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1. Introduction. Considerable significance is attached to integral equations

on the real line whose kernels depend upon the difference of the arguments.

Such problems for the infinite line are often readily solved by use of the

Fourier transform.

For the half-line, the use of the Fourier transform requires some sophis-

ticated function theory. Methods were developed by Wiener and Hopf

[10 ] for which there is a vast literature devoted to its development and

application. A very comprehensive study and bibliography are given in a

paper by Krein [4].

In this paper we wish to present a technique for the study of such inte-

gral equations on a finite interval. Rather than attempt a development for

kernel functions of various general classes, we consider those of a particular

form which arise in the theories of neutron transport [2], radiative transfer

[l], gas dynamics [11 ], [12], and electromagnetic wave refraction [3]. Very

complete results are obtained in the form of simple quadratures and rapidly

convergent Fredholm equations. We leave to a future paper the investi-

gation of general classes of kernel functions [14]—[16].

Most of the details of this paper were worked out in a previous paper

[6] devoted to the study of Chandrasekhar's X and V equations which

arise in the theory of radiative transfer [l]. We wish here to show that

the methods exploited there can be used as well to obtain a spectral analysis

of certain Fredholm operators. Our methods make use of the theory of

singular integral equations and analytic continuation. The Laplace trans-

form is explicitly used to represent the kernel function, but it plays a

minor role in the development.
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We wish to draw special attention to two points. The first is the method

of derivation of equation (3.5) below. A similar equation can be derived

for any kernel function with a Laplace transform representation. The second

point is the consistent use of analytic continuation which is prominent in

the detailed calculations of our previous paper [6].

2. Fredholm equations. We shall study integral equations of the fol-

lowing type

(2.1) fix) =cj k(\x-y\)f(y)dy + g(x)

for 0 ^ t < co and 0 ^ c < oo. The kernel functions will be of the type

(2.2) k(x) = f *(t)exp[ - xt] f     (0 ̂  a < °o)
Ja I

where the function ^ is nonnegative(3) on [a, °°), satisfies a Holder condi-

tion on (a, oo) and satisfies the condition

(2.3)
r- /xdt l

In the theories of neutron transport and radiative transfer, ^ is usually

a polynomial in 1/r and a = 1. With certain assumptions, ^ is exp[— 1/f2]

and a = 0 in Couette flow problems in gas dynamics. If we take \p

= t/y/(t2 - 1) and a = 1 we have the MacDonald kernel which arises

in electromagnetic wave refraction.

We write (2.1) in abbreviated notation as

(2.4) f=cAr(f)+g.

It is easy to show [7] that AT is a compact, positive definite, self-adjoint

operator in L2[0, r]. By a simple extension of a result observed in a pre-

vious paper [7], we obtain good upper bounds for the maximum eigenvalue

^(t) of A, as

(2.5)

0tan-=s, 0<-^-.

We have two objectives in this paper. The first objective is to present

a procedure for the precise computation of eigenvalues and eigenfunctions

of A,, that is, solutions to

(3) The restriction to positivity is made to simplify the following discussion. The exten-

sion of the results to arbitrary ^ satisfying a Holder condition is relatively straightfor-

ward (see [5]).
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(2.6) ßi*i=K(*i)      (i = l,2, •••)•

We do this by first solving (2.4) for special functions g.

When cui < 1, equation (2.4) can be solved for / by iteration. The nearer

cui is to 1, the slower the convergence. Our second objective is the pre-

sentation of a procedure for solving (2.4) which is less sensitive to condi-

tions on c. To do this we first restrict the function g in (2.4) to exponential

functions. Solutions for more general g are obtained by use of the Laplace

transform [13].

We shall need the following obvious result.

Theorem 1. For cu^l (i = 1,2, •••), the solution J to the equation

(2.7) J(x,z) = c\,(J)(x,z) + exp[- xz]

is unique and an analytic function of z for \z\ < <*>.

3. Linear singular equations. To make full use of the analytic dependence

of J in (2.7) upon the parameter z, we proceed to show that A,(J) can be

expressed in terms of integrals on the parameter 2 in J. This result and

analyticity of J in the variable z leads to singular integral equations and

linear constraints.

