
ON REGULARITY IN HUREWICZ FIBER SPACES( )
BY

PATRICIA TULLEY(2)

1. Introduction. If E and B are topological spaces, p is a continuous

function from E to B, fip = {(e,to) EEX B'\p(e) = w(0)}, and there is a

continuous function X from Qp to E1 such that X(e,to)(0) = e and p° X(e,«)

= co for all (e, co) £ fip, then (E,p,B) is called a fiber space (in the sense of

Hurewicz). X is said to be a lifting function for the space. If X has the

property that X(e, to) is a constant path whenever to is a constant path,

then X is said to be regular. A fiber space is said to be regular provided it

admits a regular lifting function.

It is the purpose of this paper to present results related to the question

of what fiber spaces are regular. A condition on the base space which in-

sures regularity is considered. An example of a nonregular fiber space is

presented.

In [l], Hurewicz notes that not every fiber space is regular, that the

fiber space of paths over a space B does not always have this property,

and that, specifically, such a space fails to be regular when B is the "joint

of two enumerable (infinite), connected Hausdorff spaces"(3). Here "joint"

is the more commonly used "join" of two spaces (see §3). However, it is

shown in §4 that such a space actually is regular. The failure of Hurewicz'

example raises the question of the existence of a nonregular fiber space.

2. Preliminaries. Throughout, the word space means Hausdorff space,

fiber space is used in the sense of Hurewicz as explained above, map means

continuous function, I denotes the unit interval, and, for spaces X and

Y, Xy is the space of all maps of V into X with the compact-open (c-o)

topology. That is, the topology for XY has as a basis all finite intersections

of sets of the form W(C, 0) where for any compact set C in V* and any

open set 0 in X, W(C,0) = j/£ XY\f(C) C 0}.
The following results and remarks are known and are listed here for

reference.

2.1. (E,p,B) is a regular fiber space if and only if the following "Cover-

ing Homotopy Condition" is satisfied.

Received by the editors May 18, 1964.
( ) The results of this paper are contained in a thesis submitted to the faculty of the Univ-

ersity of Wisconsin in partial fullfillment of the requirements for the Ph. D. degree, August, 1962.

(2) The author is grateful to Professor Edward Fadell for his encouragement and many valu-

able suggestions.

(3) See p. 957 of [l].

126



on regularity in hurewicz fiber spaces 127

Covering Homotopy Condition: For any space X and maps H : X X I —> B

andg: XX jOj^F such that p°g = H on X X |0(, there is a map G:

X X I—*E such that G is an extension of g, p ° G = H, and if, for jc0£ X,

H(x0,t) is independent of t, then G(x0,t) is also independent of t.

2.2. A well-known example of a fiber space is the triple (B',p,B) where

B is an arbitrary space and p(w) = <d(1) for all w £ B'. This is the space

of paths over B which was mentioned in §1. For this space a lifting function

X: fip—(ßV is given by X(«,a>)(f)(s) = a(2s/(2 - t)) for 0 g s g 1 - t/2

and A(a,ü))(f)(s) = o,(2s - 2 + t) for 1 - t/2 g » £ 1. Note that this parti-

cular A is not regular.

2.3. If (E,p,B) is a regular fiber space, E* is a space, p* is a map of E*

into £, and / is a homeomorphism of E onto E* such that p* 0 f — p, then

(E*,p*,B) is a regular fiber space.

2.4. If /: Z->XY, Y is locally compact, and F: Z X Y-^X is defined

by F(z, y) = /(z) (y), then F is a map if and only if / is a map.

2.5. If each of Y and Z is locally compact and /: {XY)Z^(XZ)Y is de-

fined by /(<*>) (y)(z) = 0(z)(y), then / is a homeomorphism.

2.6. A map /: X-*Y induces a map /: Xz-> Yz defined by 7(0) (z)

= /(*(z)).

2.7. If / is a map of X into /, Y is compact, and F: Xy—>/ is defined

by F(</>) = sup j/(0(y)) |y £ Yj, then F is a map. This statement remains

true if sup is replaced by inf.

3. A condition on the base space which insures regularity. A regular lift-

ing function can be defined for a fiber space whenever it is possible to

"measure" paths in the base space in a continuous manner which gives

zero "measure" to the constant paths and only to the constant paths.

The following definition makes this notion precise.

Definition. A space B is said to admit a </>-function provided there

is a map <j>: B'—> I such that <b(u>) = 0 if and only if to is a constant path.

