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Introduction. The main aim of the present paper is to determine the essen-

tial spectrum and index of a class of elliptic differential operators in Lp(Rn)

(see Definition 1.3). By a well-known theorem of perturbation theory, the

essential spectrum and index of an operator A are unchanged under addition

of an operator B, which is compact relative to A (see Definition 1.1). §1 con-

tains without proof the definitions and main theorems of this theory.

In §3 we consider the case of an elliptic differential operator Pp with con-

stant coefficients in LP(R„) perturbed by lower-order terms. The spectrum of

the constant coefficient operator is given in Theorem 3.5. Then we determine

a rather large class of operators, which are compact with respect to Pp. Theo-

rem 3.9 contains the main result on the essential spectrum and index of the

perturbed constant coefficient operator.

The preliminary work leading to the compactness conditions is done in

§2. The graph norm of the elliptic constant coefficient operator is equivalent

to the W£-norm (Definition 2.2). Therefore, the problem of finding compact-

ness conditions is essentially reduced to the problem of finding conditions in

order that the embedding of Wp(Rn) in Lp(Rn, b) with a weight function b

be compact. The main result in this direction is stated in Lemmas 2.11 and

2.15.

1. Perturbation of operators in Banach spaces.

1.1. Definition. Let 93 be a Banach space with the norm || • ||, and let A

be a closed, densely defined, linear operator in 33. For x £ D(A), the A-norm

I x IA is defined by

\x\A-\x\ + \Ax\.

D(A) provided with the A-norm is a Banach space. Let B be a linear opera-

tor with D(B) Z) D(A). Then B is said to be A-defined. If B\D(A) is a

bounded operator from D(A) with the A-norm into 93, B is called A-

bounded with the A-norm || B\\ A. B is said to be A-ebounded if there exists,

for every t > 0, a number K(e) > 0 such that

(*) \\Bx\\ g<\\Ax\\+KU)\\x\\ forx£D(A).

Received by the editors March 6, 1964.
( ) The preparation of this paper was sponsored in part by the National Science Foundation

grant G-22982.

193



194 erik balslev [April

If B\D(A) is a compact operator from D(A) with the A-norm into 93, B is

called A-compact.

1.2. Lemma. // there exists t < 1 such that Definition 1.1, (*) holds, then

A + B is closed, and the A-norm and the (A + B)-norm are equivalent on D(A).

C is A-compact if and only if C is (A + B)-compact.

Furthermore, if A is essentially self-adjoint, and B is symmetric, then A + B

is essentially self-adjoint.

1.3. Definition. The Fredholm domain $(A) is the set of complex num-

bers, X, such that the null space %t(A — X) of A — X is of finite dimension

ax(A), and the range 9i(A - X) of A - X is closed and of finite codimension

ßx(A). The essential spectrum ce(A) is the complement of *(A). *+(A) is the

set of X such that 9i(A — X) is closed, ax(A) < » and ßx(A) = <*>. *_(A)

is the set of X such that 9?(A — X) is closed, ax(A) = a> and ßx(A) < co.

as(A) is the complement of *(A) U #+(A) U *-(A). For X £ *(A) the index

IX(A) is ax(A) — ßx(A). The spectrum of A is denoted by a(A) and the re-
solvent set by p{A).

1.4. Theorem. #(A), *+(A) and $-(A) are open sets. In each component of

<J>(A), IX(A) is constant, and ax(A) is constant except possibly in a discrete set,

where it is larger. In each component of $+(A) and * (A) the same holds for

ax(A) andßx(A), respectively.

If B is closed and A-compact, *(A + B) = *(A), *+(A + B) = *+(A) and

<f_(A + ß) = *_(A).

For XG*(A), L(A + ß) = /X(A).

For X G #(A) (#+(A), *_(A)) fftere exists e(X) > 0, such that X G *(A + ß)

(*+(A + B), *_(A + fl)) /or || B|A_X < e(X).
// A is a self-adjoint operator in a Hilbert space, and B is A-compact, then

the resolvent sets of A and A + B are equal except for at most a discrete set of

points S = \ Any real number X; ofS is an eigenvalue of A with aXi(A) < m

or an eigenvalue of A + B and (A + B) * with aXi(A + E) = aXi(A + B) * < co

(possibly both); any nonreal number X; of S is an eigenvalue of A + B with

aXi(A + B) < co, while a. is an eigenvalue of (A + B)*, with ax (A + B)*

= ax,(A + B).

Proof. We refer to [8], [ 10] and [14].

1.5. Definition. A singular sequence for the operator A is a sequence,

\<t>n \ C D(A), such that

(i) 1<K,
(ii) j 0„ j is noncompact,

(iii) A0„^O.

1.6. Lemma. X £ os(A) U *-(A) i/and only if there exists a singular sequence

for A - X.
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Proof. This is proved for Hilbert spaces in [14]. For Banach spaces in

general it will be proved in [ 16].

1.7. Lemma. Let A be a closed, densely defined operator in a Banach space

93 and let A* be its adjoint in 93*. Then A has closed range if and only if A*

has closed range.

Proof. We refer to [10].

2. Embedding operators in function spaces.

2.1. Notations. We use the following notations:

Rn is n-dimensional euclidean space.

If a = («i, ••■,«„) is any rc-tuple of non-negative integers, then

i«i-z:«*
d" = ii Dj'-

i-i
In the following, all functions are complex-valued, measurable functions

on Rn. If Cis the space of these functions (where two functions are identified

if they are equal almost everywhere), then all function spaces considered are

subspaces of C, and we shall omit explicit reference to R„ in our notations.

