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1. Introduction. Let m be a probability measure. In (complex) L°°(m),

we consider a subalgebra A, which contains the constant functions. We

assume

(a) m is multiplicative on A, that is,

Jfgdm = Jfdm J* gdm, f,gEA;

(b) if h is a non-negative function in Vim) and

jfhdm = j fdm,      /£ A,

then h = 1, almost everywhere.

If 1 ^ p < co, we let IP be the closure of A in the Banach space Lp(m).

We define

H° = IfnL-im).

The principal result of this paper is that H° is a logmodular algebra on

the maximal ideal space of L"im), i.e., that each real-valued function in

L"im) is the logarithm of the modulus of an invertible function in the

algebra H".

This enables us to deduce from (a) and (b) the bulk of the generalized

analytic function theory which is valid for logmodular algebras [8].

Srinivasan and Wang [ 10] have shown that this "function theory"

follows if one assumes (a), (b), and

(c) A + A is dense in L2(m).

Lumer [9] has demonstrated the results under the assumption that A

is an algebra of continuous functions on a compact Hausdorff space, m

is a Borel measure on X which is multiplicative on A, and no other positive

measure on X induces the same linear functional on A as does m. In §5,

we shall comment on this function algebra setting.

2. Logmodularity. Let us abbreviate Lp(m) to Lp. The elements of Lp

are equivalence classes of functions; however, we shall treat them as

functions, and speak of the equality of two such functions—consistently
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omitting "almost everywhere with respect to m". We denote by L\\ the

set of real-valued functions in V.

We retain the algebra A, which satisfies the conditions (a) and (b).

In addition to the spaces W and H", we define

A0={/GA; J/dm = o},

#§= {/€#"; j/dro = o} .

Note that (a) says that A0 is an ideal in A, and (b) can be stated as

follows:

(b') if gEL1, g ^ 0 and f fgdm = 0 for all fEA0, then g is constant.

Since m is multiplicative on A, we see directly that

J fgdm = Jfdm Jgdm

for/,gEH2. In particular, m is multiplicative on H", Also note that H"

is a closed subalgebra of L" in the (essential) sup norm on L". Thus, if

A E H°°, then also eh E H°° and fehdm = exp[y hdm].

Lemma 1. For h a non-negative function in LR, let P be the orthogonal pro-

jection of 1 into the closure of A0 in the Hilbert space L2(hdm). Then.

\1-P\2h = k,

where k is the constant

k=inf f|l -f\2hdm= inf f\l - f\2hdm.

Proof. First, define k as the first infimum. Then, by definition of P,

P\2hdm.

Since 1 — P is in the closure of A in L2(hdm) then for any /£ A0, /(l — P)

is in the closure of A0. Thus, since 1 — P is orthogonal to the closure of A0,

Jf(l - P)(l - PjAdm = J/|l - P|2Adm = 0

for all fE A0. Since |1 - P|2A E L\ by (b'), |1 - P|2A is constant, and
that constant must be k. Finally we must show that the two infima are

equal. Notice that 11 - P|2A2 = AA E V, so (1-P)AGL2 and is or-
thogonal (now in L2) to A0. Thus (1 — P)A is orthogonal to Hö, so 1 — P

is orthogonal to Hö in L2(hdm). Since P is in the L2(hdm) closure of A0,

and thus of Hö, we see that P is also the orthogonal projection of 1 into

the L2(hdm) closure of Hö, so the two infima are equal.
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Lemma 2. For u E L%, there is a function F in H" such that f Fdm = 1

and \F\eu = k where k > 0 and k = \n{feAof\l - f\2eudm.

Proof. We apply Lemma 1 for h = e". In this case the L\hdm) closure

of A0 is the same as Hi. Thus, since 1 (£ Ho, k>0, and P is in Ho. Thus

F= (1 — P)2 is the desired function.

