
ON MODULAR FORMS OF DIMENSION 2
by

JOHN RODERICK SMARTf1)

1. This paper is devoted to the problem of obtaining modular forms of

dimension — 2 (see §2 for definitions) by summing conditionally convergent

Poincare series (3.1) in a particular fashion. Rademacher [23] initiated the

method when he recovered the functional equation of the modular invari-

ant J(t) from its Fourier series. Lehner [10] made further developments

and applied the method to the case of forms of negative dimension on the

full modular group. We consider the problem for subgroups of finite index

in the modular group. The essential device is a lemma which allows us to

rearrange certain conditionally convergent series. This has come to be

known as the Rademacher Lemma. In our case we need a lemma which

is considerably more general than that used by either Rademacher or

Lehner. This is due to the fact that a subgroup of the modular group may

have many generators. Also important in this regard is the fact that a

fundamental region may have finite cusps at which the functions must

be shown to have the proper behavior. Knopp ([7], [8]) has given several

versions of the Rademacher Lemma which parallel ours. He applies it to

the problem of obtaining forms of positive dimension rather than forms of

negative dimension; for that reason the summands in the conditionally

convergent series are different. This method requires a nontrivial estimate

of certain Kloosterman sums.

There has been another approach to this problem. Hecke [4] introduced

a convergence factor and then by a limiting operation obtained forms of

dimension — 2. Petersson ([19], [22]) has developed this method to apply

not only to the modular group but also to other discontinuous groups as

well. For this method the estimation of the Kloosterman sums does not

arise.

In §2 we give introductory material. In §3 we define the Poincare series

and show that they converge conditionally to functions holomorphic in the

upper half plane. Lemma 1 contains two different methods of summing

these series. §4 is devoted to the proof of the fundamental Rademacher

Lemma. At the end of this section, in Lemma 3, we show that our Poincare

series can be summed in a different (and more important) way. The main

theorem appears in §5. In this section the functional equations (2.4) are
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shown to be satisfied. Furthermore, we show that the functions defined by

these series have the proper local variable expansion at the finite cusps.

Kloosterman sums are considered in §6. We give several examples when

the Kloosterman sums (6.1) have the estimate 0(|c|1/2+<). Our results are

based on a theorem of Petersson [21] as to when certain congruence sub-

groups and multiplier systems will give rise to Kloosterman sums with

nontrivial estimate. In §7 we sketch a proof of the "inner product formula"

(7.2) for the Poincare series with which we deal. This along with some

recent results of Lewittes [13] concerning the Weierstrass gap sequence

at the infinite cusp determines a basis of the ousp forms of dimension — 2

for the principal congruence subgroups of levels 7,8, 9, 10 and 12 in terms

of our Poincare series. In other words, these results determine a basis for

the abelian differentials on the Riemann surface associated with these

principal congruence subgroups.

2. The homogeneous modular group r(l) is the set of all two-by-two

matrices of determinant 1 with rational integral entries. To each V

= (a b\ c d) G r(l) corresponds a linear fractional transformation

Vz= V(z) = (az + b) I (cz + d)

which maps the complex upper half plane = {z: Imz> 0[ onto itself.

Note that V and — V correspond to the same transformation Vz. The

group of transformations is denoted by r(l) and is known to be generated by

(2.1) Sz= - l/z,      Uz = z+1.

The homogeneous principal congruence jubgroup of lever N, r(JV), con-

sists of those elements V = (a b\c d) £ r(l) which satisfy V= ± ImodN

where I = (1 010 1) and we mean elementwise congruence. Let r(N) de-

note the corresponding group of substitutions. We let r denote a subgroup

of T(l) of finite index and r the group of matrices such that r =_ r/j ± I\,

that is, we assume that —/ET. A congruence subgroup T of level N is a

subgroup of r(l) which satisfies T(l) D TDT(N).

A fundamental region (in the loose sense) for r(l) is the triangle R = ß(l)

= |z = x+ iy: \z\ > 1, |x|<l/2, y>0} in the upper half plane. If

[r(l): r] = a and r(l) = £iU VkT, then fl(r) = USU VkR is a fundamental

region for r. The cusps of this fundamental region are the images of «. It

is known that a coset decomposition can be effected in the form

(2.2) f(l) = Ü   U UkAjf
j=l kmodXj

where a is the number of cusps (inequivalent with respect to r) of a funda-

mental region; these are {Af1*>:j= 1,2,...,a}. We assume that A:= I.

The number A, is called the "width" of the fundamental region at A,"1»

and is the smallest positive integer such that Pj = AflUK'AjGT~ We
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write simply Xi = X. If we set p, = A,rl<*> then P, is the parabolic trans-

formation fixing pj.

A character v on r is a mapping from the group into the complex num-

bers of absolute value 1 for which

(2.3a) v(VlV2) = v(Vl)v(V2).

Throughout this paper we assume that

(2.3b)

These characters (on r) form a group isomorphic to the character group

of T. A meromorphic function F in is called a modular form of dimen-

sion — 2 for T and the character v if, for each V = (a b\c d) £ T,

(2.4) F(Vz) = v(V)(cz + d)2F(z).

We further assume that F has at most a finite number of poles (measured

in the appropriate local variable) in any fundamental region for r. We

say that F belongs to the class r, — 2, v written F£ { r, — 2,v}.

We shall need some further facts on characters. Let v be a character

on r and V£ r(l); then we say v induces the character v' on VT V~l when

(2.5) v'(M') = v(M)   for AT = VMV^E VrV~l.

We shall be particularly interested in the case V = Aj and we simplify the

notation to

(2.6) r, = AjTAf1,      v}(M') = v(M).

We set X; = \(Aj, T), the width at A/^oo = pjt then

(2.7) \j= X(A„r) = X(/,r;).

We also introduce k, = k(A,, T) where k, is defined by

(2.8) v(Pj)=e(KX OgKj<l,

for Pj = AflUxjAj. We have used the notation

(2.9) e(z) = e2"2.

We find that

(2.10) Kj=K(Aj,r)~K(I,Tj).

To simplify the notation we write k = «i = k(I, V).