2.2. Definition. Let p be a real number, 1 < p < °°, k a non-negative

integer. Then W? is the set of functions u, in V, for which all derivatives

TPu of order |/31 g k belong to V. Wp is a Banach space under the M-norm,

imu.p= { e \\D'u\rPY"'.

2.3. Definition. Let bß £ C. Then B^p is the operator in Lp defined by

D(B,,) = \uGLp\ b,D>u(EL>'\

and

Be,pu = b0D»u   for uED(Bß,p).

We set B0iP = Bp.

2.4. Definition. Let T be the embedding operator of Wp into Lp, Tu = u.

Then Bß,p is said to be M-bounded if D(Bß,p) D T(W^), and Bß,„T

is a bounded operator from Wp into Lp. We set || Bßp 11^= || Bß p T\.

BßiP is W£-{-bounded if D(Bß,p) 3 T(Wl), and if there exists, for every

( > 0, a constant K(t) such that

|B,,«Ip = « z ll^wllp + KWIIullp, «GWf.
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Bßp is WT-compact if D{Btp) D T(Wl) and BßpT is a compact operator

from Wp into V.

2.5. Classes of functions. We set

SI>r= jyGÄn||x-y| £r},

Sx = SXi\,

s' = [xeRn\\x\ = lj.

We introduce the following subspaces of C (2.1), 1 < p < co.

(1) LL= {/|jj/(y)|pdy<tfU)},

(2) IL =j/| |/(y) I < K{x) for a.e. yGSX|,

(3) M'= {/|jj/(y)|pdy< K for x £/?„},

iVp= {/GM" |jj/(y)|pdy-0as|x|-co),

Q?a = {/ I Jj/(y)lplx - yr'~n+ady < K for xg ß„),

ü?. = j/G% |j^|/(y)|pl*-y|pi-B+ady—oas |x|— «| ,

(7)       L/?a= {/ \jo |/(p,a,)|V,1+°dp < K,j +|/(p.")Ip«V < K,

r?t l.wGS'j ,

V?,a={/GL/L  J   |/(p, co)|pdp ̂ 0 as r ^ co, uniformly

foru)GS'| ,

yp= {/ |X'i/(p^)l<,p'l"1rfp <     +l\f(p'»)\"dp <K-

r^l.wGS'J ,

Zf= j/eyf J   [/(p, co) |pdp  *0 as r  * co, uniformly

forcoGS'} .

(4)

(5)

(6)

(8)

(9)

(10)
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(11) The set of almost radial functions

AR = 1/ sup|/(r,w)| ^ Cinf |/(r,co)| forO < r < cc!

2.6. Lemma. The classes of functions defined in 2.5 satisfy the following rela-

tions:

(a) Q",a C M"; R% CN"; U"nlpfi = YJ; V%p,0 - Zp.
Forpl-n + a^O, Q\a = M"; R\a = N";

(b) If pi - n <0, then, for every c < 0, there exists a < 0 such that Qfc fl N"

CR"t.a;
(c) YPPCM"; Z"PCN".

Proof, (a) is obvious, and (c) is easy to prove. For the proof of (b), let

fEQlcHN". For l/p0 + l/<?o = 1 we have, by Holder's inequality,

fs\f(y)\"\x-y\pl-n+ady

(1) ( r )i/m ( f )i/flo

- ( )s)f(y) |Pd>]     t JsJ/(:y) |P|X " y| W(P'"'+a,d>' J •

We choose o0 < 1 + c/(pi - n). Let

c - (oo - 1) (pi - n)
a0 =-.

<7o

Then a0 < 0, and (1) gives, for this choice of q0 and a = a0:

f \f(y)\"\x-y\'t-'+aody
JSX

(2) r r )i/po r r

From (2) follows, since fE Qpi.cnNp,

(3) I lAyJI^x-yl^-^ody^O  as |x| «,,
J $x

so that fERpi.%-
2.7. Definition. \r is the characteristic function of S0,«, i.e.,

(1   for |x|

xrw=(o for|x|>Ä,

TR=\xERn\\x\ >R\.

For a real, set
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D(R,l,a) = sup (\b(y)\p\x-y\<«-"+ady,

E(R) = sup f\b(y)\>>dy,
|i|>R-',Si

rr+i

F(R) = sup sup I \b(p,ui)\pdp.
»ES'  räfi Jr

Ap R is the operator Bp of 2.3 corresponding to the function b\R, and BpR

is the operator corresponding to 6(1 — xr)-

IPtR is Bp corresponding to the function xr-

2.8. Lemma. Criteria for W^-t-boundedness of Bp.

(a) k   n/p. (1) If there exists a < 0 such that D(R, k, a) < oo, then Bp R+l

is Wi-bounded, and

\\BPfR+1\\pvpk^K(a)D(R,k,a),

where K(a) is independent of R.

(2) // there exists a < 0 such that b G Qia, then Bp is W%-t-bounded.

(3) // Bp is Wk-bounded, then b £ Q%a for every a > 0.

(b) k > n/p. (1) If E(R) < oo, then BPiR+l is Wi-bounded, and

||ßP,fl+i||^ ^ KE(R).

(2) It is necessary in order that Bp be Wp-bounded and sufficient in order that

Bp be Wi-t-bounded, that b G M".

(a2) is essentially contained in [5, Lemma 16].

Proof, (a) k ?£, n/p. Since C0°° is dense in Wpk, it suffices to consider u G C0".

(1) We make use of the following inequality, proved in [ 5, (5.2), p. 86] (the

proof is valid for any k):
For any r0 > 0 and — 1 < a < 0, there exists K(a) > 0 such that, for

0<rgrQ,uE Co,

\u(x)\pgK(a) \r " f   \x - y|"*-"+<■ ( £ \D°u(y) \») dy + r""*"0

We can obviously assume that — 1 < a < 0 in the given inequality,

D(R,k,a) < oo.