Lemma 3. Let <p be a linear functional on L" such that \\<p\\ =1 and <p(h)

= f hdm for all A E # °°. Then <b(g) = fgdm for all g EL".

Since \\4>\\ =0(1) = 1, <t> is a positive linear functional on i*. Thus we

can restate Lemma 3 as follows: The linear functional which m defines on

H" has a unique positive (i.e., norm-preserving) extension to a linear func-

tional on L".

Proof. We shall prove that <t> is absolutely continuous with respect to

the linear functional which m defines on L". Indeed, we assert that

It suffices to prove this for characteristic functions; thus we may assume

that u is the characteristic function of an m-measureable set E. By Lemma

1, there is an FEH" such that f Fdm = 1 and |F|eu = k, where

Now let h = k-1F. Then A EH", |A| = e~\ and fhdm = k~\ Since
<fi agrees with m on H°°,

Note that

k ^    eudm= 1 + (e- l)m(E).

A-> = <b(h) ̂  <p(\h\) = <b(e-u) = 1 + (e-1 - l)<b(u),

since e~u = 1 + (e_1 - l)u. Thus

e- 1
<t>(u) ̂

k - 1 ^ (e - l)m(E)

e k   = k

But k ^ 1, since

Thus

-<t>(u) g, m(E)

as required. Thus <fi is continuous in the Ll norm, so there is a non-negative
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pGi" such that <t>(g) = fgpdm for all gEL1. In particular, fgpdm

= f gdm for all gE A, so by assumption (b), p = 1, and the lemma is

proven.

Theorem 4. H" is a logmodular algebra, on the maximal ideal space of L".

Proof. We must show that each u E L£ is the logarithm of an invertible

element of H". Note that Lemma 2 almost does this, we need only show

that the F found there is invertible. To do this, we must further identify

the constant k. For u E Lr, dehne

k(u) = inf f II -f\2eudm.

Clearly, if u £ v then k{u) fk(v). Now if u = ReA, with A EH", then

k(u) = exp[y*udm]. It suffices to show that A(u) = 1 when u = ReA, A

EH<T. First> let * = 1 - exp(- (1/2)A). Then gE#o", and

J 11 - g| Vdm = J |e-A/212e*°hdm = 1,

so k(u) f 1. On the other hand, for any /E A0,

j 11 - f\ 2eudm ^ I J (1 - /) Vdm 1.

Now let uELr- By the above arguments, we have the following in-

equalities:

sup U^eAdm, A EH", ReA f u|

^ logA(u)^ inf|jReAdm; A EH", ReA ̂  uj .

By Lemma 3, the linear functional which m defines on the real parts of

H" functions has a unique extension to a positive linear functional on L«.

The necessary and sufficient condition for this uniqueness is that the left

and right sides of (1) are both equal to fudm. Thus logA(u) = fudm

for u E Lg-

Now, by Lemma 2, there are F, GEH" such that f Fdm = f Gdm = 1

and |F|eu = A(u), \G\e~u = k(-u). By the above k(u)k(-u) = 1, so

\FG\=1. But fFGdm = fFdmfGdm = \. Thus FG = 1. Therefore
A = k(u)F~l = k(u)G is an invertible element of H" and log|A| = u.

3. The Hp theory. Given the situation described in the above section,

it is possible to deduce, from the logmodularity of H", all the theorems

concerning the spaces IP as in [8]. However, in doing this one loses sight

of the given algebra A. Further, it has to be verified that if we replace

our basic algebra A by H", we get the same Hp spaces, i.e. the closure of

H" in Lp is the same as that of A in L", 1 f p < od . Therefore we provide
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the following bridge between A and the theory in [8].

Theorem 5 [Szego] . If hELR, A ̂  0, then

mf j 11 - /| 2Adm = exp[ j log hdm J.

