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I. Let F be a field having prime characteristic p and C be a subfield.

An element x of F is called purely inseparable if x £ C and xpt £ C for

some positive integer e; the least positive integer e such that x"e £ C is

called the exponent of x over C. F is a purely inseparable extension of C

if every element of F not in C is purely inseparable over C. The maximum

of the set of exponents of the purely inseparable elements of F, if it exists,

is called the exponent of F over C.

In 1927 R. Baer studied the relationship between derivations and purely

inseparable extensions having exponent one over the base field. In this

paper a generalization of Baer's results to purely inseparable extensions

having any exponent over the base field is studied.

Of prime importance in this study is the notion due to H. Hasse and

F. K. Schmidt of a higher derivation.

Let A be a ring with an identity.

The sequence

D= {Z)(r)| 0 ^r<m\

of endomorphisms of (A, +), the additive group of A, is called a higher

derivation in A if and only if Dl0) = I, the identity endomorphism of

(A,+) and(2)

(1) D»(xy) - £ j Dir-j)(x)D(j)(y) | 0 g j fS r}.

If k = max{r|£w ^ 0, 0 ^ r < m ( exists, k is called the rank of D (0 is

the zero endomorphism). If m < od, D is called finite. An element x of A

is called a D-constant if and only if D(r)(x) = 0 for all r such that 0 < r

< m. The set of Z)-constants of A is a subring which is closed with respect

to taking multiplicative inverses.

Let F be a purely inseparable extension of C. A subset B of F is called

a sub-basis of F over C if and only if B fl C = 0, F = C(B), and, for any
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(2) Sil I denotes the sum of the elements of the indicated set.

435



436 morris weisfeld [April

finite subset {bu---,bn\ of B, the canonical homomorphism of the tensor

product C(bi) » C(b2)» • • • « C(bn) into F is a monomorphism.

The main result is the following: Let F be a field having prime charac-

teristic p and C be a subfield of F. Then, there exists a nontrivial finite

higher derivation in F having C as its subfield of constants if and only

if F is a purely inseparable extension of C having an exponent and a sub-

basis over C(3).

II. In this section some implications of the existence of a higher deriva-

tion in a field will be drawn.

Let F be a field having prime characteristic p and D = { Dir) | 0 ^ r < m}

be a higher derivation in F. Then, if m < »,

x-^x + D(1'(x) Y+ ••• + D<m_1,(x) ym_I

is a monomorphism of F into the algebra F[Y]/(YmF[Y]) over F, and

if 771 = co,

x^x + D(1)(x)Y + ■■■ + Dir)(x)Yr+ •••

is a monomorphism of F into the algebra of formal power series in the

indeterminate Y over F. Using the fact that the pth power map is an

endomorphism in these rings, one finds:

D{r)(xpl) = (DU)(x))pl   if r = jpf for some

(2)
Dw{xpl) = 0   if r^jp1 for any j.

Theorem 1. Let Fbe a field having prime characteristic p, D = { D(r>\0 g r < m\

be a higher derivation in F, and C be the subfield of D-constants.

Suppose D has finite positive rank k. If x g F and x (JE C, let s be the least

positive integer such that Dis)(x) ^ 0, and e be the least integer such that k/s

< pe. Then, x is purely inseparable over C, and e is the exponent of x over C.

Hence, if q is the least positive integer for which Dlq) j£ 0 and r is the least

integer such that k/q < pr, then F is a purely inseparable extension of C

having exponent r over C. Moreover, D is finite and m — 1 < qpr.

If m — oo, then D does not have finite positive rank, and F does not contain

any purely inseparable elements over C.

Proof. It is claimed that x^g C. By (2) Dir)(x"e) =0 if pe does not divide

r. If r = jp\ where 1 ^ ; < s then, since D(l)(x) = 0 by hypothesis, (2) shows

that D{r){xpe) = 0. Finally, if r = jpe and j ^ s, then jpe > k, and hence,

DUp€), if it is defined, is identically zero. Thus, x^g C, that is, x is purely

inseparable over C. If for some / < e, i''gC, then, since pf^k/s (ac-

cording to the definition of e), D,,p/) is defined. (2) gives Dtsph(xp{)

= (Dis)(x))pf and, on the other  hand,  xp/£C implies  D(spf)(xpf) = 0.