If B is a metric space, then 4>(w) = diamM/)) defines a 0-function for

B. It is this property of a metric space which is used in [ 1] to prove that,

"Every fiber space (E,p,B), where B is a metric space, is regular"(4).

Therefore, essentially the same proof yields the following generalization.

Theorem 3.1. // the space B admits a <t>-function, then any fiber space

(E,p,B) is regular.

Proof. By hypothesis there is a map 0: B'—>I such that 0(a>) = 0 if and

only if to is a constant path. Define g: B1—> B1 by g(oi)(t) = u(t/4>(w))

for t < 0(oj) and g(w)(t) = «o(l) for <p(co) ̂ t g 1. It is easy to show that

g is a map.

(4) See p. 957 of [lj.
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Now if X is any lifting function for (E,p,B) and X': fip—>F/ is denned

by X'(e,co)(0 = \(e,g(w))((t>(u) ■ t) for all then X' is continuous and,

furthermore, is a regular lifting function for (E,p,B).

The following definitions and notation concerning the join of two spaces

will be used in the statement and proof of the next theorem.

If X and Y are spaces, then J(X, Y), the join of X and Y, is the identi-

fication space obtained from X X IX Y by means of the equivalence

relation ~ where (x,t,y) ~ (x',t',y') if and only if one of the following

conditions holds:

(1) x = x' and t = t' = 0,

(2) y = y' and t = t' = 1,

(3) x = x',y = y\ and t = t'.

Elements of J(X, Y) are thus equivalence classes and in general will be

denoted by [(x,t,y)]. Additional properties and notation follow. The

proofs of statements depend almost exclusively on the identification

topology on J(X,Y) and are omitted.

(1) x—>[(x,0,y)] imbeds X in J(X, Y) as a closed subspace. X will be

used to denote this subspace and x to denote the element [ (x, 0, y) ].

Analogous remarks are to be assumed for Y.

(2) If M= \[(x,t,y)]EJ(X,Y)\0<t< lj, then (x,t,y) ^[(x,t,y)] de-
fines a homeomorphism of X X (0,1) X Y onto M, and open subset of

J(X,Y).
(3) Ifp: J(X,Y)^I, px: J(X,Y) - Y^X, and pY: J(X,Y) - X^Y

are defined by p([(x,t,y)]) = t, Px([(x,t,y)]) = x, and pY([(x,t,y)}) = y,

then p, px, and py are all maps and induce maps p: J(X,Y)'—>I!, px'-

(J(X, Y) - Y)'—>X', and py:   (J(X, Y) — X)'—> Y' defined  as in 2.6.

Theorem 3.2. If each of the spaces X and Y admits a ^-function, then

the space J(X, Y) admits a ^-function.

Proof. Let (j>x be a ci-function for X and <pY be a ^-function for Y where

X and Y are considered as subspaces of J(X, Y).

Define the following sets in J(X,Y)':

X* = {co G J(X, Y)'\u(I) H X * 0 and co(7) Pi Y = 0},

Y* = {co G J(X, Y)'\w(I) p Y ̂  0 andco(/) p X = 0(,

0 = j co G       Y)7| co( J) P X * 0 and <o( J) p Y * 0).

Note that M' = |coGY)'|co(/) PX = 0 and co(/)pY=0} is an

open set in J(X, Y)' and that J(X, Y)' = M7 U X* U Y* U Ö is the union

of four mutually exclusive sets.

Define the following maps using previously given notation and prop-

erties:
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d: J(X, Y)7— /by d(«) = diam(p(«)(/)),

dx: (J(X, Y) - Y)'^Ibydx(u) = 0x(px(o,)),

dY: (J(X,Y) -X)7-/by dy(o,) = MpA**)),

fx\ J(X,Y)'^Ibyfx(u) = mi{p(w(t))\tel\,

fY: J(X, Y)1 - / by fY(u>) = 1 - sup j p («(r)) 11G /}.

Continuity of /x and fY follows from 2.7.

Using these maps define a function 0 on J(X, Y)' as follows:

For w G M'  let  0(a)) = d(o>) + /y(o>) ■ dx(o>) 4- /x(a>) • dy(a>).

For a) G X* let 0(a>) = d(w) 4- Ma.) • dx(a>).

For a; G Y* let 0(a>) = d(a>) 4 fxM ■ dY{u).

For a>GQ let 0(a>) = d(a) = 1.