Setting r= r0= 1, multiplying (1') by |6(x)|p, integrating with respect to

x over TR, and interchanging the order of integration, we arrive at
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\Bp,R+lu\>= f \b(x)u(x)\>dx
J'R+l

- K{a) fTR{ Xv|fc(x)|P|x" y\pk~n+adx]

(2,} { E \Dau(y)\" + \u(y)\"]dy

zK(a)D(R,k,a) f { E \D°u(y)\>+ \u(y)\"]dy

ZK(a)lXR,k,a)lufy.

Therefore, Bp,R+l is Wf-bounded, and \\BP,R+4P g K(a)D(R,k,a).

(2) Proceeding as in (1), choosing r0 = 1, and integrating over Rn, we

obtain, for 0 < r ^ 1:

\\Bpu\\> = jR\Bpu(x)\"dx

z K(a)r-°fRn{ jg   \b(x)\"\x - y|<-*-»+°dx} { XjD°u(y)|"} dy

(3') + tf(a)r-'*~° JJ J^JftWrix-yl"*-"^} |"(y)|pdy

a(c)( sup r|6(x)nx-y|"*-'1+0dvj

• \r a f E ID-uWdy + r-t-'fjuy-yWdy).

Choosing r sufficiently small, we arrive at an inequality of the form

\BPu\><t>T. \\D°uVP + KU)\\u\\>,

from which the desired inequality follows, and Bp is Wf-f-bounded.

(3) Let #E Cö(Rn) be a function such that

<*>(*) = 1   for |x| ^ 1.

For a > 0, x E Ä„, we set

/„» - |x-y|*-"/p+a/p*(*-y).

It is easy to check that fa,x E Wpk, and the set

Fa=[fa.I\xERn}
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is a bounded subset of Wpk.

Using the boundedness of Bp on the set Fa, we obtain, for x £ Rn'-

fa\b(y)\'\x-y\'*-"+-dyZlB,fvl'£ |BPQ < K,

so that b £ Q"ka.

(b) For k> n/p, M" = Qpk,n^kp and E(R) = D(R,k,n - kp), hence (b)

follows from (a).

2.9. Lemma. Let 1 < p < r < co, and let g be a function on S0tR. We define

the operator Gpr by

D(Gp,r) = j/£Lr(So,fi) I gfe L"(S0,R) \

and

Gp,rf = gf for/£D(Gp,r).

Then Gp,r is a bounded operator from Lr(S0,R) into L"(S0fR), if

f    \g(x)\Pl(l-"lr) dx < oo.
Js0,R

Proof. By Holder's inequality,

i i/w ip^ ^ {X„ j*(x) 1 p/<i~p/r> dx} {Xo * if{x) 1 rd*}
p r

hence

2.10. Lemma. TVie operator Ap R is Wl-compact, if b satisfies one of the fol-

lowing conditions.

(a) For k ^ n/p: There exists a > 0, such that

I    \b(x)\inlk)+adx < oo.

(b) For n/p < k £ n/p + 1: TTiere existe a > 0, sucA tftai

f  \b(x)\p+adx < oo.
Js0,fi

(c) For k > n/p + 1:

I    \b(x)\pdx < co.
Js0,R
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Proof. For the basic Sobolev-type embedding theorems we refer to [6,

Lemma 6] or [7, Vol. II]. From these the proof is as follows:

(a) k ^n/p. The operator L,ß(2.7) is Wp-compact, if there exists a > 0

such that

—-— = n/k + a,
l-p/r

and Lemma 2.9 applies.

(b) n/p < k ^ n/p + 1. The operator Ir R is W^-compact for every r < °°.

It follows from the assumption on b by Lemma 2.9, that the operator Gp r

(2.9) corresponding to the function b == g is bounded for r sufficiently large.

Therefore, APiR is Wf-compact.

(c) k > n/p + 1. The operator u—>\rU is compact from Wp into W?_i..

Furthermore, W{_1(So,ä) is contained in C°(So,fl). the space of continuous

functions on S0,« and the embedding of WJ_i(S0,b) in C°(S0,r) is a bounded

operator. Then the operator u—>x«u is compact from Wp into C°(SÄ),

and Apjt is Wp-compact.

2.11. Lemma. Criteria for Wp-compactness of Bp.

(a) k ^ n/p. Bp is Wl-compact, if
(i) For every R > 0 there exists a(R) > 0 such that

f    \b(x)\in/k)+°iR)dx < oo.
JSq.r

(ii) There exists a < 0, sucft fftat

6 G RU.

If Bp is Wl-compact, then

b G Ria   for every a > 0.

(b) n/p < k ^ re/p + 1. -Bp is Wf-compact, if

(i) For euery R > 0 irtcre exists a(F) > 0 sucft t/iat

f   |6(x)|"+"(fi)dx < oo.
Js0,r

(ii) 6 G Np.
If Bp is Wl-compact, then b G

(c) k > n/p + 1. Bp is Wl-compact if and only if b G W-

Proof, (a) kp - n ^ 0. Suppose that b satisfies (i) and (ii). It follows from

(i) by Lemma 2.10 (a), that the operators Apfl are Wf-compact for every

fi>0 (Definition 2.7). By Lemma 2.8 (a2), it follows from (ii) that Bp is

WT-bounded, and, by Lemma 2.8 (al),
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llßp - ApAtf = asÄ^ oo,

therefore, Bp is WJ-compact.

Suppose, on the other hand, that Bp is W^-compact. By Lemma 2.8 (a3),

it follows that b G Q£„ for every a > 0. Assume that b G Ri,a for some a > 0.