If FE j r, — 2,u\ then at the cusp p, = Af1™ it has the expansion

(2.11) F(z) = (CjZ + dj) -l f. an(F, A„ r)e((n + Kj) A,z, \j),
n=8j

where Sj is a finite integer and s, + kj is the order of F at p}. The numbers

a„(F, A ,T) are called the "Fourier coefficients" in the expansion at p;
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= Afl<*> where A, = (a, bj\ c, d,). In case s; + «; = 0 for / = 1,2, • • •, <r

and F has no poles in t&, it is called an everywhere regular form. The

everywhere regular forms in {r, — 2, v ) form a complex vector space de-

noted by Sf+(T, -2,v). A form in &+ is called a cusp form provided

Sj+ Kj > 0 for j' = 1,2, • • •, cf. The cusp forms form a subspace of &+ de-

noted by 5f°(T, — 2,v). Both of these spaces are finite-dimensional. In

dealing with expansions at cusps we find it convenient to introduce the

V-transform of F, Fv, defined by

(2.12) Fv(z) = F(z)\ V-1 m (-cz+a)-2F(V'lz)

where V= (a b\c d). If FE { T, - 2,t;) (Sf°) then Fv£ { VrV~\ -2,v'}
where v' is the character induced by v.

We define the following sets of integers

&(Aj) =%{A„T) = {c: 3 V=(. .\c)EAjr\,

g(c,Aj)=$(c,AJtr) = \d: 1V= (• .\cd)eAjT\,
(2.13)

@c(Aj)=@c(Aj,T) = {dED(c,Aj): dE[0,c\}\,

J*e(Aj) = &c(A„ r) = j a: 3 V = (a • | c .) E AjT, a £ [0, cX,]},

where [0,c\] means the closed interval of real numbers between 0 and

cX. One sees that

(2.14) &{c, Aj) = Ü j d + coX: d £ 9t(Aj) )•

We shall come across certain exponential sums, called Kloosterman

sums, defined by

Win, n) = WAn + *, Aj, T,u + k,)
(2.15)

=   Z   ^(A-V^e^d + ^a)

where VCi(< = (ab\cd)E A,r. When r = r(l), Aj = I, and v = 1 the sum

in (2.15) becomes the original sum investigated by Kloosterman. In the fol-

lowing we shall assume that

(2.16) Wc(nlfl) = 0(\c\t), 1/2<£<1,

for fixed u. In §6 we discuss cases for which the estimate (2.16) is valid.

3. We consider the double series

(3.1) 2>(A, Vc4)(cz + d)-2e((u + Kj) VCidz/\j)
c.d

where the summation conditions are c£&(Aj), dE& (c, A;) and Vci

= (a b\c d) E AjT. We assume u to be a rational integer for which u + kj

0. This double series is not absolutely convergent; hence, we shall have
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to define in what order the summation is to be carried out.

First, however, we remark that the terms of (3.1) are uniquely determined

by c and d even though Vc4 is not. Suppose V^EAjT then Vc4 = U^J V'c4

for some integer k. Replacing Vc4 by Ü"iV'c4 in the term of (3.1) con-

taining Vc4 and using the results U"z = z + a and

HAfWVtf = v(A-lUk>Aj)u(ArlV'c4) = e(knj)v{A-lV'c4),

we obtain the result that the term determined by Vc4 is equal to the term

determined by V'c4. We shall drop the subscripts c and d on V whenever

it is clear what is meant. In order to define the order of summation in

(3.1) we introduce for c ^ 0, cE$?(Aj) the auxiliary series

(3.2) H(c,z)=       f)       v(A-1V)(cz + d)-2e((ß + k)Vz/\),
d= -»;</£ <J(c,A)

where we have dropped the subscript j on A for convenience of notation

and k = k(A,T), A = A(A,r). We shall show that this series is absolutely

uniformly convergent on compact subsets of i&; that is, the series of ab-

solute values converges uniformly on compact subsets of &. The double

series (3.1) is to be summed thus:
-1 K

(3.3) 5(A,I)e((n + k)z/\) + lim       £      H(c,z) + lim     £ H(c,z),

where h{A,I) = 2 if A = I and 0 otherwise. If both limits in (3.3) exist

simultaneously, we shall define (3.3) to be G(z,v,A,r,u) and call it a

Poincare series. We drop some of the parameters when no confusion can

be caused. When A = I the terms of (3.1) corresponding to c = 0 occur

for d = ± 1. We can choose Vo,±i = ± /. This accounts for the first term

of (3.3).
The following estimate for | cz + d \ is essential. For z £

(3.4) \cz + d\ ^ |d| sinö,      0<argz = 6<ir.

For a proof consider the parallelogram with vertices ± |d| and ± |c|z.

Then |cz + d| is the length of one side of this parallelogram, whereas

|d| sin5 is the length of the perpendicular segment from |d| to the diagonal

through |c|z and - |c|z. Thus |d| sinS is the length of a leg of the right

triangle whose hypotenuse is |cz + d|. This completes the proof. Next we

note that

(3.5) |cz + d|>t|c|y      (z = x + iy, y > 0).

We split H(c,z) into the sum of two series using the relation Vz

= (az+ b)/(cz + d) = a/c - l/c(cz + d) valid for c ^ 0. Define

.... . A       e((u + k)a/c\) j e( - (h + k)/\c(cz + d)) - 1}
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and

(3.7) H2(c,z)=       X       v-(A-lV)(cz + d)~2e((u + K)a/c\)

for c^O, cE^(A). Formally, H(c,z) = HAc,z) + H2(c,z). We show

that Hx and H2 converge absolutely uniformly on compact subsets of

Expand the second exponential in (3.6) to obtain

,„Qv     „,   v ^       ^ e((u + K)a/c\)(- 2*ir(u + K)m
(3.8) nx(c,z) =       L L

d=-~fdt y(cA> ti   v(A-1V)(\c)mm\(cz + dr+2

This double series is dominated by

(2ir)m(\u\ +Dm

?£ i
m+2 •

Using the estimates (3.4) and (3.5) we obtain for our dominating series

the upper estimate

{«!»! + »}■
™=om! (       y )

(2+1 + !))■) (fi)
+ I |c|52sin5 V m! ( V(ysin5) j J (V d3'2j '

therefore,

|Hi(c,2)| £ (cy) -2exp[27r(|M| + D/y]

+ C|c| -^(ysinfij^exp^d/il + D/V(ysin5)],

where C is a constant independent of z. This implies that the series for

Hx(c,z) converges absolutely uniformly on the strip |jc| ^ x0, ySty0>0.

