where the norm is as in (7). If the polynomial part of ß„„(z) is denoted

by p„(z) +<7„(z), we have [2, §5.2]

(10) lim sup I r0(z) - r„(z) - o„(z) ||1/n g 1/p.
n—> oo

Inequality (10) is precisely of form (1), where n and v in (1) are to be

replaced by n + v and 2k of Theorem 1. If i?n,(z) has effectively v finite

poles, it may be written as a function r„(z) of type (v — \,v) plus a poly-

nomial p„(z) + qn(z) of degree n — v; if Ä„„(z) has fewer than v finite poles,

the degree of the remaining polynomial is correspondingly increased, but

not beyond n. We assume for the moment that the finite poles of the

Ä„„(z) are uniformly bounded, so that Lemma 1 is applicable; this re-

striction is later to be removed.

The function r0(z) in (10) is independent of n, and we proceed to discuss

the finite poles of the function approaching r0(z), namely, the poles of

r„(z). Let a be a typical pole of r0(z) interior to E„, and let v + 1 be mutu-

ally disjoint open annuli As interior to E„, each with center a, separate a from

all zeros of r0(z) and from all other poles of r0(z). If any subsequence of

the rn(z) is given, there exists a new subsequence having no limit point of

poles in at least one annulus At. If the given subsequence has no limit

point of poles in Au the conclusion is established; if it has a limit point

of poles in Au a new subsequence has for each term at least one pole in

Ax and for the new subsequence that same limit point of poles. If the

new subsequence has no limit point of poles in A2, the conclusion is estab-

lished; if it has a limit point of poles in A2, a new subsequence of the

previous subsequence has for each term at least one pole in A2 and for

the new subsequence that same limit point of poles. We continue this pro-

cedure, and since each r„(z) has at most v finite poles, we must eventually

reach an annulus, say A,+x, which for n sufficiently large contains no pole

of some subsequence of the r„(z). Let C be a circle whose center is a which

lies in A,+ l. The subsequence of the r„(z) + q„(z) converges uniformly to

r0(z) on C, by Lemma 1. It follows [l, Lemma l] that interior to C and

for n sufficiently large the subsequence r„(z) must have at least as many
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poles as does r0(z). We can apply this discussion to each of the v poles a

of r0(z), so every subsequence of the r„(z) admits a new subsequence having

for n sufficiently large in a suitable neighborhood of each of the v poles

of r0(z) interior to E, (at least and therefore) precisely as many poles as

does r0(z). Then the entire sequence r„(z) has this same property, of having

for n sufficiently large in the neighborhood of each of the v poles of r0(z)

interior to E„ precisely as many poles as does r0(z), and has no other poles;

that is to say, for n sufficiently large R„,(z) has precisely v finite poles,

which approach, respectively, the v poles of f(z) interior to E„. Inequality

(8) follows by Lemma 1 from (10) and from the following consequence

[2, §4.7] of (9):

(11) lim sup [max I f0(z) - p„(z) \, z on E,]1/n g a/p.
n—* <d

It may be noted that we have here applied various lemmas relating to

degree of convergence of polynomials, that is, to the case v = 0; this turns

out to be possible because Rn,{z) has a polynomial part which largely

determines the convergence properties of the whole.

We have thus far assumed without proof that the finite poles of the

Rn,(z) are uniformly bounded. If this assumption is not fulfilled, as we

now suppose, Lemma 1 cannot be applied to the study of the sequence

r0(z) — r„(z) — g„(z). There exists a subsequence of the latter functions,

now denoted by 0„(z), such that precisely u finite poles a, of each 0„(z)