(3) The author thanks G. Hochschild, N. Jacobson, S. MacLane, and W. H. Mills.
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These statements imply that D(s)(x) = 0 contrary to the choice of s.

Hence, the exponent of x over C is precisely e.

Now, suppose that Diqpn is defined. Then, x"r E C implies that Dlqpr)(xpr)

= 0, and (2) gives D^n(x"r) = (D("(x))"r so that Diq){x) = 0 for all x E F.

The latter statement contradicts the choice of q. Hence m must be finite

and m — 1 < qpr.

The first statement of the last paragraph of the theorem is a restatement

of what has been just demonstrated. The final statement follows from the

fact that if any element xE F satisfies xplE C, then, since DUpl) is de-

fined for all    D0,(x) = 0 for all    that is, xEC.

III. Iterative higher derivations are defined, and their relation to purely

inseparable extensions is characterized in this section.

A higher derivation D = { DU) | 0 ^   < m j is called iterative if and only if

(3)    (l IJ ) °{i+J) = for all ij such that 0 ^ i,j, i + j < m.

Suppose F is a field of prime characteristic p. Let D be an iterative

higher derivation in F.

(3) yields, in particular

\P'/

In a field of prime characteristic p, the identity (1 + x)ipl = (1 + xp')J

holds. Hence,

HP1

\P'

is congruent to j modp, and the above may be written jDUpL) = DUj~l)pl>D{pi).

By induction on one finds that (yp') !/(p'!); is congruent to 7! modp,

and that j\Di'p'> = (D{pl))'. Now, one shows by induction on n that if r

= Jo + hP +-1" UP" with 0 Sjk<P, then,

(4) Wij! - i.!^- (fl01) Wl- (D(pi1)4.

The coefficient on the sinister side of (4) is not zero. Thus, if Dipl) = 0,

0 ^ r ^ n, then, D(r) = 0 for all r such that 0 < r < p"+1. If D is not trivial,

if follows that the smallest q > 0 for which Dw ^ 0 has the form p\

Suppose that D also has finite rank k. Let r + 1 be the least integer

such that k < pr+1 and C be the subfield of Z)-constants. Set F0 = F and,

for i = 0, •••,r, define Fi+i to be the set of all xEF such that Dil)(x),

Da){x), ■ ■ •, Dipt)(x) are all equal to zero. Then, each F, is a subfield of

Fi_!, and one has
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According to (2), (D(pl h(x))p = D(p,)(xp). Hence, if xEFh *PG Fi+1 and

Fi has, at most, exponent 1 over Fi+1. On the other hand, according to

Theorem 1, F has at least exponent r-f 1 — s over C. Hence, Fi ^ Fi+U

that is, Fi has exponent one over Fi+i for i = s, ■ • •, r, and F has exponent

r + 1 — s over C.

D(p,) induces a derivation T, on F, with constant field F;+1 where

i = l,        Moreover, for i = s,..-,r. According to (4), (D(p'-1,)p

= p\Dip,) = 0. Therefore, Tf = 0 for i = s, ■■ -,r - 1, and F; has dimension

less than or equal to p over F,+1 for i =* 8, •••,r — 1 [4, p. 218]. The pre-

ceding results show that the dimension cannot be less than p. Hence, F,

has dimension p over F,+1 for i = s, • • -,r — 1.

Since F has exponent r + 1 — s over C, there is an x £ F = F0 such that

G Fs+(, but xp' $ F,+(+1 where * = 0,1, • • ■, r - s. Hence, F = Fr(x),

xpr~sGFr, but xpr~s $ C. Since Fr has exponent 1 over C, one can find

a set A of elements of Fr such that A U {xpr-*} is a sub-basis for Fr. Then

A U {x} is clearly a sub-basis for F.

Baer showed that for any purely inseparable extension having exponent

one over C, there is a derivation taking the value 1 for an arbitrarily chosen

element not in C and having C as its constant subfield.

Suppose that F has a sub-basis of the form (x} U A, where x has exponent

Ol over C and the elements of A have exponent one over C. Then,

B = C(xpC~ 1,A) has exponent one and sub-basis j xpe~1) U A over C. Thus,

there exists a derivation D* in B such that D*(xpC_1) = 1, and C is the

subfield of D*-constants.