Note that the series for H2{c, z) corresponds to the missing term m = 0

in (3.8). The dominating series for H2(c,z) is Zd\cz + d\~2. We obtain

from (3.4) and (3.5) the result

(3.10) \H2(c,z) \ g (cy)-2+*2/3sin25

which shows that the series for H2(c,z) converges absolutely uniformly

on the strip \x\ g x0, y St y0 > 0. This shows that H(c,z) = Hx(c,z)

+ H2(c,z) is regular in i&. We shall want to sum these functions on c and

the estimate (3.10) is not good enough for this purpose.

The terms of H2(c,z) in (3.7) are uniquely determined by the choice

of c and d. We make the choice of a in V unique by requiring that

a£ Jyc(A) (this can be justified by considering U*^Vc.d). Now dividing

d by cX we obtain d = qc\ + d' with d'EC/AA), Thus VcM= Vc,d.Uq

with cE-tf(A), d' E S>C(A) and a£ J?/C(A). Using (2.14) we see that
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M ,    v       v + Kj)a/c\j)    "        e(- qK)

2(C'Z) ~ «kw     v{A[lV)     £m (cz + d + qcxr

where we have used the relation l/v{UqX) = e(—qn) and reintroduced

the subscript j on A, k, and X since k — kx and X = \i also appear in this

form of H2(c,z). We apply the Lipschitz formula [l, p. 206] to the inner

sum (on q) to obtain

(- 2*t7cX)2£ (n + K)e((n + «)(z/X + d/cX));
n = 0

hence

(3.11)       H2(c,z) = (- 2*i/c\)2Z(n + <0 We(n,M)e((n + k)z/\),
n = 0

where we have interchanged the summations and introduced the Kloosterman

sum (2.15). Using the estimate (2.16) for the Kloosterman sum and the fact

that 0 ^ k < 1, we find that

f(f) °
I H2(c,z) I ^ —^ Z (n + l)exp( - 2*ny/\)

lC| n=0

(3.12)
= C(|)|c|f-2(l-e-2^A)"2

(where — 3/2 < £ — 2< — 1). It is now easy to see using the estimates

(3.9) and (3.12) that the series ^cHi{c,z) and ^cH2{c,z) converge ab-

solutely uniformly for | x| ^ x0, y ^ y0 > 0, where c is summed over 9f (A),

c ^ 0. This shows that if the limits in (3.3) exist (and they do if the

Kloosterman sum has the estimate (2.16)) then the function so defined is

regular in i&. This completes the proof of the following lemma.

Lemma 1. Assuming the estimate (2.16) for the Kloosterman sum Wc{n,u),

the functions G{z,v,Aj,T,p) defined by (3.3) are regular in t&. Furthermore,

we have the expressions

(3.13)    G(z,v,Aj,T,ri = ö(Aj,I)e((,i + K)z/\)+     £ H(c,z)
ce '<■ iAj);c*0

and

G(ztv,Aj,T,ß) = 8(Aj,I)e((n + k)z/\)

+     Z     Hi(c,z)+     Z H2(c,z),

where the three series are absolutely convergent on compact subsets of t£. The

functions H(c,z), Hx(c,z) and H2(c,z) are defined in (3.2), (3.6) and (3.7),

respectively.
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We conclude this section with some estimates which will be useful later.

T.et

Mia    „ , , _ v   e((u + k)q/c\) {e( - (m + k)/cX(cz + d)) - 1}

(3.15)    mz) - ^ v(A^V)(cz + d)2 •

This double series is absolutely and uniformly convergent in the strip

|*| = X0, ySty0>0 as we have seen. We find that

\HAz) \ gCy-2exp[2u(\u\ + l)/y]
(3 16)

+ C(ysin«)-1expt2x(|M| + l)/-\/(ysin8)]

making use of the estimate (3.9). If we let H2(z) = Zci/2(c, z), where sum-

mation is extended over So (A), c j£ 0, we find that

(3.17) |H2(z)| ^ C(^T)(l-e-2'^)-2.

Then .(3.14) takes the more compact form

(3.18) G(z,v,Aj,r,u) = o(Aj,I)eUu + k)z/\) + HAz) +H2(z).

4. As we have mentioned the main tool of this paper is the Rademacher

Lemma. In this section we prove this lemma in the generality which we

need. Before stating the lemma we introduce some notation.

By a lattice point for Ar we mean an ordered pair of integers (c,d)

which come from the lower row of a matrix V — (a 6 | c d) £ A r (we of

course assume that A £ r(l)). Let <zf (A) = (A, r) be the set of lattice

points for AT:

(4.1) y (A) = j(c,d): V = (■ -IccOGAr}.

Let Sf(K) denote a square in the (u,v)-plane of side 2K centered

at the origin with sides parallel to the u and v axes (that is, the set

{(u,v);\u\,\v\ ^ K}). Let

(4.2) y (K,A) = 5/ (K) Pi £/ (A)

be the lattice points for AT which lie in S/ (K). If M = (a ß | y ä)£ r(l)

we let M act as a homogeneous transformation on the plane containing the

lattice points given by

(4.3) (u,v)M = (u',v') = (au + yv,ßu = 8v).

We note that if (c,d)£ .9 (A) and MET, then (c',d')E-9 (A). For

MET (4.3) defines a mapping that is one-to-one from i/ (A,r) onto

y (A,f). Next, we note that the image of $f (K), Sf(K)M, is a paral-

lelogram centered at the origin. The lattice points in S/ (K)M are

(4.4) J/ (K,A)M = j (c,d) E V (A): (c,d) E ^ (K)M\.
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Let v = g(u) be the "upper boundary curve" of the parallelogram Sf (l)M,

thus a polygonal line. Let

ux = maxj u: (u, v) E ^(l)Af}.