Then there exists a sequence of points )t,£fi„ m = 1,2,      such that

|xm| —► oo asm—♦ oo

and

f |6(y)|pl*-y|*p-"+ady>K>o.

Let /0 jm = /m be the functions defined in the proof of Lemma 2.8 (a3). We

can assume that the supports of /* and /; are disjoint for k ^l. Then {fm)Z=\

is a bounded sequence in W£,

Bfm(y) -»0, as m -> oo, for every y G

and

flß/Jlp^ f \b(y)\>\x-y\*-"+'dy>K>0.

This contradicts the assumption that Bp was Wf-compact; therefore, b G Äf.0.

(b) n/p < * £ n/p + 1. It follows as in (a) by Lemmas 2.10 (b) and 2.8 (b)

that Bp is Wjt-compact, if b satisfies (i) and (ii). Since Np = Rpa for a > 0,

it follows from (a) that 6 G N", if Bp is W^-compact.

(c) k > n/p + 1. We prove as in (b) by Lemmas 2.10 (c) and 2.8 (b) that

Bp is W?-compact, if ft^JV. The necessity follows as in (b).

2.12. Remark. As noticed in Lemma 2.6 (b) the function 6 satisfies con-

dition (ii) of Lemma 2.11 (a), if there exists c < 0 such that 6G QicHN".

This implies a result of Birman [3, Theorem 2.2].

2.13. Lemma, (a) // R ^ 1, and F(R) < oo (Definition 2.7), then BpM is

Wpk-bounded, and

\\Bp,R\\&k = KF{R),

where K is independent of R.

(b) Let k g n/p, and suppose that b satisfies the conditions

(i) There exist S > 0 and a < 0 such that

\jb(y)\p\x-y\kl'-n+ady<K  for\x\ £5.

(ii) F(5) < oo. Then Bp is WU-bounded.

(c) Let k > n/p, and suppose that b G Ypp; then Bp is Wp-t-bounded.



1965] SPECTRUM OF ELLIPTIC DIFFERENTIAL OPERATORS 203

Proof, (a) By a slight adjustment of the proof of Lemma 2.8 (a) for n = 1,

k = 1, we arrive at the inequality

r+l

f \b(r)f(r)\"dr^\ sup   f \b(P)\"dP\
R£r< .

(1)

valid for all R 2; 0, b EU.[0, «,), and /G L"[0, <*,), /' G L"[0, »). A proof
of this is also found in [ l], Lemma 4.

Let /G WS, Ä ̂  1. We apply (1) to the function /(f,«)r("-I>*, for fixed

oj G S', and obtain

f |6(r,a!)|"|/(r,a,)|pr',-1dr^ { 8Up   f |6(P,«)|"dp}

(2) ' {4X Id7 wr>»)'*~*">I dr+*w X i/(r'u)iPdr}-

Since

ar or p r

we obtain, from (2),

16(r,«) |p|/(r,.) IV-1 dr ̂  ( sup   f |6(p,«)|'dJ

(31

Integrating (3) with respect to o> over S' we arrive at

f |6(x)|p|/(x)|"dx ̂  (supsup f |6(r,a,)|pdJ

(4)

From this (a) immediately follows.

(b) k ^ n/p. Suppose, for simplicity, that 5 = 1; the proof in the general

case is similar.

Let Bp = Ap>1 + Bp,i (Definition 2.7).



204 erik balslev [April

From (4) of the proof of (a) and assumption (ii), it follows that Bp i is

W?-«-bounded. From Lemma 2.8 (a2) and assumption (i), it follows that Ap l

is W?-<-bounded. Therefore, Bp = ApA 4- Bp l is W?-«-bounded.

(c) k > n/p. This follows from Lemmas 2.8 (b2) and 2.6 (c).

2.14. Lemma. For b G AR we obtain the following criteria for Wp-t-bounded-

ness:

(a) k ^ nip. Bp is Wp-t-bounded if b satisfies the conditions:

(i) There exists 6 > 0 such that

inf \b{ru u) | ^ inf \b(r2, u) \   for 0 < rt < r2 g 8.

(ii) There exists a < 0 such that b G [/{,„.

// Bp is W^-bounded, then b G Ui.a for every a > 0.

(b) k > nip. It is necessary in order that Bp be Wp-bounded and sufficient in

order that Bp be W%-t-bounded that b G Ypp.

Proof, (a) k 55 nip. Suppose that b satisfies (i) and (ii). Since b, by assump-

tion (ii), satisfies (ii) of Lemma 2.13 (b), we need only prove that b satisfies

(i) of Lemma 2.13 (b) for 8 = 1. By assumption (ii),

/„= jSQ\b(y)\p\y\kp-n+ady = jg, [Jo |6(r,«)|'r*-1+«dr} cLc< ».

Set

Ux={yeSx\\y\ g \x-y\\,

Vx={yESx\\x-y\ <y\.

Since     C S0,

(3) f |6(y)|p|*-y|*'-"+0dy^ f, |6(y)|p|yrp-n+ady^/a.

Let y£ V, and let y' be the point symmetric to y with respect to the

hyperplane \z\\z\ = \z-x\), V'x= jy'|yG V,}. Then |y'| = \y - x\ < \y\

^ 2, and, since b is of class AR and satisfies (i), we have

\b(y)\z sup |6(«|y|)| g K inf |6(»|y|)| g Kinf |6(«|y|)| S*|*öO|.
»€S' »eS' «es'

Therefore,

(4) I   |ö(y)|p|x-.y|*f,-n+ady^iY f \b(y')\p\y'\kp-n+ady' g KIa.

From (3) and (4) we obtain
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. \b(y)\p\x-y\kp'n+ady<K  for |x| g 1,

so that b satisfies 2.13 (b), (i) for 5 = 1. By Lemma 2.13 (b), Bp is Wp-t-

bounded.