become infinite as n becomes infinite, 0 < p ^ v, while the remaining poles

(2v — u or fewer in number) are uniformly bounded, say in modulus less

than A, where E and the v poles of f(z) lie in the circle whose center is

the origin and radius A. When one or more poles a, of 0„(z) are in modulus

greater than A, say p in number, the function 0„(z) of the subsequence

is to be replaced by

where the aj depend on n, and where <b„(z) has no more than 2v — u finite

poles; this replacement alters neither the limit of 0„(z) interior to the circle

nor such a relation as (10). The discussion of the 0„(z) already given com-

mencing with (10) is now valid as well for the sequence of the modified

0„(z), to which Lemma 1 applies. In some annulus A,+1 pertaining to each

pole of r0(z), these modified functions 0„(z) or a subsequence have no poles

and approach zero uniformly, so the same is true of the corresponding

functions r0(z) — r„(z) — qn(z). It follows as before that the functions r„(z)

have for n sufficiently large at least v finite poles approaching the respective

poles of r0(z), which is impossible. This contradiction shows that the finite
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poles of the r„(z) are bounded, and completes the proof of Theorem 1.

To Theorem 1 we add the

Corollary. Under the conditions of Theorem 1 we have

(12) lim sup [max|/(z) - Rn,(z) \, z on E]Vn g 1/p.
n—»co

In (8) we chose S as E„, 1 < a < p, where a is chosen so small that no

pole of f(z) lies on or within £„. The maximum of |/(z) — ß„,(z)| on E

is not greater than the maximum on E„ so (8) follows with reference to

the maximum on E, and letting a approach unity yields (12).

The particular advantage of Theorem 1 over the results of [l] is that

Theorem 1 does not require £ to be a point set bounded by one or more

analytic Jordan curves; it is sufficient if E consists of a finite number of

suitably connected rectifiable Jordan arcs.

Theorem 1 has further consequences. Thus, with the hypothesis of The-

orem 1 the inequality

lim sup I f(z) - RnM ||1/n g 1/p, Kpgoo,
n—> *»

is impossible with Rn„ of type (n,p) and u<v, because by the proof of

Theorem 1, for n sufficiently large the function Rn„(z) must have at least

as many poles interior to E„ as does f(z).

Theorem 2. With the hypothesis of Theorem 1 on E and f(z), let the ßn„(z)

be the (i.e., any) rational functions of type (n,v) of best approximation to

f(z) on E in the sense of least pth powers, p > 0. Then (7) and the conclusion

of Theorem 1 and its corollary are valid.

It follows from [l, Theorem 2] that there exist rational functions Rn,(z)

of respective types (n,v) which satisfy (7), a fortiori, the rational functions

of best approximation also satisfy (7), so Theorem 2 follows from Theorem

1 and its corollary.

Theorem 3. Under the conditions of Theorem 2, let p (1 <p ^ «) be the

largest number such that f(z) is meromorphic with precisely v poles interior

to E„. Then the equality sign holds in (7) for the extremal i?„„(z), and also

for any functions Ä„„(z) for which the inequality sign (g) holds in (7).

If the first member of (7) equals 1/pi (< 1/p), we may write for the pth

power norm on E

lim sup ||fl„+1,,(z) - Rnv(z) ||1/n :g 1/p,.
B—»oo

By Theorem 1 the poles of this rational function approach those of f(z),

so by Lemma 1 the sequence R„,(z) converges uniformly, necessarily to
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f(z) or its analytic extension, throughout some annular region containing

Ep in its interior. This contradicts the definition of p.

In Theorem 1, its corollary and Theorem 2, it is not essential that the

Rnt(z) be defined for every n, but in Theorem 3 that condition (or a sub-

stitute) is essential, because we proceed from (7) directly to an inequality

for the norm of Än+1>„(z) — Ä„,(z).

Hitherto, we have considered wholly the pth power norm on E in the

hypothesis. If we consider the Tchebycheff (uniform) norm, E may be

more general in that it may consist of even an infinite number of compo-

nents, and its boundary need not be rectifiable.