Let t be the coset of X in the ring F[X]/X"eF[X] = F(t). Then, ^=0,

and <j>: b—>b + D*(6)ipC 1 is a C-monomorphism of B into F(i). Since

D*(xpe~1) = 1 and (x + t)"1'1 = x"e~l + t"e~\ it is clear that <b can be uniquely

extended to a C-monomorphism of F = J3(x) into F(<) such that </>(x) = x + f.

This monomorphism 0 gives rise to a higher derivation D by writing for

each u G F

4(u) = u + D(1,(u)t + • • • + Dw(u)t* + • • • + /^-»(u)^-1.

It is clear from the definition of <j> that the restrictions of D to B and C(x)

respectively are iterative. Now, one can compute directly that if

DU)DiJ)(ak) = r+.Jy*)Dii+JHak),  k = 1,2,

then,
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Hence, one concludes that D is iterative.

It remains to show that C is the subfield of D-constants. Suppose that

g(xpl) = £{a,x;p'|0 ^; < pf-'\, where ajEC(A) and Ogige is a D-

constant. If i < e — 1, since Dip,)(a) = 0 for all a G C(A), one has

0 = D(pl\g(xp')) = ZajDlpl)(xipl) = Zjajxu'1)pi.

Thus, if p does not divide a, = 0. Hence, g(xp>) = /i(xp,+ 1). Carrying

out this procedure for i = 0, • • •, e — 2 yields the fact that all D-constants

must lie in B. By the definition of D they are D*-constants, and so they

lie in C.

These results can be summed up as follows:

Theorem 2. A purely inseparable extension F of C has a sub-basis of the

form \x)\jA, where the exponent of x over C is arbitrary and the elements

of A have exponent one over C, if and only if there exists a finite iterative

higher derivation in F having C as its subfield of constants.

IV. Two basic theorems on purely inseparable extensions and higher

derivations are proved in this section. Theorem 3 is concerned with the

existence of subfields of a purely inseparable extension which are maximal

with respect to set inclusion among subfields having a sub-basis. The charac-

terizing property is not directly amenable to the use of Zorn's lemma, and

so the proof is not trivial. Sufficient conditions are given; the question of

necessary and sufficient conditions is open. This theorem is applied to the

proof of Theorem 4 which states that the existence of a higher derivation

implies that the purely inseparable extension has to have a sub-basis. In

general, even finite extensions of exponent greater than one are not so benign

as to be a tensor product of simple purely inseparable extensions.

The following notation is used: Ar = jar|aGA}.

Let L be a field having prime characteristic p and M be a subfield of

L. For any subset S of L, A is called a p-free subset of S relative to M if

and only if a" G Af, a G S and a G M(A — \ a j) for any a£A. Note that

A is p-free relative to M if and only if

(i) APQM,
(ii) the monomials of the form af1 • • • aknn with a, E A and 0 ^ k, < p are

linearly independent over M.

Evidently, condition (i) is necessary. If it is satisfied, each element a E A

is a root of a polynomial of the form Xp — m with m E M. Also, Xp — m

is reducible over M(A — (a)) if and only if there is a yEM(A — {a})

such that yp = m = ap, that is, if and only if a = y G M(A — \a\). Hence,

(ii) is true if and only if a(£M(A — ja}) for any a£A.

The p-free subsets of S relative to M which are maximal with respect to
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set inclusion among such sets are called maximal p-free subsets of S relative

to M. An application of Zorn's lemma yields the result that any p-free subset

of S relative to M can be extended to a maximal p-free subset of S relative

to M. By a proof analogous to that of Chevalley (4) for vector spaces, one can

show that all maximal p-free subsets of S relative to M have the same

cardinality.

Now, suppose F is a purely inseparable extension having exponent e over

C. Let Bf1 be a maximal p-free subset of Fpe_1 relative to C. Clearly

p*"1 cF"e~2. Extend Bf"1 to a maximal p-free subset Ae_x of ßpC 2

relative to C. Define Be_x by the conditions: Bpei 2 U Bf 1 = Ae_b

Bf72 n Bf_1 = 0. In general, let Ac_, be an extension of Ae_,-+i to a

maximal p-free subset of FpC_1 1 relative to C, where i = 1, •••,e — 1.