Suppose next that Bp is Wp-bounded. It is sufficient to prove our state-

ment for a radial function b(r).

Let

0eCo°°(fli) and <*>(') =1 forO^t^l,

&(r) = 0(r - p)p(1-'')/p,      0 £ r < ».

Then    jiS))<a, is a W"p-bounded set.

Applying the Wf-boundedness of Bp on this set, we obtain

X B-l,16(r)I"(r/P)-1 dr ^ ||BpgJp<K     forl^p< «.

From this it follows easily that

X
.+1

\b(r)\"dr<K  for 1 ̂  p < ».

Since the function /, defined for 0 < r < »,

/(r) =r*-(n/p,+(a/pl0(/-),

belongs to WJ for every a > 0, we conclude that

./o
\b(r)\"rkp-1+adr< co foreveryo>0,

so that 6 £ L/J.0 for every a > 0.

(b) A > n/p. By Lemma 2.13 (c) the operator Bp is Wp-«-bounded if

&£ YJJ. Suppose next that Bp is Wp-bounded. We can assume that 6 is a

radial function b(r). Then, by Lemma 2.8 (b),

X
1

b(r)\"rn~ldr < ».

This, together with (a), shows that 6£ Ypp.

2.15. Lemma. This is a generalization of a result by Birman (cf. [3]). The

method of the proof is the same as far as the condition at co goes.

(a) k ^ njp. Bp is Wp-compact if:

(i) There exists a > 0 such that b £ Zpnlk)+a.

(ii) For every R > 1 t/iere exists a(Ä) > 0 and K(R) such that
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{n>k)+"mdr<K(R)   fora ES'.

If Bp is Wl-compact and b E AR, then

b E VJ,a  for every a > 0.

(b) rt/p < k 5; (n/p) + 1. B is Wl-compact if:

(i) There exists a > 0 suc/i dia< 6 G Zpp+a.

(ii) For euery ß > 1 there exists a(R) > 0 and K(R) such that

\b(r,a)\p+"mdr<K(R)   for 01E S'.

If Bp is Wl-compact and b E AR, then b E Zp.

(c) k > (n/p) + 1. Bp is Wl-compact if b E Zpp.
If Bp is Wl-compact and b E AR, then

bEZp.

Proof. (1) Sufficiency. In each case it follows, from the corresponding part

of Lemma 2.10, that the operators Ap R are W^-compact for 0 < R < 00. From

Lemma 2.13, it follows that Bp is WJ-bounded, and that

Therefore Bp is IVf-compact.

(2) Necessity when b E AR. In view of Lemma 2.14 we only have to prove

that

This is proved indirectly using the functions g„ of the proof of Lemma 2.14

(a), proceeding as in the proof of the necessity part of Lemma 2.11 (a).

2.16. Remark. We obtain sufficient conditions for W£-c-boundedness and

Wl-compactness of the operators Bßp by substitution of k — \ß\ for k in

the conditions of Lemmas 2.8, 2.11, 2.13, 2.14 and 2.15. We need only notice

that the mapping /—>Däf defines a bounded operator from Wl into Wl^\0i,

and the same mapping defines a VTJ-t-bounded operator from Wl into Lp.

The first is obvious, the second is well known (cf. [5]).

3. Differential operators.

3.1. Definition. Let P(£u ••-,£„) be a polynomial of degree k ^ 1 in n

real variables £1; •••,£„, n ^ 1,

Hßp.RlU-O asÄ- CO.

|6(p,o)) |pdp—»0 asr—> °° uniformly forcoGS'.

Pit) = P(Su ■
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P{DU ■ • •, D„) is the formal differential operator with constant coefficients

obtained by substitution of Du--,Dn for £1, ••-,{„ on P(£).

P(DU • ■ ■, Dn) is elliptic if there exists a > 0 such that the principal part

Q(£) of P(£) satisfies the inequality

\Q(t)\ «"«|*|*, 6GP*

The formal adjoint operator of P(Dj, • • •, Dn), denoted by P'(Du ■ ■ •, Dn),

is the operator corresponding to the polynomial

/"(ö-Pttb-.ü- E (-i),a|a,r.
WS*

The set of points £ £ Rn such that P(£) = 0 is denoted by 3(P). The set of

values assumed by P(£) for £ £ /?„ is denoted by 9?(P), and its complement

in the complex plane by C5R(P).

3.2. Definition. Let 1 ^ p ^ °°. The maximal differential operator Pp

in U associated with P(Di, • ■ •, D„) is defined by

D(PP) = j/£L"| P{Du...,Dn)fEL"\

and

P„f=P(Di,...,Dn)f  for/£D(PP).

Here P(Pi, • ■■,Dn){ is taken in the sense of distributions.

The minimal operator Ppo is the closure of the restriction of Pp to C0°°.

Any closed extension of P^ is denoted by P^.

For 1 ^ p < co the adjoint operator P^ of Ppc is the usual Banach-space

adjoint in Lq, where 1/p + I/o =1 for p > 1 and c? = co for p = 1, i.e.,

P(Pp^) consists of those elements /£L' for which there exists a g£L'

such that

(*) \f.Ppi.<t>dx=\og.d>dx, cuEDfP,*),

and P*/ = g for/£D(P*).
The adjoint Plc in L1 of P„c is the operator defined for those elements /

in L1 for which there exists a g in L1 such that (*) holds, for all 0 £ D(P„C),

by P*,c/ = g- Ptc is uniquely defined because D(P^C) is total on L1 (cf. [12]).

3.3. Lemma.

(i) P*ro = P'JorltkP^ »,
(ii) Pp* = P;„ /or 1< p ^ co,

(iii) p* d p;0.