We apply AT to (2.7) to obtain the equation for Ar(J)

Ar(J)(x,z) - cAr(Ar(J))(x,2)

'exp[ - xz] — exp[ — xt]
(3.1)

t-z

^ exp[ — xz] — exp[ — t(z + t) + xt]~\ $(t)dt

t + z J t

From (2.7) we readily obtain the fact that

Ar(J)(x,2)

(3.2) ' 'VMWMIT t - 2

J(x,z) - J(x, -t)exp[-T(z + t)]l m

t+z J   t '

Also from (2.7) it follows readily that

(3.3) J(T-x,t) = exp[-Tt]J(x, -t).

Combining (2.7), (3.2) and (3.3), we obtain the following result.

Theorem 2. For cm;(t) ^ 1, the unique solution to (2.7) also satisfies the

equation
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(3.4)

J (x, z) = exp[ — xz] + c
J(x,z) - J(x,t)

t-z

+
J(x,z) — exp[— tz]J(t — x,t)l \(/(t)

t~f~z J ~T

The variable z is any complex number in \z\ < oo and x is a parameter re-

stricted by 0 g x g t.

We now restrict the complex variable z by l/zf$ [— I/o, 1/a]. Then we

can rewrite (3.4) as

If we specialize $ and o and evaluate (3.5) at x = 0 and at i = t and

denote «7(0, z) by X(z) and J(t,z) by Y(z), we obtain equations for

Chandrasekhar's X and Y functions. These equations were studied in a

previous paper [6]. All of the analysis given there applies to (3.5) when

proper account is taken of the fact that x is no longer restricted to 0 and

t. We shall use the results of this previous analysis without reproducing

any of the computations.

We first define functions F and G by

(3.7)    F(x,z) m J(x,z) + J(t-x,z), G(x,z) m J(x,z) - J{t - x,z).

Then (3.5) leads to uncoupled equations for F and G. These equations

give rise to linear constraints since analyticity of J requires the vanishing

of the right-hand side of (3.5) at all zeros of X for 1/ztJ [— I/o, I/o]. In

addition, we obtain linear singular equations for F and G by adding the

limits in (3.5) as z approaches the cut from above and below, as given by

Plemelj's formulae [8, p. 42]. We, then, invert the singular operator by

standard methods [8, Chapter 14] and, finally, by analytic continuation,

we achieve the desired solution.

To present the solution to (3.5) we need a classification of the roots of

the function X for l/z(£ [—1/a,I/o]. We have the following possibilities

which depend upon values of c(4).
_ i

(4) If we allow if/ to take on negative values, other possibilities arise, e.g., X(z) may have

two pair of zeros ±20, ± Z\.

(3.5)

where

(3.6)
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(i) If 0 ^ 2c X" Ht)/(t2 -a2)dtfl, then

X(z)       for l/z£[- l/a,l/o].

(3.8) (ii) If 1/2 X" *W/(f2 - «2) * < c g 1, then

X( ± z0) = 0 for some z0,0 ^ z0 < a.

(iii) If 1 < c < oo, then

X( ± Zo) = 0 for some z0 = ii>o, 0 f vQ < °°.

Since the first possibility (i) seems to occur physically only in very special

cases and since there exist no eigenvalues for this case, we will offer no

further discussion on this possibility other than to mention that the fol-

lowing results for case (ii) may be easily modified to give the solution cor-

responding to case (i) (see [6]).

Now by a slight modification and rearrangement of results of our pre-

vious paper [6] we find the solution of (2.7) for case (ii) of (3.8). In terms

of functions to be defined below, we have F given by

F(x,z) = H(z) \ P{x,z) - c I

(3.9)
H(t)M(t)[t~z] t

zl        P(x,z) - P(x,z0)
+

v(l-c)N(z0) z-zQ

By replacing P by Q we obtain the result for the function G.

The various functions in (3.9) are defined as follows. The function H

is given by

H(z) = exp I" f dt],     z £ (- <=°, - «) and z ̂  - z0,
z + z0      LJ«   z + t J

1 ,Cir\P(t)
(3.10)   0(0 =-tan-1-^-

ir t\0(t)
(8(a) = 1 and 0(o=) = 0),

X0(0 = 1 - 2cX' *(r) , c*(r) i + a
-ö— as-In- (a ^ t < oo).

The functions M and iV are given by

M(t) = [x0(t)f+[^]2 (a ft < oo),
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and

with

(1 - c)(22 - z20)N(z)N( -z) = (zz0)2\(z).

The functions P and Q are given by

P = A, + Ch2,

Q = h3 + Dh4,

where the h functions satisfy the Fredholm equations

hx = - L(A,) + exp[ - xz] + exp[(x - t)z],

(3.11)

A2 = - L(A2) + N^   ^ exp[ - tz],

h3 = L(h3) + exp[ - xz] - exp[(x - T)z],

h4 = L(h4) + ——- exp[ - tz].