Define ßc_, by the conditions: Bf, 1 (J Ae_,+i = Ac_j- and Bf, ' 1

Pi A,_i+i = 0. Set ß = Be U ß,-i U • • ■ U ßi- It is claimed that ß is a sub-

basis for C(B).

In order to prove the last statement, first well-order B so that if x E B,

and y E Bj with i < /, then y < x. Suppose u is the least element, u E Be

since F has exponent e over C. One has upe_ $ C. Hence, {u} is a sub-

basis for C(u).

Now, let u be an arbitrary element of B, and let Au = {x| x E B and x < u).

Assume that Au is a sub-basis for C(AJ. Suppose that uEßr- Then, upr

= c E C and upr" 1 $ C(Bf" 1 U • • • U Bf+l U (Br - j u ( )pr_1). It is readily

shown that these facts imply that xpr - c is irreducible over C(AU), and

hence, that AUU ("| is a sub-basis for C(Au,u). By induction, B is a sub-

basis for C(B).
It is further claimed that C(B) is maximal with respect to set inclusion

among subfields of F having a sub-basis over C.

Suppose that L is a subfield of F having a sub-basis E over C and con-

taining C(B). Let F, be the subset of E consisting of the elements having

exponent { over C, where i = 1, ■■-,€. Let B be well-ordered as before. It

will be shown that ß is a sub-basis for L, and therefore, L = C(B). The

method consists of generating a new sub-basis for L, starting with replacing

Ee by Be and stepping down in exponent. Each step has the same proof.

Suppose that L has a sub-basis, call it E, again such that Ee = Be, • ■ - ,Er+l

= Br+1. If Br = 0, then Ar = Bf 1 U • • • U Bp+i is a maximal p-free sub-

set of Fpr l relative to C. If Fr were not empty, then since Ef C C,

ArUFpr_1 cannot be a p-free subset of F relative to C. This fact would

contradict the hypothesis that E is a sub-basis. Hence, Br = 0 implies that

Fr = 0. Now, suppose that Br^ 0. Let u be the least element of Br that

(4) S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ. Vol. 27, Amer. Math.

Soc, Providence, R. I., 1942; p. 73.
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does not belong to Er. Set Au = \w\wE B and w < u j. Then, Au contains

Br+i = Er+i, • • ■, Be = Ee.

One can write

U = ^Oi,...^,' ••• v'a«,

where ih, •••,»» G Er, vu---,vn£Au and •<l>...,4, E C(EU ■ ■ -,Er-UAu)-

If all the exponents is were divisible by p, then upr_1 would be in

C(Apr~l), and this statement would contradict the fact that the subset

Au U {u} of B is a sub-basis over C. Hence, there is a nonzero term in the

expression for u in which the exponent is of v, is not divisible by p. It

follows that upr~ (£C(E — \vs}), since AU<ZE and E is a sub-basis.

Hence, u is of degree pr over C(E — \vs\).

One can write

where a„ EC(£- { u,}) and i = 0, • • • ,pr — 1. Since the elements 1, u,

••-,upT— 1 are linearly independent over C(E — \us\), the determinant

formed from the coefficients ay is not zero. Therefore,

VsEC((E-\vs\)U\u}).

Now, it is clear that if E' is the set (E — {vs}) U {«(, then E' is still a

sub-basis for L over C, Ej = E, = By for j > r, and Ej contains all wEB

such that w ^ u. By induction and the maximum properties of B, it follows

that one can replace E with a new sub-basis /£* such that E* = Bj for all

j ^ r. Now, an induction on r shows that B is still a sub-basis for L over

C, i.e., that L = C(ß).

It is clear that B has the following property: every element of F having

exponents over C is either in C(Be\J Be^i U • • • U Bs) or has exponent

less than s over C(Be (J Be-i U • • • U Bs).

The cardinal number of B is the cardinal number of Au a maximal p-

free subset of F relative to C. If L is a subfield of F having a sub-basis

E over C and also maximal with respect to set inclusion, then E* = Ep

U Ef 2 U • • • U Ei, where Ej consists of those elements of a sub-basis E

of L having exponent j over C is readily shown to be a maximal p-free

subset of F relative to C. That E* is p-free is clear since E is a sub-basis.