Note that d(u) + fxM + /y(«) = 1 for all o> G J(X, Y)' and that dx(o>)

and dy(o>) are in / whenever they are defined. It follows that <b: J(X, Y)' —> I.

0 is continuous at points of M' by its definition at such points and the

fact that M' is open. The following additional proofs of continuity com-

plete the proof that 0 is a map.

Case I. Let b0£X*. Since Y*(jQ is closed, it is sufficient to show

that (j>\{X*\jMl) is continuous at a>0. Furthermore, since d + fY-dx

is continuous on X* U M!, the desired continuity will follow if it can be

shown that for an arbitrary t > 0 there is an open set V containing o>0 such

that /x(o>) <« whenever o> G Vf\M'. (Note that /x(o>) <f implies that

/x(oj) • dy(o)) < t.) Such a V can be found because /x(o>0) = 0 and fx is

continuous on all of J(X, Y)'. Therefore, 0 is continuous at wQ.

Case II. Let a>0G Y*. 0 is continuous at o>0 by an argument analogous

to that given in Case I.

Case III. Let oj0GQ. Then 0(«o) = d(o>0) = 1. Since 0(o>) G / and

0(oi) ^ d(oj) for all ojG J(X, Y)', continuity of 0 at o>0 follows from that

of d at o)0.

It remains to show that 0(o>) = 0 if and only if w is a constant path. For

o>G Q this is clear because u is not a constant path and 0(a>) = 1. Proofs

for the other cases follow.

Case I. If oi G M', then /x(oi) ^ 0 and /y(oj) ^ 0. Consequently, referring

to the definitions of 0, it is obvious that 0(01) = 0 is equivalent to the con-

dition that d(a>) = 0, dx(a>) = 0, and dy(a>) = 0 hold simultaneously. Since

0X and 0y are 0-functions, this condition is equivalent to the assertion

that p(a>), px(a>), and pY(w) are all constant paths which holds for o> G M1

if and only if w is a constant path.

Case II. If ojGX*, then fY{w) ̂0. Thus 0(a>) = 0 is equivalent to the

assertion that d(u) = 0 and dx(a>) = 0 or, as before, that p(w) and px(o>)
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are both constant paths. For <■> £ X* these paths are both constant if

and only if to is a constant path.

Case III. If co£ Y*, then a proof analogous to that in Case II can be

given.

Thus </> is a <t>-function for J(X,Y) and the theorem is proved.

If C(X) is the cone over a space X, then C(X) can be imbedded homeo-

morphically in J(X, X). Also, the cartesian product X X Y can be imbedded

homeomorphically in J(X,Y). Since admitting a ^-function is obviously

a hereditary property, Theorem 3.2 has the following corollaries.

Corollary 3.2:1. If the space X admits a ^-function and C(X) is the

cone over X, then C(X) admits a <p-function.

Corollary 3.2:2. If each of the spaces X and Y admits a <b-function,

then X X Y admits a (b-function.

4. A remark concerning Hurewicz' example. The fiber space to be con-

sidered is the path space over J(B,B) where B is a countably infinite,

connected Hausdorff space (see §1). Since any countable space contains

no nondegenerate paths, B admits a trivial </>-function and, by Theorem

3.2, J(B, B) admits a 0-function. By Theorem 3.1, any fiber space having

J(B,B) as base space is regular and, in particular, the space of paths

over J(B,B) is regular.

5. Regularity for fiber spaces where the base space is a function space.

Theorem 5.1 will give conditions on a function space which insure that it

admit a c/>-function. It is preceded by a lemma which will be used in the

proof of the theorem.

Hereafter, Y will denote the one-point compactification of any locally

compact space Y and «> will denote the additional point of Y.

Lemma . Let X and Y be spaces with Y locally compact. Suppose that there

exist maps h: X X Y—>I and y. Y—>I such that y~l(0) = °°. Furthermore,

leth*: X^I be defined by h*(x0) = supjft(x0,y) • y(y)\y£ Yj. Then h*

is a map.

Proof. Define g: XxY-*I by g(x,y) = h(x,y) ■ y(y) for y£Y and

g(x, eo) = 0. g is continuous and by 2.4 induces a map G: X—>IY with

G(x)(y) =g(x,y). By 2.7, there is a map F: fy—>/ given by

F(a) m supja(y)|y£ Y}.