Clearly ux > 0. We see that either g(u) >0 for [-uuux], for example,

when Sf (\)M is a square, or g(u) has a zero in one or the other of the

intervals [- uu0), (0,ux] (but not both). Further, note that if g(ux) = 0

then#( - ux) = 0. We let u0 denote the zero of v = g(u) if it has one, other-

wise let u0= ux. Then in either case

g(u0/2) > 0.

Finally, the upper boundary curve of 5/(K)M is v = Kg(u/K), and the

lower boundary curve is v = - Kg(- u/K). Now we are in a position to

state our lemma.

Lemma_2. // the Kloosterman sums (2.15) have the estimate (2.16) then

for ME r(l)

hm Z Z        v(A~lV)(™ + d)-2e{{u + K)a/c\)
K~"° c=-K;cEti(A);c?!0 d= - »;d£ S0 (c,A)

(4'5) = lim Z        i7(A-1V)(c2 4-d)-2e((M + X)a/cX),

where V = (a b \c d) E AT and X (K,A)M is defined in (4.4).

This lemma roughly states that the double series in the left member of

(4.5) can be summed over expanding parallelograms. We shall try and

simplify the notation by writing

Z (A) Z (A)   in place of        Z Z

If a prime appears on a summation sign, then the value c = 0 is omitted.

Equation (4.5) becomes

(4.6) T' (A)H2{c,z)= lim      Z'     v(A~lV)e{{u + K)a/c\)(cz + d)'2,

where H2(c,z) is defined in (3.7). We have shown that the series on the

left of (4.6) is absolutely uniformly convergent for y ?t y0 > 0, | x| ^ xQ. On

account of this it suffices to show that

(4.7) Z* (A) \   Z    (A)..-+     Z     (A)--A
c=-uxK {d>lQ(c/K) d<-Kg(-c/K) )

can be made arbitrarily small. These two double sums are equal since if

(c,d) gives rise to a term in one then, ( - c, - d) give rise to a term in the
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other and the summands are the same. Thus, it suffices to show that the

first double series in (4.7) can be made small by taking K large.

Following Lehner [10] let

,        (1We ((" + for (c>d) G & (aj) .
(4.8) g(c,d) = I

( 0   for c, a rational integers, (c, d) (Aj).

We set 0(c,d) = e(dK/c\)g(c,d). Let V= (a 6 |c d) GA;T then

VUX = (a ■ \ c d + c\) E Ajf and g(c, d + c\) = v(AylVU)e((p + Kj)a/c\j).

Thus <b(c, d + cX) = efd/c/cXM^T/U"1 V)e( /t)e((M + *,)a/cX;) = 0(c,d).

The function <b(c,d) is a periodic function on the integers with the period

cX so that it has the finite Fourier expansion:

0(c,d) =   Z   Bke(kd/c\),      ßt = -^p- Z <b(c,d)e(-kd/c).

This in turn implies that

(4.9) g(c,d) =   Z   Bvedk - <)d/c\)
k rood I c| A

and

(4.10) Bk = -\-   Z   v(A-lV)e((u + Kj)a/c\j+(-k + K)d/c\).
I Cl X <imod|c|x

We see from the definition (2.15) of the Kloosterman sum that

(4.11) Bk=(l/\c\\)We(-k + K,Aj,(i + Kj).

The introduction of g(c,d) allows us to drop the complicated conditions

on the summation variables. We write the first sum in (4.7) in the fol-

lowing way:

(4.12) w(K)= z'  z ,8{c:dL-
c=-u1K d>Kg(c/K) (CZ + ")

In order to estimate this sum, we consider three cases which depend upon

the shape of the upper boundary curve, v = g{u), of S(1)M. We have seen

that either g(u) > 0 for — Uj ^ u ^ ux or g(u0) = 0, u0 ̂  0, — u; < u0 < uu

oTg(ui) = 0 (in which case g( — ut) = 0). We break the double sum (4.12)

into one, two or three double sums in order to take advantage of the fact

that either the c's or the d's are bounded away from 0 be a positive

multiple of K. We describe this more fully. Suppose g(u) > 0 for — ux ^ u

uu then we shall be able to estimate W(K) as it stands since d > Kg(c/K)

> Kß with ß > 0. Next, suppose g(u0) = 0 with — ux < u0 < 0 (the case

0 < u0 < Ui would be handled in an obviously similar way). Here we would

consider
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uqK/2 u\KI2

(4.13) W(K)= Z'      Z    ■■■+   Z'      Z ••••
c--mK d>Kg(c/K) c=-ulK/2 d>Kg{c/K)

Finally, if        = 0 then we write

utK/2

(4.14) W(K)=      Z Z    - +   Z'       Z ■■■■
UIK> |c|>uiJf/2 d>Kg(c/K) c--l»iK/2 d>Kgic/K)

The proof of the lemma has been reduced to showing that W(K) defined

in (4.12) is o(l). This will be accomplished if we can show that the sums

in (4.13) or (4.14) or W(K) itself, depending upon the location of the

zero of v = g(u), can be estimated as o(l). We, therefore consider double

series of the following types: first,

ßK   |e|X—1

(4.15) W1(K)=Z   Z Bk   Z    (cz + d)-2e((k-k)d/c\)
c=aK   *-0 d>Kg(c/K)

with fixed a and ß,

(4.15a)      0 < a < ß   and  | Kg(c/K) | < co   in aK     S ßK;

and, second,

c-ßK |e(X—1 piiu _ y\dlr\\

(4.16) WAK) = Z'   Z Bk  Z       l7l\ f >
c=aK   k=0      d>Kg(c/K)       \CZ-\-a)

where

(4.16a)        a < 0 < ß   and  g(c//0 > 0   for aK < c < ßK.

In the equations (4.15) and (4.16) we have introduced the Fourier expan-

sion for g(c,d) as given by (4.9) with Bk defined in (4.11). As we have

already mentioned the estimation of W(K) reduces to showing that sums

of the type (4.15) and (4.16) have the estimate o(l).

We estimate the inner sums in (4.15) and (4.16) using the method of

partial summation (2). Let

d

Si-I>M*-«)«/cA)
1-0

with a = ± 1. Then S0 = 1 and for d St 1

(4.17) Sd = [1 - e{c(k - «)((*+ l)/cX)]/[l - e(c(k - «)/cX]

if k — k ̂  0. From the inequality sin irx St min j 2x, 2 — 2x j for 0 < x < 1,

we find that|S,f| < (|c|X/2)(|A - k\~> + [\c\X - |^-^|]_1) = A(*)|c|X/2.