If E* were not maximal p-free then one could find an xEF, x(£L such

that E*\J \ x\ was p-free. But then L(x) properly contains L and has the

sub-basis E* U j x} which contradicts the maximality of L. Therefore the

cardinality of the sub-basis of any subfield of F maximal among subfields

of F having a sub-basis over C is unique.

These results are summed up in the following theorem.
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Theorem 3. Let F be a purely inseparable extension having exponent e

over C. Then, among the subfields of F having a sub-basis over C there is a

maximal subfield with respect to set inclusion. A sub-basis B of such a maximal

subfield can be chosen so that any element of F having exponent s over C either

belongs to C(JBeUßc-iU ••• U Bs) or has exponent less than s over

C(Be U U • • • U Bs) where Bi consists of the elements of B having ex-

ponent i over C. The cardinal number of a sub-basis of such a maximal sub-

field is unique.

Consider the following purely inseparable extension: C(uuu2, •••) where

uf£C and uf+l = u, for i = 1,2, Every subfield is contained in

some subfield of the increasing sequence,

Thus, the only candidate for maximality is C{uuu2, •••) itself. Given any

two elements x,y £ C(uuu2, • • ■), there is a un such that x = ^a,ui and

y = ^bjui It follows that x and y cannot form a sub-basis because un can

be eliminated and either x or y can be expressed in terms of the other.

Since no single element generates the field, it fails to have the desired

maximal subfield. This example shows that F must have an additional

condition besides pure inseparability over C in order that the conclusion

of Theorem 3 hold.

Theorem 4. Let F be a purely inseparable extension having exponent e over

C and D be a higher derivation in F having C as its subfield of constants. Then

F has a sub-basis over C.

Proof. Suppose that K is a subfield of F maximal among subfields of

F having a sub-basis over C. The maximality of K implies that K con-

tains all elements of F having exponent one over C. Suppose that K con-

tains all elements of F of exponent less than r over C where r > 1. It will

be shown that K contains all elements of exponent r over C. Consequently,

by induction, K would equal F.

Let B be a sub-basis for K over C such that every element of F having

exponent s over C either belongs to C(ßfUße-iU ••• U Bs) or has expo-

nent less than s over C(ßeU-ße-iU ■■■UBS) where B, is the set of ele-

ments of B having exponent i over C.

Suppose that u £ F has exponent r over C and that u K. Let u be a

root of X"r - c. Then, X"r - c is reducible over C{BeU Bt^ U • • ■ U Br),

and one can write

(5) upS = a,vf+■■■+anvpS,

where a, £ C, Vj £ K, s < r, s is the smallest exponent for which a relation
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(5) holds and n is chosen so that this relation has the smallest number of

terms. Clearly, s ^ 1; otherwise, uG K. It is claimed that n > 1; otherwise

u/Vi has exponent s over C and so, because K contains all elements of

exponent s <r over C, u/vx is in K, which puts u in K.

Since K contains all elements of F having exponent one over C, Kp f) C

= FPDC. Hence, if all the a, G F", then they belong to K". But then, by

taking pth roots in (5), one could reduce s by 1 and contradict the mini-

mality of s. Thus, not all the a, are in Fp. Suppose that {a,, •••,a*} is

a maximal p-free subset of \au ■••,an) relative to Kp and that \au ■••,aJ\

is a maximal p-free subset of \au ■■•,ak\ relative to Fp. j < k because if

one expresses a*+1, •••,a„ in terms of au---,ak in (5), one finds that

au---,ak are not p-free relative to Fp. Thus, one can write

(6) oj+i = zZ{ypi-^i---ap\y,llJ^F,o^in<p,n = i,...j\.

Not all the y^.-.L can have exponent one over C because they would then

be in K and violate the p-freedom of au •••,aj+l relative to Kp. Let g be

the least positive integer for which there is a coefficient y,,...,^ such that

Dig)(yi1...i) j*0. According to Theorem 1, D(*p) must be defined. Applying

Digp) to (6) yields

0 = Z(D{'\yn...lj))pa?...ai/.

This relation is not trivial and violates the p-freedom of au ■ --.aj relative

to Fp- Therefore, K must contain all elements of F having exponent r

over C.