Let us indicate the proof of

Theorem 4. Let E be a closed bounded point set whose complement is con-

nected and regular. Let the function f(z) be analytic on E, meromorphic with

precisely v poles interior to Ep, 1 <p ^ °°. Let the rational functions Rn,{z)

of respective types (n,v) satisfy (7), where the Tchebycheff norm is used on

E. Then for n sufficiently large the function Rn,,(z) has precisely v finite poles,

which approach, respectively, the v poles of f(z) interior to E„. If D denotes

the interior of Ep with the v poles of f(z) deleted, the sequence Rn,(z) con-

verges to f(z) throughout D, and for any closed set S in D and in the closed

interior of E„, 1 < a < p, we have (8).

If the Rn„(z) are the rational functions of type (n,v) of best approximation

to f(z) on E in the sense of Tchebycheff, then (7) is satisfied.

Thus far the Rny(z) need not be defined for every n, but below they shall

be so defined.

Whether the Rn,(z) are extremal or not, let p be the largest number such

that f(z) is meromorphic with precisely v poles interior to Ep. If (7) holds,

then (7) holds with the equality sign.

The proof of Theorem 4 follows those of Theorems 1-3, except that in

following the proof of Theorem 1, [l, Lemma 3 (slightly modified)] is used

instead of the present Lemma 1. The possibility that the finite zeros of

the Rnv{z) are not bounded is treated as in the proof of Theorem 1. De-

tails are left to the reader.

In Theorem 4 let the i?„,(z) be defined for every n, let the v poles a, of

f(z) be ordered so that *(«i) ^ *(a2) ^ ••• ^ *(<*,), and suppose either

*(<*„) < a < *(a„+i) or a < *(aj in which case we set u = 0. If (8) is

interpreted as involving the Tchebycheff norm on E„, where S is chosen

as E„, then (8) is a special case of (7) with Tchebycheff norm as in the

hypothesis of Theorem 4, where E, of (8) takes the role of E in (7), since

(£„)„/„ = Ep; of course, f(z) has only v - u poles between £„ and Ep, as

has i?n„(z) for n sufficiently large. By Theorem 4 we conclude under these

circumstances
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lim sup [max |/(2) - ß„„(z)|, z on E,]l n = <j/p;
n—1»

this relation is valid likewise for <p(a„) < a < p, as follows by the reasoning

associated with the generalized Bernstein lemma [2, §4.6], even though

R„,(z) is not a polynomial.

We formulate also the

Corollary. With the hypothesis of the last part of Theorem 4, let T be

any bounded continuum (not a single point) in D, but having at least one

point exterior to E. Then we have

lim sup [max | f(z) - R„,(z)\, z on Tf/n = [max*(2), z on T]/p.
n—»«

It is a consequence of (8) that for arbitrary T of the corollary we have

lim sup [max| f(z) - R„,(z)\, z on T}m g [max4>(z), z on T]/p,
n—1 od

so the function G(z) — logp is a harmonic majorant for [f(z) — Rn„(z)]i/n

in (D — E), and [4, corollary to Theorem l] by our discussion of the case

T—E, is even an exact harmonic majorant. The corollary follows.

Under the conditions of Theorem 3, or of the latter part of Theorem 4,

let (7) for Tchebycheff norm hold with the equality sign for the R„,(z).

Then by the reasoning already mentioned [2, §4.6] it follows [3, 4] that

G(z) — \ogp is an exact harmonic majorant for the sequence [Rnt(z)}1/n

exterior to E„. On any closed set interior to E„ we have uniformly Rm(z)

—>f(z), so V(z) = 0 is an exact harmonic majorant for the sequence

[i?n„(z)]1/n and for every subsequence interior to E„ except where f(z) = 0.

Consequently, [3, §4] each point z0 on E„ which is a limit point of points

interior to E„ on which f(z) ^ 0, is a limit point of the zeros of Rn„(z) for n

sufficiently large, and if y denotes an arbitrary circular disc with center

Zo and Nn denotes the number of zeros of Rn„(z) in y, then we have

limsupiVn/rt > 0.
n—»oo

Moreover, the sequence Rn,(z) cannot converge or even be uniformly

bounded on a continuum (not a single point) exterior to E„.