Proof. By the definition of distribution derivatives, (*) holds for all <b £ C0"

and /£ D{P'q), g = P,'/, 1 ^ p S co. Thus, P,' is the adjoint in V of the
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restriction of Pp to C0°°. Therefore, Pp0 exists, P'q = Pp%, and, for 1 < p ^ <*>,

P'qo = Pp (cf. [ 12J). It is clear that P*3F„0, but, in general, equality does

not hold (cf. [12]).

3.4. Lemma. For p = 2 aracf, u;nen P(Di, • • •, A,) is elliptic, for 1 < p < co,

<ne minimal and the maximal operators coincide: Pp = Pp0.

Proof. We refer to [6, Theorem 1.11].

3.5. Theorem. For 1 ^ p < od, let P^ be any closed extension of Pp0, and let

Pmc be a closed extension of P* (Definition 3.2).

Then the following holds:

(i) If 3(P) ^ 0, the range, ^(Ppc), of P^ is not closed.

(ii) 7/ P(DU •••,!)„) is elliptic and 3(P) = 0, then P^ has a bounded in-

verse on U which can be represented as convolution with a function in L1.

(iii) If P(DU ■■■,Dn) is elliptic,

Proof. Let 5 be the Fourier transformation applied to tempered distribu-

tions and let * denote convolution.

(i) Suppose that 3(P) 7* 0 and let 1 ^ p ^ 2; then % maps U into L\

l/p + 1/9-1.
It is then clear that there is no solution in V of the homogeneous equa-

tion

so that Pp has an inverse Pp_1 (cf. [13]). We shall show that Pp has non-

closed range and, consequently, that Pp_1 is unbounded.

Let /be a function in U such that 3/has compact support S disjoint from

3(P). We prove that /£ 3f(Pp). Let ^(|) be a function in C0" such that

- *.(Ppc) = "e(Ppc) = 9t(P),

P(Ppc) = *(Ppc) = C9J(P).

P(D1,..-,DJ/=0,

1   for £ G S,

0   for £ near 3 (P).

Set

Then
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Since x G Co > it is clear that fj-1x G L\

Hence,

and

P(Du...,Dn)y = f,

so that/G 9l(Pp).
Let £o be a point of i?„ such that the closed ball with center £0 and radius

r0 has exactly one point, fi, in common with 3(P), and |£0 — £i| = '"o-

Define the function fk(r) G C*[ 0, m) such that

A(r) =

forO ^ r ^ r0/3,

(r0-r)*+1   for 2r0/3 ^ r ^ r0,

(. 0 for r0 < r.

Letg*G C*(Ä„) be defined by

&(Ö- A(U-fol).

It is clear that

^4-*GCg forl<i<n,

and, consequently, that there exists k0 such that

r'^GL".

Define the functions as for non-negative integers s by

= r [P(«)]"'«*o(i)   for ll-lol < r0,

*     (o for |€- €o| fcr»

Then j$"1ao= S^'g^Ei-", while, for s sufficiently large, as£L', and,

hence, 5 ~1 a, £ Lp. Let s0 ̂  0 be the largest integer such that

(1) 8-,a,GLp.

Then

and

Therefore,

P(Du...,Dn)\}-1a^>+1= %~lav
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We choose a sequence £m—♦ £0 such that each of the closed balls with center

km and radius r0 does not intersect 3(P).

Let

dso.m = aw(£ + fo - fm).

Then

%~'an,m(x) = exp(i(|m - Q ■ x) 5_1a^(x),

and it is clear that

(2) S-'o*» - &-la„ inL".

Since each function aK,m(t) has compact, support disjoint from &(P),

(3) %-la^E^(PP).

From (1), (2) and (3), it follows that SR(PP) is not closed.

Suppose next that 2 ^ g ^ o= and that P({) = 0. Then P'(- {) = 0, and,

consequently, P'p has nonclosed range for 1 S P ^ 2. It follows, by Lemma

1.7, that (Pp) * has nonclosed range. Hence, by Lemma 3.3, Pgo has nonclosed

range for 2 ^ q < <», and (P()* has nonclosed range. This implies that

P^ has nonclosed range for every operator Pv with

P&QPv^Pa  for 2 ^ o < co

and

(P[)*cP.ccp„.

In particular, all the operators P, have nonclosed range for 2 ^ o g ». By

Lemmas 1.7 and 3.3, the operators Ppo and, consequently, all the operators

Ppc have nonclosed range for 1 ^ p ^ 2. This concludes the proof of the first

part of the theorem.

(ii) Suppose, next, that P(Di, • • -,Dn) is elliptic, and that 3(P) = 0. For

n > 2, the first assumption implies that k is even. For n = 2, it is easy to see

that both assumptions together imply that k 2: 2. For the simple case n = k

= 1 and for a different treatment of the case n = 1 in general, we refer to [ l].

Therefore, we can assume that 2.

It is clear that the homogeneous equation

P(Du...,Dn)y = 0

has no nontrivial tempered solution. Therefore Pp, has an inverse, for 1 ^ p

^ co, given by
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We shall show that ?}_11/P({) EL1, from which it follows that P'1 is

an everywhere defined, bounded operator in L", for 1 ^ p ±S oo. The proof

extends an argument used in [6] in the proof of Lemma 8.

A simple calculation shows that, in view of the ellipticity, there exists

c> 0 such that

\dti P({)
<c|£| for U| ^ 1,

while

dr 1

3tf P(«)
<c   for |{| < 1.

It follows that

7-7 7j-7 E ^' for r > n — k.
3tf P({)

Therefore, for r> n - k,

(1) < K  for x E P„.