Proof. Because of Lemma 1, this follows from the corresponding theorem

for H" [8]. However, we can give a direct proof. First observe that, as

in the proof of Theorem 4, we know the theorem for functions A which are

bounded above, and bounded away from zero. Now let A E LR be such

that A ̂  m for some m > 0. Let hn = inf{A,n}. Then A„—> A monotonically.

Let fEA0. Then

J \l-f\2hdm^j |l-/|2A„dm^exp[J*logA,,dm].

Letting n—» <» we find

mf J 11 - /|2 A dm ̂ exp £ j log A dm J.

Now, let Pn E Ho be given by Lemma 1 so that

|l-PB|2A„ = exp J" logA„dmJ

Since A„ ̂  m for all n, 11 — P„|2 ^ m 1 exp [f log Adm] = M for all n. Now,

for t > 0, choose n so that /(A - A„)dm < MThen

J |l-P„|2Adm= J |l-P„|2A„dm + J 11 - P„|2(A - A„)dm

< exp J^J* log Adm J + e.

Thus

inf J* |1 - f\ 2h dm g exp£ J logAdmj ,

so by Lemma 1 the theorem is proven for such an A. Now, for any A £ LR,

A ̂  0, let Am = sup {A,m"1}. Since hm decreases monotonically to A as

m —> oo, so the derived result follows from the monotone convergence

theorem.

Now to show that H" and A have the same Hp spaces, it suffices to

show that A is weak* dense in H". Now, by Theorem 5.4 of [8], H"

+ H°_is dense in L2, therefore, since A is L2 dense in H™ by definition,

A + A is dense in L2. In particular, it follows: that if / is in L2, then / is

in H2 if and only if ffgdm = Q for all gEAQ. Now by repeating the

proof of the corresponding theorem in [8], (Theorem 6.1) we prove that
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if / is in L1 and ffgdm = 0 for all gEA, then /= hxh2 with hiEHl,
h2EH2. But then, if gEH", also ffgdm = 0. Thus A is weak* dense

in if". Summarizing:

Theorem 6. A is weak* dense in H°°, and hence the norm closure of A

in IP, 1 f p < co is the same as that of Hm. Further, A + A is weak* dense

in L", and hence is norm dense in IP, 1 f p < <».

4. Aji example. An immediate consequence of our assumption (b) is that

A + A is dense in L1. After Lemma 2 is proven, this is the extent to which

assumption (b) is needed. It may be thought perhaps more natural to

assume only that A + A is dense in Lx; however this will not do. In fact

it is not even enough for A + A to be dense in U, 1 ±s p f 3 as the follow-

ing example shows.

For Ä>r>0, let X = {zE C; \z\ = R\U [zE C; \z\ = r) = rfi(J r„
and let A be the algebra of continuous functions on X which have analytic

extensions to the annulus R= {zEC; r <\z\ < R\. Let de be the measure

given by dz/z on X, and let E be the function

It is well-known that if g E L\ and ffgde = 0 for all gEA, then / = kE,

where A is a constant.

Now let p be such that r<|p| < R, and let P be the Poisson kernel

for p, i.e.,

for all g E A + A. P is a strictly positive, real-analytic function on X.

Let X = infjP(2); \z\ = R}. The measure dm = (P - \E)dO is clearly

a probability measure which is multiplicative on A. P(P — XF)"1 is a

positive Uidm) function which annihilates A0=(/£A;/(p) = 0|, so

assumption (b') does not hold (in fact it is clear that none of the desired

theorems holds).

Suppose that gELpR{dm) and ffgdm = 0 for all fEA. Then

for all fE A, so g(P — \E) = kE for some constant k. If g is not identically

zero, then k * 0, so gELpR{dm) implies \g\"(P - \E) = k"(P - XE)1""

ELlR(de). Now the integrability of (P — XE)l~p depends only on its be-

havior on the curve rß at the point where P attains its minimum. Since

P is differentiable there, the integrability of (P — x£)1_p implies that of

x2(1_p) in Ll(dx) in a neighborhood of the origin in R. Thus 2(1 — p) < 1,

or p < 3/2. Thus, if p ^ 3/2, there is no nonzero g E LpR(dm) such that

( 1
E(x) = j

ifxE TR,

1 ifxerr.
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ffgdm = 0 for all /E A. Thus, for q £ 3, A + A is dense in L'(dm).