Thus, a higher derivation with the requisite properties cannot exist in

F unless F has a sub-basis over C.

V. In this section a theorem on extending higher derivations and an

existence theorem are proved.

While a proof of the existence theorem could be obtained, perhaps, more

directly, it was the author's desire to obtain a direct generalization of the

theorem due to Baer for the case of purely inseparable extensions of ex-

ponent one. Baer made use of the fact that a nonintegrable element of K,

that is, an element that does not belong to the range of the given derivation

in K, could be used to extend the derivation to an extension of K. Con-

sidering the sequence of mappings involved in defining higher derivations,

the question of how to define the nonintegrability of a single element, at

first glance, appears to be almost meaningless. But this is not the case. By

studying the problem of making extensions of higher derivations, a sensible

notion of nonintegrability can be attained.

The notion of nonintegrability for a derivation can be formulated as

follows: If D is a derivation in K, and C is the subfield of D-constants,

then a nonzero element of K is nonintegrable if and only if the equation
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D(x)=Ca, CEC

has a solution in K only when c = 0. This definition will correspond to

nonintegrability of order zero in the general case. In general, let K be a

field of prime characteristic p, D = j D{J)\ 0 g / = m} be a higher deriva-

tion in K, and C be the subfield of D-constants. A nonzero element aEK

is called nonintegrable of order s in K if and only if the following condition

holds: If the set of equations

DUpS)(x) = cjC<>   for all   such that 0 < jps < m,

Dir){x) = 0   for the remaining indices r with 0 < r < m,

where c, E C, has a solution xE K, then c, = 0 for all j such that 0 <jps < m.

The extension theorem can now be stated.

Theorem 5. Let F be a field of prime characteristic p, K be a subfield of

F, D0 = j Don)| 0 ^ n < m j a higher derivation in K, C be the subfield of Do-

constants and pr~' <m < pr, r 5: 1. Let tE F be a root of Xp<? — c, c E C,

e ^ r, where Xp€ — c is irreducible over K. Let aEK be nonintegrable of

order r — e in K.

Then there exists a higher derivation D = j Dln)\ 0 ^ n < m j in K{t) with

the following properties:

(1) D{n)(x) = Dfix) for all xEK and all n, 0 g n < m;

(2) C is the subfield of D-constants;
(3) apS~r+et"e~l is nonintegrable of order s^r — e in K(t).

Proof. The first step consists in defining D so that requirement (1) is

fulfilled. One proceeds by defining a higher derivation D, = { D[m | 0 ^ n < m j

in the polynomial ring K[X] as follows:

£)<">( y) = D(on)(y)   for all y E K and all n, 0 ^ re< m;

Di^iX) = «;

D[J,(X) = 0   for all   0 < > < pr,   ^ pr f.

It is convenient in carrying out the computations to set (*) = 0 if g < h

and to set D[n> formally equal to zero for all integers distinct from 0,1,

2, •••,m — 1. The latter convention must be used with care in order that

no extra relations are imposed. Note that with this convention and the

proviso that 0 ^ k < m, one can write formula (1) as follows:

(7) Dik,(xy) = ZI Dlk-j)(x)Du>(y) \ 0 gj < « )

for any higher derivation D = j D0)| 0 g   < m \.

If Y is a formal variable, X has the representation Dx: X—>X + a YpT e.

For i = 0,
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xkpl^ (x + a y-y = (xpi+ap,Ypr-e+y

= Xhpl + ^ Sjxik'1}piapiYpr~e+' + • • • + a*p'y*p''_f'+,.

Thus

(8) Df'fX*"')
^X(*-«)p'a«>' when „ _ qpr-e+, < m>

0 for the remaining indices n such that 0 < n < m.

Since Xpe — c is irreducible over K, Kit) is isomorphic to

tf[X]/(Xpe-c)K[X].

One finds that XpC - c is a Di-constant, and, consequently, that the ideal

(X9* — c)K[X] is invariant under Dx. Hence Dx induces in the natural way

a higher derivation D = \ Du>\ 0 £j < m } in Kit). Here t corresponds to

the coset of X. Note that formula (8) holds for X replaced by t and A

replaced by D.

From the construction it is clear that assertion (1) of the theorem is valid.