Under the conditions on k and k the right member of (4.18) is larger than

(2) We are indebted to Professor Rademacher for the suggestion to use partial summa-

tion in the estimation process.
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1; therefore, this inequality also holds for d = 0.

' >vv recall the estimates (3.4) and (3.5) for |cz + d|. Let u — w(z)

= minj sin5,y} where 0 < 5 = argz < *. Then for 0 ^ n ^ 1

(4.19) \cx + d\±*\c\l-*\i\\

Let

(4.20) T(k,c,K)=    Z   «((* - k)d/c\)(cz + d)~2
i>Kt(t/K)

be the inner sum in (4.16). We estimate (4.20), first, with k = 0. We have

(4.21) \T(0,c,K)\z    Z   \a + d\-*<»-*\c\x-*   Z M~I_r.
d>Kg(c,K) d>Kg{c/K)

If we let Q = ming(c/K) for aK gc^ ßK then under the conditions in

(4.16a), Q> 0 and does not depend upon X. Using an integral to give an

upper estimate for the series in (4.21), we obtain

(4.22) \T(0,c,K)\ ^ C\c\-x+"K-\

where C is a general positive constant. Now we estimate T(k,c,K) when

lgÄ^|c|X — 1. Here k — k ^ 0. Introducing Sd into the series we find

T(k,c,K)=    Z   Sd[(cz + d)-2- (cz + d+l)-2]-SKm(cz + Km + l)~2
d>Kg(clK)

with m = g(c/k). Thus

\T(k,c,K)\Z Z \Sd\[\cz + d\~2\cz + d+l\-2
d>Km

+ 2\cz + d\ -l\cz + d+l\-2] + \SKm\ |cz + Xm + l|-2.

Now using the estimates (4.18), (4.19) and an integral estimate for the

series Zd>Kg(c/K)\d\-1~\ we obtain

(4.23) \T(k,c,K) \ =g CA(k)\c\-l+"K-"

for some choice of y to be made later. Now we can estimate W2(K). We have

ßK     , I c| A - 1 .

z(K)\sZ \\B0\\T(0,c,K)\+ Z \Bk\\T(k,c,K)\\
C = aK  I k=l )

w2

ßK     . \c\X-l v

= Z |C(?)|c|-2+{+'K-+C(|)|c|-2+?+'X-' Z Mk)\
c-aK ( *=1 )

introducing the estimates above for T(k,c,K) and the estimate on 5*

determined by (4.11) and (2.16). With the aid of an integral we obtain

(4.23.1) 'z'AW = 0(log|c|).

Thus,
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\W2(K) \ ^C^)K-Zc-2+(+"\ogc.
2

Recall that 0|ij^1 and 1/2 < £ < 1; we choose n > 0 so that the series

on the right converges. Then

(4.24) W3(K) - 0(K~"),

where the constant in the O-symbol depends upon £,z, v but is independent

of K.

Now we turn to the estimation of WX(K). Let

(4.25) U(k,c,K)=    £   e((k- K)d/c\)(cz + d) ~\
d>Kg(c/K)

where the conditions in (4.15a) are satisfied. There are two possibilities

as to the sign of g(c/K). We shall suppose g(c/K) < 0; the other case is

slightly simpler and the same methods are used in carrying out the estima-

tion. Let

U(k,c,K) = UAk.c.K) + U2(k,c,K)

-Kg(c/K)-\

=    £    e(-(k-k)d/c\)(cz-d)-2

+ £e((k-k)d/c\)(cz + d)-2.
d~\

Again estimating first the case k = 0 we find

(4.26) \U(0,c,K) \ ^2Z \cz + d\-2^C(v)\c\~l+\
d=l

Now we assume that I ^ k ^ \ c\X — 1, in which case k — k ^ 0. As before

we introduce Sd into the sum U(k,c,K). Thus

-Km-2

U1(k,c,K)=  £  {Sd(cz-d)-2- (cz-d-l)-2\
<f=i

+ S-^-^cz + mK + 1) "2 - (cz - 1) "2

with m=g(c/K). The estimates (4.18) and (4.19) imply that

\UAk,c,K)\ g (|c|AA(£)/2)

• (co-vr^'f:id|-2-' + "-3|cr2+<i:idr1-^*-2^-2).
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Hence, we find that \ U1(k,c,K)\ S C(ij) |c| ~1+'A(k). In the same way we

id that I U [k,c,K)\ < C(tj) |c| ^1+,A(A). This then implies that

(4.27) \U(k,c,K)\ <C(v)\c\-1+'A(k)

for k = 1,2, • ■ •, I c IX — 1. We, therefore, obtain from (4.15) and the estimates

(4.26), (4.27) and (2.16) the following estimate

BK

(4.28) \WAK) \ zCO-.v) Z |c|-2+{+'(l + log|c|),

where we have also used (4.23.1). Since 1/2 <£ < 1 we can choose y,t so

that —2 + £ + if + £ < — 1; hence,

(4.29) WAK) = 0(K-i+(+"+t).

The constant depends upon and 2 but not on K. This completes

the proof of the Rademacher Lemma.

The following is a corollary to Lemma 1 and Lemma 2.

Lemma 3. If the Kloosterman sums (2.15) have the estimate (2.16) then

for MGr(l)

G(z,v,Aj,T,n) = lim        £      »IVVJCcz + ^-^U + ^Vz/X;).

wAere i/ (K, Aj)M is defined in (4.4).

Proof. In equation (3.18) the double series for HAz), (3.15), is absolutely

convergent; hence, it may be rearranged in any manner. In particular it

is the limit of its partial sums arranged as above. The Rademacher Lemma

states this is also true for H2(z)-

5. In this section we state and prove the main theorem now that the

ground work has been laid.