The above results apply to a function f(z) analytic on E and meromorphic

with precisely a finite number i-^, v2, ■ ■ ■ of poles in each of a finite or infinite

sequence of respective regions E„v Epy • ■ ■ ; indeed, f(z) may be meromorphic

at every finite point of the plane. The extremal functions Rn,(z) already

studied correspond to the functions of the respective (vj +l)st rows of

the analogue defined in [l] of the Pade table. However, if two poles a„

and a„+i of f(z) lie on E„ 1 < a < p, where the poles are ordered so that

4>(<*i) g 4>(a2) ̂        then the present results do not discuss the behavior
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of Rnp(z). Nevertheless, it is a consequence of the method of proof of

Theorem 1 that, for instance, with *(a„) = <J>(a„+i) < 4>(a„+2), the following

inequality is not possible with *(a,+2) = p\

lim sup [max I/(z) - Rnp(z)\, z on £]v"|l/p.
n—»o>

More generally, it may be noted by the method of proof of Theorem 1

that inequality (7) for the Tchebycheff norm, valid for some f(z), known

merely to be analytic on E and meromorphic interior to E„, implies that f(z)

has no more than v poles interior to Ep.

In this connection the following theorem is worth formulating by way

of contrast:

Theorem 5. Let E and E„ be as in Lemma 1, and suppose p (< <x>) is

the largest number such that f(z) is meromorphic with precisely v poles (v ^ 0)

in the interior of E„. Let the sequence of points aua2,a3--- not on E be

given; these points may be chosen everywhere dense interior to E„ (but not on

E), or in the complement of E. Then there exist rational functions Rnr+1(z)

of respective types (n, v + 1) each with a single pole in an such that there

is valid

lim sup [max I/(z) - Rn,,+1(z)\, z on E]l/" = 1/p.

It may be noted that for no functions Rn,,+i(z) of types (n,v + 1) can

this equation become a strong inequality (<) unless f(z) is meromorphic

with precisely one pole on Ep.

There exist (for instance the extremal functions of Theorem 4) rational

functions rn,(z) of respective types (n, v) such that we have

lim sup [max| f(z) - rn,(z) |, 2 on E]1/n = 1/p.
n—> od

To prove Theorem 5 we need merely set Ä„,„+1(z) = rn_h,(z) + An/(z — an),

n^v, where the An (> 0) are chosen so small that each R„,+l(z) has effec-

tively a pole in «„, and so that we have

limsup[max|A„/(z - «„) |, z on E]l/n < 1/p.

Theorem 5 suggests the difficulty of locating the poles of the extremal

Rn,,+\(z) when there exists no E, whose interior contains precisely v + 1

poles of f(z). However, under the conditions of Theorem 5 each pole of

f(z) interior to Ep is a limit of poles of the P„,,+1(z). In fact we have

Theorem 6. With the hypothesis of the last part of Theorem 4, suppose

f(z) is not meromorphic with fewer than p. — v + 1 poles on E„; let the Rnilt(z)

be the rational functions of type (n, p.) of best approximation with Tchebycheff

norm to f(z) on E, p > v. Then we have
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lim sup [max I/(z) - Rnil(z)\, z on E]l/n 55 \/p,
n—► 00

and each pole of f(z) interior to E„ is a limit point of poles of the Rnil(z),

possibly of greater multiplicity,

The first part of Theorem 6 follows by comparison from (7) for the

extremal Rn,(z), since the latter functions are also functions of type (n,p);

the latter part of Theorem 6 follows by the method of proof of Theorem

1; it is essential here to note that for any subsequence of the Rn»(z) no

more than p. — v poles of the ÄB„(z) can become infinite. Theorem 6 refers

to the behavior of the functions in the (p. + 1) st row of the analogue of

the Pade table.