But, since g(x0, co) = 0 for each x0 £ X,

FoG(x0) = supU(x0,y)|y£ Y) = sup \g(x0,y) \y £ Y} = h*(y).

Thus, F°G=h* and the lemma is proved.

Theorem 5.1. // the space B admits a ^-function, Y is a locally compact
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space, and there is a map y. Y—>I such that y '(0) = °°, then BY admits a

4>-funci.on.

Proof. Let /: (BY)'^{B')Y be denned by f(w)(y)(t) = w(t)(y) for all

<*E(BY)', tEl, and yG Y and g: (B')YX Y^B1 be defined by g(a,y)

= w(y) for all wE (B')Y and yEY. Since Y and / are locally compact,

/ is a homeomorphism and g is continuous.

Let <t>' be a ^-function for B and note that <t>' °g: (B')Y^>I.

DefineG: (B')Y^Iby G(«) = sup\<i>'o g(a,y) -y(y)|yG Y}. By the pre-

ceding lemma G is a map.

Let <p = Gof. That <j> is a ^-function for By follows easily from a con-

sideration of the definitions involved.

Corollary 5.1:1. // the space B admits a <p-function and Y is compact,

then BY admits a ^-function.

Corollary 5.1:2. // the space X admits a <f>-function and A is a count-

able discrete space, then XA admits a <p-function.

Corollary 5.1:2 asserts that if a space X admits a ^-function, A is count-

able, and Xa= X for each aEA, then X\aeAXa (with the Tychonoff

topology) admits a </j-function. In this product all of the factors are the

same. However, similar methods of proof can be used to show that this

need not be true, i.e., admitting a 0-function is a countable cartesian

product invariant. The following theorem demonstrates that this state-

ment is false if the word countable is omitted.

Theorem 5.2. If X is a space containing at least one nondegenerate path

and A is an uncountable space with the discrete topology, then XA does not

admit a function.

Proof. Let u be a nondegenerate path in X and define the following

paths in XA:

(1) For every aEA define waE(XA)' by o>„(f)(a) = w(t) for all tEl

and wa(t)(a') = a>(0) for all t E I and a' E A such that a' ^ a.

(2) Define n E (XA)' by u(t)(a) = w(0) for all tEl and aEA.

Now, suppose that <b is a 0-function for XA and note that <p(wa) ̂ 0

holds for each aEA and that <t>(ß) = 0.

By the construction of the above paths and the nature of the topology

on XA, p is a limit point for any infinite subset of jaia|a G A j. Hence, the

continuity of X implies that for each positive integer i there are only a

finite number of a E A such that (b(a>a) j£ 1/i.

But then, A = U," i [a E A\<p(wa) ̂  1/i) is a countable union of finite

sets and is, therefore, countable. This contradicts the hypothesis and

completes the proof of the theorem.
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Thus there are spaces which do not admit 0-functions. Simple examples

show that this condition is not a necessary one on B in order that (E,p,B)

be regular. Other conditions insuring regularity come from the following

theorem. The proof is omitted; it results from straightforward appli-

cations of 2.4 and 2.1.

Theorem 5.3. If (E,p,B) is a regular fiber space, Y is a locally compact

space, and p: EY—>BY is defined by p(a)(y) = p(a(y)), then (EY,p,BY) is

a regular fiber space.

Corollary 5.3:1. If the space of paths over a space B is regular and Y

is a locally compact space, then the space of paths over BY is regular.

Proof. Let (B',p,B) and UBY)',p*,BY), with p(u>) = o>(l) for co£ß'

and p*(a) = a(l) for a£(Br)', be the path spaces under consideration.

By hypothesis, (B',p,B) is regular. By Theorem 5.3, if p: (BI)Y->BY is

denned by p(ß)(y) = p(ß(y)) for ß£ (B')Y, then ((B')Y,p,BY) is a regular

fiber space.
By 2.5 there is a homeomorphism /: (B')Y^(BY)' defined by f(ß)(t)(y)

= ß(y) (0 • Furthermore, / has the property that p* of = p.

Applying 2.3, gives the conclusion that ((BY)',p*,BY) is regular.

Suppose that X is a space such that X contains a nondegenerate path

and the space of paths over X is regular. Let A be any uncountable dis-

crete space. By Theorem 5.2, XA does not admit a ^-function but, by

Corollary 5.3:1, the space of paths over XA is regular.