Next one calculates the image of any element of Kit) under D.

Suppose that

(9) gitpl) =£{o*r*i<) =

where at £ if for all k, 0 g i < c, and / is the largest integer such that

/P'<P'.
For 0 < n < m, by applying formulas (7) and (8),

DMiaktkpl) = £|£<"-JV)Ö°VP') I j'2 Oj

= £ I An-wr~c+,)(a)f(*-')p' q ̂  oj .

One can alter the last sum to 0 ^ q ^ / because (/ + l)p'"c+r ^ pr and n < m

g pr and hence the terms that are dropped are zero by the previously

given convention. Thus, for 0 < n < m

Dln}igitp')) = £ {Z { An-^-e+,)(a*)j(*-<)p' 0£«7*/}|0S*£/j.

Since

Q =0   if k<q,

the last sum can be changed to q^k^f. Finally, by setting k - q = h,

one obtains
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D(n)(g(tpl))

= Z { Z (9 +Q k ) { ö("-,pr_e+',(a?+„) r*a«"'| 0gOg/-Aj|0gA^/J

The proof of assertion (2) rests on the following lemma:

Lemma. Let g satisfy conditions (9) and Din>(g(tp')) = 0 for all n, 0 < n

< m. Then g(tp>) - h(tpl+l), where h is a polynomial in tpl+1 of degree less

than pe with coefficients in K.

Using formulas (10) and the hypotheses of the lemma, one obtains the

following sequence of equations:

Din)(af) = 0   (fromfc = /);

D<*(o,-1) + ([)D^-^iaj)a"' - 0   (from Ä-/-1);

(f-w+l\

+ {I) D(""U"'r~e+',(a/)= 0   (from h = f~w);

Din)(a0) + Dln'pr~e+i)(al)a'"+ ■■■ + D^"*H)(af)a^ = 0

(from h = 0);   for all n, 0 < n < m.

The first equation of (11) gives DM(af) = 0 for all re, 0 < n < m. Since

O/GK, these conditions imply that a/EC The second equation of (11)

can be written as follows: D(n,(a/_i) = 0 for all re^pr"e+1, 0<n<m

(either by convention or hypothesis)

D^Haf-J = - (()«/«P<-

Setting

j = p\   s = r-e,   cj= - ([W

and applying the hypothesis on a and the definition of nonintegrability of

order r — e to a, one obtains faf = 0. Hence, either p divides / or af= 0.

In any case, Dln)(af.L) = 0 for all n, 0 < n < m and since af_l G X, a/_i G C
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At this point one proceeds by induction. Suppose that a„ = 0 or p divides

i; for v = f, f — 1, — w + 2 and a,GC for v = f, f — 1, • • • ,/ — w + 1.
It will be shown that af-w+i = 0 or p divides / — w + 1 and that af-w £ C.

Equations (11), the hypotheses of the lemma, the convention, and the in-

ductive hypotheses yield the following equations:

ßw(oy-J = 0  for n * upr~e+i,      u = 1, ■ • .,w, 0 < n < m,

&"r~**i*(*t-m) = -(f~Wu + U)a = 1,....u;.

Setting

/f-w+u\
j = up', c, = - f 1 a/_U)+u and s = r - e,

and applying the hypothesis on a definition of nonintegrability of order

r — e to a yields the following result in particular (u = 1), (/ — w -f 1) <*/_„,+1

= 0. Thus either a/_„,+i = 0or/ — u> + 1 is divisible by p. Moreover, one

has DM(af^w) = 0 for all n, 0 < n < m and af^wEK. Hence a/_w£C.

Thus applying induction, one can state that a,= 0 or p divides v for

all v, 0 g v ̂  /. This fact implies that g(fpl) = A(fp,+1) with h satisfying

the conditions of the lemma.

Assertion (2) is proved by repeated application of the lemma until i

reaches e. In that case git"1) £ K and being a D-constant in K, it must

belong to C. Finally assertion (3) will be proved.

Suppose that x = ]T {aktk\ 0 g k <p'} is a solution of the system of

equations

(12) C; £ C, and all; such that 0 < jp' < m,

D(n)(x) = 0   for all other indices n with 0 < n < m.