Theorem 1. Let r be a subgroup of finite index in the modular group

t(l), and let v be a character on T. Let Af1™ = pjt j= 1,2, ■•-,a be a

complete set of inequivalent cusps for T, A,£r(l) and Ax = I. Then the

double series

G(z, v, Aj, V,u)
(5.1)

=      Z it        W(A-lV)(z + d)'2e((u + K])Vz/\J)
e--»;ee*'W,r) i--»;i<eö'(e.A,r)

when summed in the order

lim       Z Z       v(Af1V)(cz + d)-2e((n + «j)Vz/\j)
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is a modular form of dimension — 2 for T and the character v, provided that

n + Kj ̂  0, n an integer and Kj defined in (2.8), and that the Kloosterman sums

Wc(n + k, AjAk, AklTAk, u + kj)
(5.2)

de C/c(AjAk,Ak  Ak) \      C\ C\j I

(j,k = 1,2, • • •, a) have the estimate 0(|c|{) with 1/2 < £ < 1.

The character vk in (5.2) is the character on A^'rG* induced by v on r, and

the matrix V in (5.1) and (5.2) has the lower row (c, d). The sets Y> (Aj),

y> (c, Aj) and ^Ht(Aj) are defined in (2.13). Moreover, we have the Fourier

expansion

G(z, v, Ah T,n)
(5-3) ^

= 5(A„I)e((n + k)z/\)+ £ cn(v,A„T,p)e((n + k)z/\),
n+«>0

where

(5.4)

4ir .   v.     - J.. ,1/2

A

X,    n +

M + Kj X

"      Wc{n + K,Aj,u + Kj)     /4tt     / /u + kj n + K\ \

e-ls^CUf) C U V   \    \ X//'

5 (A, /) = 2 if A = I, 0 otherwise, and Jx(z) is the Bessel function of order

1 of the first kind.

Proof. We have shown in Lemma 1 that the double series (5.1) when

summed in the manner specified converges uniformly to a function regu-

lar in i&. We now show that for M = (a ß\ y 5) G r the functional equation

G(Mz, v, Aj, r, p) = v(M) {yz +1>) ~2G(z, v, As, r, M)

is satisfied. By Lemma 3,

G(Mz, v, Aj, T,p)

= lim      £     o(Af1 V) (cMz + d) ~2e((u 4 kj) VMz/Xj)
(cd)G W(t,Aj)

= v(M) (yz + 5)2 lim      Z      v(Af1V)Uca + dy)z + cß + dö)-2

■ «((/• + «/) VMz/X,)

= i>(M)(7z + 5)2 lim      Z     v(AJ-1V)(cz + d)-2e«ß-r-KJ)Vz/\l),
(c,d)g yU,Aj)M

where we have replaced the summation variables (c, d) by {ca + d7, cß 4- d5).
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By Lemma 3 the last limit in the above equation is nothing more than

G(z v,Aj,T,u). To complete the proof that G(z, v, AJt T,u) is a modular

form of dimension — 2 for r and v, we must show that the regularity

conditions are satisfied. We have shown G(z,v,Aj,T,u) to be regular in

thus we must only show that these functions have at most polar

singularities at the cusps p; = A;rl°°, j = 1,2, ••-,<r. This will follow once

we have the Fourier expansion (5.3) and (5.4).

We begin with

H2(z) = £'(A)H2(c,z)
C= — co

= Z' U) (^r)2f>+ k)Wc{n,u)e{(n + k)z/\),
c=~oo \    CA     /  „ = 0

using the results of (3.11). This series is absolutely convergent for y 2: y0 > 0

and I jc I S x0. Interchanging orders of summation,

(5.5)     H2(z) = Id(n + «)2A) Z' (aj) <n +«) (—r" ) Wc(n,Apu).
n = 0 c=-oo \    CA /

We have shown the double series (3.15) for HAz) to be absolutely con-

vergent. We derive for HAz) a representation similar to (5.5) for H2(z).

We start by applying the Lipschitz formula [1, p. 206] to the summation

on d in (3.8). We obtain upon interchanging orders of summation and

introducing the Kloosterman sums

^ ,^    e((u + k^a/cX,)       (-2*i)2m+2 + ,n+iWAn,u)

dh„{ 1 v(Afiv)(cz+dr+2- r(m + 2) h( +K} (cxr+2.

Hence,

HAz) = Ze((n + k)z/\)
n=0

(5.6)
y,  A ... (- 2W)2m+2(n + «)m+1(u + Kj)mWe(n,ß)

' hi c= »    ' c2m+2XJmXm+2m \ (m + 1)!

On comparing (5.5) and (5.6) we see that (5.5) is just the missing term

m = 0 in (5.6). From (3.18) we see that

(5.7)     G(z,v,Aj,r,ß) = o(Aj,I)e((u + k)z/\) + fc/((n + «)z/A)

with
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_ f , ^ (-2*i)2n'+Hn + K)m+l(u + Kjr

Cn       £ _ KA}) WATl, U) 2,        c2m+2xmxm+2m i (m + 1) i

Note that if k = 0 then c0 = 0. By introducing the Bessel function of order

1 of the first kind

Ji(z) = Z (- D"(z/2)2n+1/n!(n + 1)!,
n=0

we can simplify the coefficients c„. We obtain

which is the same as (5.4) if summation is restricted to those cG^(A),

c>0 (A = Aj).

In order to prove that G(z, v, Aj, T, ii) has at most polar singularities

at the cusps we state and prove a lemma which is of interest in its own right.

Lemma 4. // the Kloosterman sums (5.2) have the estimate 0(|c|£) with

1/2 < £ < 1, then

(5.8) G(z, v, Aj, V, ß)\Ak= G{z, vk, AjAk, AkxTAk, M)

for j,k = 1,2, •••,<! where vk is the character on AkxrAk introduced by v on

r. The operator \Ak is defined in (2.12).

Proof. The assumption on the Kloosterman sums guarantees the exist-

ence of the Poincare series on both sides of (5.8). We remark that (Aj Ak)-1 <*>,

j = 1,2, • • •, a is a complete set of inequivalent cusps for AklTAk,

X(AjAk, A^TAk) = \{Aj, r) and that K(AjAk, AklrAk) = k(Aj, T). We fur-

ther note that if VEAjT then VAkE AjAk ■ AkxTAk, so that as (c,d)

runs over &{K,Aj, r), (c',d') = (c,d)Ak runs over i£(K, AjAk, Ak1rAk).