5. The case that A is a closed subalgebra of C(X). Now suppose that X

is a compact Hausdorff space, m is a Borel probability measure on X, and

A is a closed subalgebra of C(X) containing the constants, on which m

is multiplicative. Thus m is a representing measure for some complex

homomorphism <t> of the algebra A. We assume also (b), which says that

any representing measure for <t> which is absolutely continuous with respect

to m is equal to m. As a consequence, we have A + A dense in L2(m).

Now, as in [ 11], we can prove that the set of complex homomorphisms of

A which are bounded on H2 consists of either <p alone, or is an analytic

disc. Precisely, we obtain the following result.

Theorem 7. Let A be a sup norm algebra on the compact Hausdorff space

X, and let <b be a complex homomorphism of A. Suppose m is a representing

measure (on X) for <p which has the property that no other representing meas-

ure for <p is absolutely continuous with respect to m. Let D be the set of com-

plex homomorphism $ of A which are bounded on H2(m), i.e.,

for some constant K. Then, if D 9* {<t>\, there exists a one-one map t from

the open unit disc onto D such that f° t is analytic for every /E A.

Proof. [8, Theorem 7.4].
This last theorem is part of a general attempt to place analytic structures

on subsets of the maximal ideal space of a sup norm algebra. From this

point of view, the result has some defects. First, if D = {<p \, we have not

produced any nontrivial analytic structure. This may happen even if there,

exists some nontrivial analytic structure passing through <t>; for example,

by making a poor choice of representing measure m. However, if m is the

unique measure representing <t>, these difficulties disappear.

In [6], Gleason introduced equivalence classes of homomorphisms which

he called "parts". Two homomorphisms <t> and \j/ are in the same part if

where c is a constant, 0 < c < 2. The parts are the largest possible analytic

subsets of the maximal ideal space, in the sense that any subset of that

space which can be endowed with the structure of an analytic space lies

wholly in one part. Thus we can ask for conditions making the following

statement true:

(*) If <t> is a complex homomorphism of A, then the set D of the previous

theorem is precisely the Gleason part which contains <p.

Gleason showed that (*) is true for Dirichlet algebras. Lumer [9] has

extended this to any algebra for which each complex homomorphism of A

\<p(f) -*(/)| gc\\f\\,    /E A,
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has a unique representing measure. Now, a recent result of Bishop [3]

says that if <j> and ^ are two complex homomorphisms of a sup norm algebra

A which are in the same part, then given a measure v representing \p,

there is a measure p. representing </> such that v is absolutely continuous

with respect to p. and dv/du is bounded. Using this we obtain the follow-

ing result.

Theorem 8. Let A be a sup norm algebra on the compact Hausdorff space

X, and suppose <b is a complex homomorphism which has a unique represent-

ing measure. Then, if the Gleason part P of <f> is larger than {</>), there exists

a one-one map r from the open unit disc onto P such that f o r is analytic for

every f £ A. In addition, every \p £ P has a unique representing measure.

Proof. Let m be the measure representing <b. Let ^ £ P, and let p. be a

measure representing \f/. By Bishop's result, du = pdm and p£L"(m).

so $ £ D. Thus D = P, so the first statement follows from Theorem 7.

Suppose p! is another measure representing \p. Then du' = p'dm, and p'

£L"(m). Thus (p - p')dm = u — p, so annihilates A. Since p, p' are

bounded, for e > 0 small enough, [ 1 + «(p — p')] dm is a positive measure

and represents <f>. Thus 1 + t(p — p') = 1, so p = p' and p. = p!.
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