From (1), for r = ra — k + 1, follows

<2) JL|»-U
Using (1), for r > n, we obtain

dx <

dx <

By (2) and (3), %       P(S)) E L\
(iii) The statement concerning the spectrum of an elliptic operator Pp in

L", 1 g p g oo, follows immediately by application of (i) and (ii) to the oper-

ators Pp — X.

3.6. Lemma. Let Pp be the operator defined in 3.2, for 1 < p < 00, associated

with an elliptic differential operator P(DU ■ ■ ■ ,Dn). Let Bp be the maximal

operator in L" associated with the differential expression

93y= Z bs(x)D*y.
\»\<k

Suppose that the functions bß satisfy the following conditions.

(a) For \ß\ <k — n/p, 6jGMp (in particular, if bßE YPP).
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(b) For \ß\ ^ k - n/p, 6, £ QL\m,a for some a < 0, or 6„ satisfies the con-

ditions (i) and (ii) o/2.13 (b) with k - \ß\ substituted for k (in particular, if

fy)E AR and satisfies the conditions (i) and (ii) of 2.14 (a) with k — \ß\ sub-

stituted for k).

Then Bp is Pp-t-bounded.

Proof. It is well known (cf. [5, 2.3] and [6]), that D(PP) C Wp, and, for

feD(Pp),

(i) WfW^^KlWfh+WPJhl

From (1), Lemmas 2.8 (a2) and (b2), 2.13 (b) and (c), 2.14 (a) and Remark

2.16, the lemma follows.

3.7. Theorem. Let Pp and Bp be the operators of Lemma 3.6 and let Cp be the

maximal operator in V associated with the differential expression

<Sy= Z cy(x)D^y.

Suppose that the functions c, satisfy the following conditions.

(a) For \y\ <k- (n/p) - 1, cy £ Np (in particular, if cyEZp).

(b) For k - (n/p) -l£\y\<k - (nip),

cy satisfies the conditions (i) and (ii) o/2.11 (b)

or

cy satisfies the conditions (i) and (ii) of 2.15 (b).

(c) For \y\^k- (n/p),

cy satisfies the conditions (i) and (ii) of 2.11 (a)

or

cy satisfies the conditions (i) and (ii) of 2.15 (a).

Then Cp is (Pp+ Bp)-compact.

Proof. By Lemmas 1.2 and 3.6, Pp + Bp is closed, and, for /£ D(PP + Bp),

(1) WfU \\\PP + Bp}f\\p}.

Then the theorem follows from Lemmas 2.11 and 2.15 and Remark 2.16.

3.8. Remark. The necessary conditions of Lemmas 2.8 and 2.14 in order

that B0p be Wp-bounded are also necessary in order that B0<p be Pp-bounded.

The necessary conditions of Lemmas 2.11 and 2.15 in order that B0p be Wpk-

compact are also necessary in order that B0,P be (Pp + Bp)-compact when Bp

satisfies the conditions of Lemma 3.6.

Proof. The first statement follows immediately from Lemmas 2.8 and 2.14

and the inequality
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(1) ll/M*ni/lk   for/G Ö(PP).

The second half follows from Lemmas 2.11 and 2.15 together with (1)

when Bp = 0; the general case follows from this by Lemmas 1.2 and 3.6.

3.9. Theorem. Let Pp and Cp be defined as in Theorem 3.7. Then

°.(PP+CP) = »(P),

*(Pp+C„) = C9t(P),

h{Pp+Cp)=0   for \E*(P„+Cp).

If the coefficients of P(£) are real, so that P2 is self-adjoint, the additional

conclusion of Theorem 1.4 holds.

Proof. This is an immediate application of Theorems 1.4, 3.5 and 3.7, for

BP = Q.

3.10. Remark. The perturbation in Theorem 3.7 includes, in particular,

a lower-order operator whose coefficients are bounded functions converging

to 0 at oo. This case is treated in [5, Theorem 28]. It also includes bounded

functions in IP, first considered in [15] for P = A, p = 2, n = 3. An investi-

gation of the case p = 2 is found in [3] (cf. 2.12 and 2.15).

Certain singularities are allowed at finite points. We illustrate this in the

case where the unperturbed operator is — A in L2, and the perturbing oper-

ator has powers of r as coefficients. The operator

" d
- A+ £ c,r-1+" j- +c0r-2+<0,     £,>0,  i = 0,l,.•-,»,

satisfies the conditions of 3.9 for n S: 4. For n = 3, the function r~2+'° is to be

replaced by r~3/2+<0.

3.11. Remark. The results of 3.6-3.8 remain valid if the top-order coeffici-

ents of Pp are replaced by uniformly continuous, bounded functions a„(x),

|a| = k, provided that the unperturbed operator is uniformly elliptic. This

follows immediately from the fact that the inequalities 3.6(1), 3.7(1) and

3.8(1) still hold (cf. [5] and [6]).
Concerning a perturbation of Pp by top-order terms we can at least obtain

the following result:

Let a„{x) be continuous functions on R„ converging to 0 at °°, |a| = k.

Suppose that the differential operator,

P(Dl,-..,Dn)+ Z aa(x)D",
\a\-k

is elliptic.

Let Ap be the corresponding maximal operator in V. Then

HAP + Cp) U *+(A„ + Cp) = *(AP) U *+(A„) = C 3i(P).



214 erik balslev [April

Proof. By Theorems 1.4, 3.5 and 3.7 and Remark 3.11 it suffices to prove

that *(AP) U *+(Ap) = *(PP) U *+(PP) = MPp)- Let wR be a function in C"

such that

aR(x) = 0   for j jc| lfi + 1,

o)r(x) = 1   for |x| ^ R + 2.