Thus the results given so far both limit and direct efforts to construct

a nonregular fiber space from known spaces. A consideration of the space

of paths over some base space might be fruitful since at least the "natural"

lifting function given in 2.2 is not regular. Several restrictions to this

approach have been demonstrated. However, in the next section it is

shown that the space of paths over a certain subset of an uncountable

cartesian product of unit intervals is a fiber space which admits no regular

lifting function.

6. An example of a fiber space which is not regular.

Definition of the space B. Let A be an uncountable set. The points

of B are the points of C(A), the cone over A, but the topology on B is not

the usual cone topology (for any topology on A). The points of B will

be denoted by (t, a) for t £ / and a £ A with the single identification that

(0,a) = (0,a') for all a and a' in A. The vertex of the cone will sometimes

be denoted by v. For each a £ A let Ba = {(t,a) £ B\0 < t£ 1}. Define

the topology on B as follows:

For any a £ A, any (t,a) £ Ba, and any positive number «, let N{(t,a),t)

= \ (t',a)EBa\\t-f\ <<}.
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For any positive number t and any finite subset K of A let N(v, (K,t))

m[(t,tt)\tEl and aEA - K\[j{(t,a)\aEK and t<t}.

Let the collection of all possible N((t,a),t) and all possible N(v,(K,t)),

as defined above, be a basis for the topology of B.

It is easy to show that B is an arcwise connected, compact (Hausdorff)

space. Note that for every a£ A, Ba is open in B and, in fact, that the

subspace v (J Ba is homeomorphic to / by the mapping (t, a) —> t.

Notice that B is homeomorphic in a natural way to the closed subset S

of IA defined by S = {fE IA\f(a) = 0 for all but at most one a E A}.

Proof that (B',p, B) is not regular. Here p is to be defined by p{u) = m(1).

Thus fip = { (m,w) EB' X B'\u(l) = u)(0)). Assume that the fiber space

admits a regular lifting function X.

Let a0 be a fixed element of A and define voEB1 by p.o(0 = (1 — t,a0)

for all tEl- Also, let A' = A - {a0} and for o-GA' define ^Eß' by

o>a(t) — (t, a) for all t E I- Let v denote the constant path at v. Clearly

(mo, v) E fiP and { (mo,<"<■)\a E A'} C fiP.

Now X(mo,w0)(1)(1) = w0(l) = (l,a) G ß0, so there is a real number

s„ < 1 such that XGi0, <*>„)( l)((s0, l]) C Ba. This insures that a function

7: A'—>[0,1) can be defined by setting

T(a) = inf {s E I\ X(mo,"„) (D ((«, 1 ]) C B.}.

A' is uncountable; it follows that there is an s0 < 1 such that 7(a) g s0

holds for infinitely many aEA'. Let Q = { (mo, <<><.) It (a) ^ s0} : Q is an

infinite subset of üp and in this space (n0,v) is a limit point for Q.

Let g=(s0+l)/2 and observe that then \(n0, wa) (1) (q) E Ba for all

0to,«o) G Q. But BaorlBa = 0 for all a G A' and thus X(Q) n W = 0 where

W= W({l j, ^(jaj.B^)) is an open set in the c-o topology on (B1)'. How-

ever, since X is regular, \(u0,v)(l)(q) = \(fi0,v)(0)(q) = u0(q) = (1 - q,a0)

E Bag or X^o,^) G W. Thus X(mo,^) is not a limit point for X(Q). This con-

tradicts the continuity of X and completes the proof.

It has been noted that the space B is homeomorphic to a closed subset

S of IA. By Theorem 5.3, the fiber space of paths over IA is regular. If, as

usual, ((IA)',p, IA) denotes this space with p(üj)=oj(1), then the sub-

fiber space (p~l(S),p,S) is also regular. However, the proof given above

shows that (S',p,S) is not regular. Of course, if S' is considered as a sub-

space of (IA)', it is true that S' is a proper subspace of p"'(S). The example

given here fails to be regualr because the top space is too small.

7. Questions. (1) Is there a condition on a space B which is weaker

then the existence of a ^-function but which will insure that any fiber

space (E,p,B) be regular?

(2) It is easily verified that if B X B is a normal space in which the
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diagonal D = j(x,i)|xGßj is a Gä-set, then B admits a ^-function. What

topological properties (other than this and those given in §3 and §5) imply

the existence of ^-functions?

(3) Suppose that X does not admit a ^-function but that the space of

paths over X is regular. Is the space of paths over J(X,X) necessarily

regular?
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