By Lemma 3

G(z, v, Aj, T, p) I Ak

= (ckz + dk)~2 lim       Z      v(Aj-1V)(cAkz + d)-2e((n + Kj)VAkz/\j)
ic,d)G y (K.Aj, r)

= Hm Z vk((AjAk)-1V)(cz + d)-2eUn + Kj)Vz/\J),
K^°° Me y{K,AjAk,Ak lrAk)

which by Lemma 3 and the above remarks is G{z,vk,AjAk,AklTAk,n).

This completes the proof.

We finish the proof of Theorem 1 by showing that G has at most polar

singularities at the cusps. Lehner [11, p. 68] has shown that this is equivalent
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to showing that G possesses a definite limit (finite or infinite) as z approaches

the cusp from within the fundamental region. It is clear from (5.3) that this

is satisfied at the infinite cusp. Let us consider what happens at p* = Ak1cot

2 = k^a.By (5.8), G(z,v,Aj, T,p) = (ckz + dk) ~2G{Akz, vk, AjAk~\ AkTAk\ u).

Now as z—>Pk, Akz—> oo, so that from the Fourier expansion (5.3) for the

Poincare series G(z,vk, AjAk\A^A*1^) we see that the right-hand side

tends exponentially to zero if j ^ k, or j = k and u + k > 0, on the other

hand if j' = k and u < 0 then the Poincare series tends exponentially to

co. This completes the proof of Theorem 1.

6. We introduced Kloosterman sums

WAn + k,Aj,r,u + kj)

=   £   v( AJ1 Vc4) e((n + k) d/c\ + (u + kj) a/c\j),

where Vc4 = (a b\c d) £ A,Y. For these sums we assumed the estimate

0(|c|{), 1/2 < £ < 1 for fixed u (u + kj ̂  0). In this section we give some

examples when this estimate is valid. Our results are based on the fol-

lowing theorem of Petersson [21]: Let r be a congruence subgroup of the

modular group, v a character on r and suppose there exists an N such that

T(N) C t and v = 1 on T(N). Then the Kloosterman sum (6.1) has the estimate

0(\c\1/2+'), €>0, for fixed u.

We shall consider either homogeneous groups r and characters v for

which "(—/) = 1 or characters in inhomogeneous groups r. Before we state

our proposition, we introduce some new subgroups of the modular group.

The congruence group T0(n) consists of those matrices v = (a b \ c d) in

t(l) for which c = 0 modn. The modular group r(l) has unique normal

subgroups of index 2 and index 3; let them be denoted by r2 and r3 re-

spectively. We collect our examples in the following proposition.

Proposition. The Kloosterman sum (6.1) has the estimate 0(\c\1/2+'),

t > 0 for fixed u in the following cases: T =

(a) t(l) and v a character on r(l);

(a) ' T a congruence group and v a character on r(l);

(b) r0(o), 9=1 mod4, q a prime and v( V) = v((a b\c d)) = (d/p), the

Legendre symbol;

(c) r2 (or r3) and v a character on r2 (or r3);

(c)' r a congruence group and u a character on T2 or r3.

(a) van Lint [14] proved that r(12)Cr'(D, where f'(l) denotes the

commutator subgroup of r(l) (a prime on a group shall have this meaning

in this paper). More recently, Newman [15] has shown that r(6) C r'(l).

Either of these results will be suitable for our purpose. Suppose v is a

character on r(l) (which satisfies v( — I) = 1; hence a character on r);

then v = 1 on r'(l) D r(12). Petersson's theorem applies to show that any
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Kloosterman sum associated with r(l) and v has the estimate 0(|c|1/2+<)

{u fixed). This was also obtained by Lehner [10] in another way. However,

we can obtain additional dividends. Suppose v is a character on r(l) and

r is a congruence subgroup of level N then TD r(12iV), and since r(12)

Dr(122V), i)=lon f(12N). Moreover a transform of f, B~1fB3f(12N)

since r(12iV) is normal in r(l). Thus the induced character v' on B~lTB

will also be 1 on Y{12N). This implies that the Kloosterman sums asso-

ciated with v and r have the required estimate.

(b) Hecke [6] considered modular forms on the congruence subgroup

fo(o) D r(o). If q is a prime of the form 4m + 1 then

where (d/q) is Legendre's symbol, is a character on T0(q) for which v( — I)

= 1. We see that v = 1 on T(q). Petersson's theorem applies to give the

estimate (2.16).

(c) Various authors have shown that r(6) = r2 D r3 (see [16] or

K. Wohlfahrt, Illinois J. Math. (1964), to appear). This of course implies

that the characters of r2 and r3 vanish of r(6). The groups r2 and r3 have

been studied by Newman [15] and Gunning [3]. r2 is generated by 2 ele-

ments of order 3 and r3 is generated by 3 elements of order 2. Thus r2 has

9 characters and r3 has 8 characters. We obtain the extension (c)' as in

part (a).

7. We should like to show that every form in 9f°{T, — 2,v) can be written

as a (finite) linear combination of the Poincare series (3.3) when they are

known to exist. This can easily be established by showing that the Poincare

series (3.3) satisfy the "inner product formula" (7.2). In some instances

we can even give basis for 9f°(T, — 2, v) in terms of Poincare series. These

include r = r2, r3, and r = T(N) for N = 1,2, • • •, 10,12. We shall require

that v = 1 for AT Si 6. Once (7.2) is established, these results will be con-

sequences of Petersson's theory ([18], [19], [20]).

Petersson [18] introduced an inner product for automorphic cusp forms

of dimension — r which in our case is given by

where R{T) is a fundamental region for r. The integral is a Lebesgue

integral. It is known that for f,g G Sf°(T, — 2, v) the integral converges

absolutely and that it is independent of the choice of a fundamental re-

gion for r.

Theorem 2. For M + Kj > 0 and F(z) G^°(r, v, - 2) we have

v(V) = v((a b\c d)) = (d/q),

(7.1)

(7.2) (F, G{z, v, Aj, T, M)) = [Ay/2 (ß + Kj) ]a,(F, Ajt T),
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where a„(F, A,, r) is the uth Fourier coefficient in the expansion of F at the

cuspp] = A[1o= (see (2.11)).