Then it is easy to show that, if {<bn} is a singular sequence for Pp (or Ap),

then {u*bn) is also a singular sequence for Pp (respectively, Ap). Let PpR

and Ap fi denote the minimal operators in Lp(Rn — S0,R) associated with the

same differential expressions. We can consider PpR and Ap fl as restrictions

of Pp and Ap.

Suppose that X £ *(PP) U *+(PP). Then there exists f(X) such that

X £ *(Pp + B) U *+(Pp + B)   for ||B|| Pp_x < <(X).

It is clear that then also X £ *(PP + B)R\J *+((Pp + P)fi), since (Pp + P)fi

is a closed restriction of Pp + B.

Choose R so large that ||PP,fl||p _x<t(X), where Dp corresponds to the

differential expression

Then X£*(Apß) U*+(AP,R), and, by Lemma 1.6, ApR — X does not have

a singular sequence. Then Ap — X does not have a singular sequence {<£„),

because then {w<bn \ would be a singular sequence for Ap R — X. By Lemma 1.6,

X£*(AP) U*+Up).

Reversing the argument, we show that <i>(Ap) U $+(Ap) C *(PP) U *+(PP)

and the proof is complete.

3.12. Lemma. Let T2 be a differential operator of order 2s in L2 which satisfies

the conditions:

(i) T2 is a closed operator with D(T2) C W2SC\ Wl,M,

(ii) || u || ̂ 2 ^K(\\u\\2+ \\T2u\\2) for u £ D(T2),

(iii) for every R > 0, u £ D(T2),

Let B2 be the maximal operator in L2 associated with the differential expression

%= Z b,(x)D*y.
m < 2s

Suppose that the coefficients bß satisfy the following conditions for some R > 0:

(a) The functions bä\R satisfy the conditions of Lemma 3.6 for k = 2s, p = 2,

|/J| <2s,
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(b) the functions bs(l — \R) satisfy the conditions of Lemma 3.6 for k = s,

(c) bäXR = 0forsg \ß\ Z2$-l.
Then B2 is T2-t-bounded.

Proof. Let B2 = A2R + B2R, as in Definition 2.7.

Then A2Jt is T2-<-bounded by (hi), (a) and Lemmas 2.8 (a2) and (b2),

2.13 (b) and (c), 2.14 (a) and Remark 2.16 for k = 2s, p = 2.

B2R is T2-f-bounded by (ii), (b) and the same lemmas and remark for

k = s, p = 2.

Therefore, B2 is T2-f-bounded.

3.13. Theorem. Let T2 and B2 be defined as in 3.12. Let C2 be the maximal

operator in L2 associated with the differential expression

Sy= £ cy(x)Dy.
W<2»

Suppose that the coefficients cy satisfy the following conditions:

(a) The conditions of Theorem 3.7 for k = 2s, p = 2,

(b) Js\Cy(y) 12dy —»0 as \x\—> oo for 0 ^ | -y | < s — n/ 2 (in particular,

if J?+l\cy(p,ui)\2dp—>0 as r—» oo uniformly for u£S'),
(c) 7SXI ct (y) 121 * - y|2,s"ll,|,"n+ody-^0 as |x| ^°o /or some a < 0, or

/r+1|cT(p-a))|2dp-<0 as  r-* oo   uniformly  for  w G S', s - n/2 ^ |t| < s,

(d) ess supi^rIc.MI ->0 as Ä-> oo, |7| = s>

(e) cy(x) = 0 for \x\ > K for some K, s + 1 ^ |t| < 2s.

Then C2 is T2 + B2-compact.

Proof. By Lemmas 1.2 and 3.12 it suffices to prove that C2 is T2-compact.

Let C2 = A2tR-\- C2iR as in Definition 2.7.

From (a) and 3.12 (iii) it follows, by Lemmas 2.11 and 2.15, Remark 2.16

and Theorem 1.4, that the operators A2 R are T2-compact for 0 < R < oo.

From (a)-(e) and 3.12 (ii) it follows, by Lemmas 2.8 and 2.13 that the

operator C2 is T2-bounded, and that

I C2,« 1^—0 asÄ^oo.

Therefore, C2 is T2-compact.
3.14. Remark. The conditions (i)-(iii) of 3.12 on the operator T2 have been

established in the following papers, mainly in connection with conditions

for essential self-adjointness: [5, Theorem 24], [9, Lemmas 3 and 5], [ll]

and, for n = I, [4].

The conditions are either directly verified or can be established under

obvious additional assumptions.

3.15. Remark. The perturbation results can be generalized to the case
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where Rn is replaced by any open subset of Rn with a sufficiently smooth

boundary, and the differential operators are defined by regular boundary

conditions. A discussion of this more general situation is found in [2].

The results can also be extended to the case p = 1 with certain modifica-

tions.
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Added in proof. There exists a < 0, such that for R 2 & > 0, k 2 1

D(R,k,d) <£ K ■ F(R)      (Definition 2.7).

Hence Lemma 2.13 (a) follows from 2.8 (al). Also 2.13 (b), (i) and (ii) imply

that there exists a < 0, such that b £ Q?.0) hence 2.13 (b) follows from 2.8 (a2).

Likewise 2.15 (a), (i) and (ii) imply 2.11 (a), (i) and (ii), and 2.15 (b), (i) and

(ii) imply 2.11(b), (i) and (ii), hence the sufficiency part of Lemma 2.15

follows from the sufficiency part of Lemma 2.11.

The results of the present work have for p = 2 been improved recently

by P. A. Rejto [ 18] and the author [ 17]. Among other things, it is shown

that Bp is Wp-compact if there exists a < 0, such that b £ Rpa, so that

assumption (ai) in Lemma 2.11 is superfluous. Accordingly, Theorems 3.7,

3.9 and 3.13 hold without the corresponding assumption. It is likely that the

same holds for general p.
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