Formula (10) with i = 0 and / = p' — 1 can be applied to the sinister

side of (12) and one obtains the following system of equations, for each

; such that 0 <jp" < m,

DW»(a„-j) + (^"^ 1)D^-^(ape+1)a +

D<">(<V_J +      ~~ " + ^D^-^a^U +

...+ (P°~ 1)D{n'{w-l)pr-e)(ape^1)aw-1 = 0

\w-l/

(13)
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whenever re 9*jps or w ^ j, 0 < n < m, 0^u)^p(-l.

Taking w = 1 in the system (13), one gets

Dw(apr_1) = 0,     re * p\ 0 < re < m,

D(p,)(a„_1) = c1apS-r+e=DipS-r+t"r-e)(a^l).

The definition of nonintegrability of order r — e and the hypothesis on

a can be applied to yield cx — 0. One also obtains <v_i £ C. One proceeds

by induction. Suppose that Cu ■ ■ -,C;_i are all zero and ap«_1, • ■ -,ape_;+1

all belong to C. Then equations (13) yield (taking into account s St r — e)

D(^)(apf_J) = D(^-r+epr-e,(ap<-,) = c^V*-^,

(14)      D(upr-e,(<v_,) = - (p    + uype.J+uau, a -1,— j - l,

D{n)(ape_j) = 0   for all other indices re with 0 < re < m.

Applying the hypothesis of the nonintegrability of order r - e in if of a

and the definition of nonintegrability, one finds all dexter sides of (14)

are zero. In particular since c and a are not zero, Cj = 0. Moreover Ope_; £ C.

Applying induction, one obtains that all the c, in equations (12) are zero

and this fact is exactly what is required to prove assertion (3).

Finally an existence theorem is proved.

Theorem 6. Let F be a purely inseparable extension of C having exponent

r and a sub-basis A over C. Then, there exists a higher derivation D

= {DU) \ 0 ^ j < m\, pr_1 < m <pr, in F such that C is the subfield of

D-constants.

Proof. Let q be the least integer such that the set B' of elements of A

having exponent = q is finite. Let B be the complement of B' in A. B is

either empty or infinite. If B is infinite, one can well-order B so that u £ B

has a successor u' whose exponent over C is not less than the exponent

of u over C. Define a higher derivation

Do = { öon) I 0 g re < m \   in C{B) as follows:

D(o\x) = 0   for all x £ C and all re, 0 < re < m,

Do^ ^iu) = uu'   if u £ B has exponent e over C,

D(o\u) = 0   for all other indices re, 0 < re < m.

One finds
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for any u £ B having exponent e over C.

Suppose x £ C(B) is a D0-constant and x (Jj C. Write

* = £(a,u'|0gi<pe},

where u is the largest element of B appearing nontrivially (au •■•,apt_l

independent of u and not all zero) and u has exponent e over C. Then

D^ix) = Z {Z { ̂ ";,pr"C(a() QuVJ'l 0 ̂   gfcj | 0 g i < p j =0.

The coefficients a, are independent of u and u', and u' has exponent not

less than e. Hence the powers u'{u')', 0 ^ i, j ^ pc are linearly independent

over the field C(B — \ u,u')). Setting j = 1 and k = 1 gives ia, = 0 for

all t not divisible by p. j' = p and A = p give (p) a, = 0. Hence a, = 0 for

all i not divisible by p2. And so on. Therefore, a, = 0 for all i ^ 0. Hence,

u appears trivially which is a contradiction. Therefore, if x£;C(B) is a

Do-constant, then x E C.

Next it will be shown that 1 is nonintegrable of order 0 in C(B); that

is, it will be shown that if the equations

DP(x) =cnGC, 0<n<pr

have a solution x £ C(B), then c„ = 0 for all n. It follows from the definition

of D(0n) that D{0n\x) = 0 or D^n,(x) £ C for x E C(B) (one gets zero or one

does not lower degrees of monomials). Therefore, 1 is nonintegrable of

order zero.

To complete the construction, if q > r, set D = D0. Otherwise, let B'

= (Wi, • • •, wm), where r = e, St e2 = • • ■ ̂  em, e, being the exponent of U; over

C. One extends D0 to C(.B U|w;|), then to C(B{J \uu u2\), and so on,

by means of Theorem 5.
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