The operator L in (3.11) is defined by

TtU\ \ ,1 f(l-c)7V(-2) f" t(t)h(t)(t-z0) dtL(A) = exP[-T2]-J _____

We show in [6] that the equations (3.11) can be solved by iteration to

converge uniformly, since in this norm

Va - c)
\\L\\ ^exp[-ar]

. - *(*)) i•X' <1, (a>0).

This result holds for all c and t(0^c<co,t<od). For Ol the root Zq

is pure imaginary but it follows readily from (3.10) that (t-z0)/H(t) is

real-valued. Whether L is contracting when a = 0 depends on $ (cf. [12]).

The above quadrature formula (3.10) for the H function gives a solu-

tion to Chandrasekhar's H equation [l, Chapter 5] which is analytic in

Re (2) > 0. This function is the Laplace transform of a certain solution to

equation (2.1) with g = 0 for the half-line, r= °=, [4, p. 273].
The constants C and D are determined by the requirement that F and

Gbe analytic at the zeros of X. They are functions of the parameter x and

for 20 9^ 0 are given by



1965] integral equations 471

C =
exp[ - z0x] + exp[z0(x - t)] - L(/i!)(z0) - exp[ - Zp^L^M- z0)

z0) - exp[- z0r)N(- z0) + L{hMzo) ~ exp[ _ 2oT]L{hM _

(3.12)

D =

u(x,c,T)

m(c,T) '

exp[ - zQx] - exp[z0(x - t)] + L(A3)(z0) - exp[ - z0t]L(A3)(- Zq)

k(x,c,t)

n(c,T)

We merely remark, at this time, that the above constants for the limiting

case, z0 = 0, may be easily calculated from (3.12).

Two comments about computations are in order. First, it will be shown

in a subsequent paper that the resolvent kernels for the operators (I ± L)

have simple expressions in terms of h2 and h4, thereby giving an easy

computation of hx and h3 for different values of the parameter x. Second,

in many applications integrals over the interval [a, <*>) can be transformed

to integrals over a finite interval [6], [12].

4. Spectral analysis. For case (iii), the previous results, (3.9) to (3.12),

hold with z0 pure imaginary but with the following exception. For certain

values of c (t fixed), m (or n) is zero and the solution to (2.7) is unbounded

for all finite x and z. Let these values of c be denoted by c, (i = 1,2, • • •)•

Then, by Theorem 1, the homogeneous equation (2.6) has a solution for

each c = c, with

Furthermore, it is easily seen that u (or v) is proportional to the corre-

sponding eigenfunction, and that the even eigenfunctions belong to the

singularities of C and the odd eigenfunctions belong to the singularities

of D. Therefore, we have, in essence, achieved a spectral analysis of Ar.

We summarize this result by the following theorem.

Theorem 3. For a fixed t, let jc, j,° j be the set of values of c for which

either

(4.1)
1

(4.2) m(c, t) = 0

or

(4.3) n(c,r) = 0.
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Then, for each c, the homogeneous equation (2.6) has a solution with

1

If (4.2) is satisfied, the corresponding eigen]unction, <j>it is given by

<Pi = cos[|z0| (r/2 - x)]- Re{exp[z0T/2]L(hl){z0) }

or, if (4.3) is satisfied, <j>i is given by

</>, = sin [|z0| (r/2 - *)]+ Imj exp[zoT/2]L(A3)(zo) }.

The normalization is arbitrary. By (3.8), z0 depends on c,.

The product m(c, r) n{c,r) is clearly the counterpart of the Fredholm

determinant D(c) which arises in the classical theory of Fredholm kernels

[9]. Although the dependence of m(c, t) n(c,r) on c is very complicated,

it is essentially given in closed form, whereas, in the general case of a

Fredholm kernel, the computation of D(c) can only be carried out in the

form of a MacLaurin's series in which the higher order terms become

progressively more cumbersome.

5. Other difference kernels. Although we have presently limited our

discussion to kernels of the type given by (2.2), we hope, in the future,

to treat other classes of kernel functions with the methods of this paper

or variations thereof. For the cases considered in this paper, the contours

in the z-plane reduced to integrals on the real line [a, co ] (see, for example,

(3.5)). In other cases, contours off the real line will probably be encountered.
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