A result somewhat similar to Theorem 6 is

Theorem 7. With the hypothesis of the last part of Theorem 4 we have

lim sup [maxI/(z) - RM(z)\, z on E]1"1 g I/o.
n—* 00

This inequality follows at once from (7) and [1, inequality (4)]. However,

it is not true that the inequality is always an equality; as a counter-

example we choose E arbitrarily, and f(z) having as its only singularity

in the extended plane an essential singularity a0 on E„, p < °o. Trans-

formation of the plane by the linear transformation z' = 1 / (z — a0) and

use of the Taylor development shows that we have

lim sup [max I/(z) - Rm(z)\, z on E]1/n = 0.
n—»cd

Compare here [5] and [6].

Although Theorem 4 applies to a set E not necessarily connected, that

is not true of Lemma 1 and Theorems 1-3. We proceed to discuss ac-

cordingly possible modifications of the latter.

Lemma 2. Let Lemma 1 be modified so that E is a closed bounded set

whose complement is connected of finite connectivity, and that each compo-

nent of E consists of more than one point and has a rectifiable boundary. Then

the conclusion (2) persists.

The norm on E is taken as the pth root of the sum of integrals of pth

powers over the boundaries of the respective components of E.

Let the components of E be E',E", ■ ■ ■ ,EU), ■ • ■, and let t be chosen,

1 << <pi/a. Let rn,(z) be any sequence of the given rational functions.

There exists a subsequence which has no limit point of poles on some

E'n, 1 <«i<«, (notation used in Lemma 1) a further subsequence having

no limit point of poles on some E"v 1 <«2<e, etc.; this follows by the

method of the proof of Theorem 1 concerning the Aj. We define P„(z) as
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in the proof of Lemma 1, so that (3) and (4) follow. Then [2, §5.2, Lemma]

yields for each Efp (instead of S) an analogue of (5), whence

(13)        [max I Pn(z) |, z on P0U LV|| P„(z) fl,      EQ = Z$?-

The first member of (13) is greater than or equal to [max| P„(z) |, z on E],

so the generalized Bernstein lemma [2, §4.6] gives by (13)

[max|P„(z)|, z on S] g <rn[max| P„(z) |, z on E]

£LVV|P.(*)|.

Successive application of (3), (14), (6), and (1) yields j

(15) limsup [max| rn,(z) \, z on S]l/n g ta/pi.
n—* oo

We can allow t in (15) to approach unity, and have then shown that every

sequence of the r„,(z) admits a subsequence which satisfies (2). Conse-

quently, (2) is satisfied for the entire given sequence rnt(z). We have by

use of Lemma 2 instead of Lemma 1

Theorem 8. Theorems 1 (with corollary), 2, and 3 are valid if the hypoth-

eses are modified so that E satisfies the conditions of Lemma 2 rather than

Lemma 1.

Other measures of approximation than those of pth powers over a

rectifiable boundary and of Tchebycheff may be considered. First, if E

consists (for simplicity) of a finite number of mutually exterior Jordan

regions, we may measure approximation by a surface integral of pth powers

(p > 0) over P, as in [2, §5.3]. The analogue of Lemma 2 follows, as do

the analogues of Theorems 1 (with corollary), 2, and 3. Second, if E is

closed and bounded with a connected complement, and if E consists of a

finite number of components each of which consists of more than a single

point, we may measure approximation by the pth (p > 0) root of the sum

of integrals of pth powers over y after conformal mapping of the comple-

ment of each component onto the exterior of the unit circle 7. This measure

applies to very general point sets; it is used in [2, §5.4], and also leads to

precise analogues of Lemma 2 and Theorems 1 (with corollary), 2, and 3.

Various kinds of weight functions can be introduced in these new as well

as the former measures of approximation without altering the conclusions,

as in [2, §5.7].
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