We shall not give a complete proof of this theorem. When one proceeds

formally there is no difficulty in obtaining (7.2), as say, following the proof

given in [12, Chapter VIII, 4c]. Let Uj=iS, be a partition of R(t) where

Sj is a neighborhood of the cusp p,■. = Af1™, j= 1,2, Then instead

of introducing the double series for G(z, v, A"1, AtA'\u) (we have dropped

the subscript j) in the integral

f G(z,v',A-\AYA-\u)FA(z)dxdy
JASj

as is customarily done, we substitute (3.13). We note that the estimate

FA(z) = 0(e'Wy) where ß = 1/2 if k = 0 and ß = k/2 if k > 0 is valid for

zEASj (see (2.11)). Now using the fact that H(c,z) - Hx(c,z) + H2(c,z)

and the estimates (3.9) and (3.12) we can justify the interchange of inte-

gration and summation (on c). The next step is to introduce the series

(3.2) for H(c,z). It is then easier to justify the interchange of summation

on d and integration. We obtain after a change of variables

lim £ £        f FA(z)e((u + k)z/\)dxdy.
K^°° ce f {A.ArA   ');|c| <K d£ 'J(c,AMA   \ JvAS

From this point the proof given in [12] can be followed.

It is known that a modular form in Sa°(t, — 2,v) has a fixed positive

number of zeros. This implies that the dimension of the vector space

^°(r, — 2,v) is finite. Then we see that (7.2) implies that the set

G(z, Aj, ß): ß + Kj > 0, ß an integer spans Saü(t, — 2, v) because the only

form in $g°(T, — 2,v) orthogonal to all these Poincare series has all its

Fourier coefficients at the cusp p, = Aj~l<x> equal to 0. These results have

been known for some time ([18], [19]). Petersson in 1948 [20] showed that

if we set v = dim.^'°(r, — 2,v) and v — 2p + 1 ^ 0 where p is the genus of

T (see [2], [3]) then the Poincare series G(z, Aj,ß): ß = 0,1,2, • • •, v + p — 1

if kj > 0, or ß = 1,2, •• -,» + P if «>= 0> span^0(r, — 2,v). He further showed

in the same paper that the first v — p Poincare series are linearly independent

(that is, n = 0,1, — P — 1> if > 0 or ß = 1,2, ■ • •, v — p if k,■ = 0).

The proofs were not for these conditionally convergent Poincare series,

however, they would carry through for any set of functions <fr(z,ß),

ß=l,2, ••• which satisfied (7.2). In particular we see then that if the

group T is of genus 0 that the first v Poincare series span the space

&°(r,-2,u). This is the case for r(l), r2, r3 and r(N), 2V=l,2,--.,5

[3]. We shall give the dimension of these vector spaces below.

In 1940 Petersson [18] noted that the smallest system of values for the

parameter ß, mi < m2 < ■•■ < m. for which the Poincare series G(z,Aj,ßk),

k = 1,2, •••,¥,  span &°(T, — 2, v)  depends upon  what  he called the



106 J. R. SMART [April

"Weierstrass character" of the point Aj~l«> = pj. He proved that these

are exactly v natural numbers 0<m14-l<m24-l<---<m„4-l^i;4-p

for which there exists no form in the class { r,0,l/v\ with a pole of order

mk + 1 + Kj at pj and elsewhere regular. The order of the pole is determined

by the expansion (2.11). A consequence of this was that the Poincare series

with u = mk + X, where X = 0 if k > 0, X = 1 if k = 0, k = 1,2, • • •, v is a

basis for ^ °(r, — 2,«). In view of his later result we see that mx + 1 = 1,

m2 + 1 = 2, • • •, m„_p + 1 = v - p.

The problem is to determine which of the numbers n, p — p < n ^ v + p,

are gaps. In the case v = 1 then v = p and this the problem of determining

the Weierstrass gap sequence at the point Ayl<*>. Recently this has been

done by Joseph Lewittes [13] for the groups r(7V), N = 7,8, • • •, 10,12.

(a) For the groups r = r(l) and r = r2 there is only one character for

which v <m dim^°(r, — 2,v) > 0 and in each case v = 1. The dimension of

9f°(r, — 2,v) was calculated using Petersson's form of the Riemann-Roch

theorem [18] applicable to automorphic forms. In the case of T = T(l) it

is the character determined by v(S) = — 1, v(US) «■«(— x/3) which gives

rise to v = 1. For r = r2 the character determined by v(US) = v(SU)

= e( — jt/3) gives v = 1.

(b) In the case of r = T0(q) and v( V) = (d/q), the system studied by

Hecke [5], Hecke determined the dimension of the space cusp forms. The

first case for which v is positive is q = 29 and here it is v = 2.

(c) We turn to the more interesting examples r = r(iV). We find, using

Petersson's form of the Riemann-Roch theorem,

HV) /0,

v = dimif°(r(A0,t>, - 2) = p(N) - 1 + £ ((1 - *,)) + ,
i 11,

»W (0, Vj*l,

v=l,

where ((x)) = x — [x], the fractional part of x. The genus of T(N) is given by

0, 1<JV<5,

,    N2(N- 6) TT /,     1 \
1 + ^4-n(l--2). n>2,

P = P(N) =

and

a = a(N) -
3, iV=2,

where the product is extended over all prime divisors q of N.

Consider the case

(i) T = r(5). Then depending upon v we see that 0 < v < <r(S) — 1 = 11.

Petersson [19] shows that Z"Kj - 0 modi is a requirement of a character.

For example, if v(AjUsA-1) = e(l/4) then v = 8 and since p(5) = 0 the
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Poincare series G(z,I,p), p. = 0,1,2, • • -,7 span ^°(r(5), - 2,i;).

(ii) Let r = T(N), N= 7,8,9,10,12 and t> = 1. Lewittes [13] has deter-

mined the Weierstrass gap sequence at <*>, hence at Ay1™ since r(iV) is

normal in r(l), for those values at N. We see that in this case that v = p (N).

For, say, N = 10, p(N) = 13, and the gaps are p. = 1,2, • • - ,9,11,13,17,19.

Hence the Poincare series G(z,Ajlti), p. = 1,2, •••,9,11,13,17,19, span

if°(r(io),-2,i).
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