
VOLTERRA OPERATORS SIMILAR TO

J:f(x)-*j?f(y)dy
BY

J. M. FREEMAN(')

Introduction. In this paper we study perturbations J + P of the Volterra

operator

J:f(x)-+r f(y) dy

on 1/(0,1) (1 ^ r ^ oo). Sufficient conditions—which are in a precise sense

sharp)—will be obtained for the similarity of J and J + P, where P is also a

Volterra operator

P:f(x)^f*p(x,y)f(y) dy.

As an important biproduct of this result it follows immediately that the

lattices of invariant subspaces of certain Volterra operators are isomorphic

to the (known) lattice of invariant subspaces of J(2). But beyond the

result itself and its corollaries, it is interesting to compare the methods

used here with those of [4] where we were concerned with the question of

similarity to the unilateral shift operator.

As in [4], we rewrite the similarity equation J — X'l(J + P)X as a

derivational equation

(1) AX=-PX,

where A is the derivation AX = JX — XJ. Guided now by the analogy

with the classical differential equation dX(t)/dt= — P(t)X(t) in a Banach

algebra (see [8j), we pass to an "integral equation"

(2) X=I-r(PX).

Here T is an integral—yet to be defined—corresponding to the derivation

A:

(3) Ar(Q) = Q

for all Q in a space _/ of "integrable" operators. Any solution X of (2)

will then also solve (1).

The burden of the method lies in the determination of the integral r.
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More precisely, spaces Jzf and of operators and a linear mapping T:

i9 —► S& are defined satisfying (3) and the crucial condition

(4) ys#cy.

Then, given P G X , a solution of (2) will have the form X = I + r(Q)

with Q G     . Substitution in (1) yields the integral equation

(5) Q + PT(Q)=-P

for Q. Conversely, a simple calculation shows that if Q solves (5), then

X= 1+ T(Q) is a solution of (2).

Thus in the abstract setting described above (and to be realized in what

follows for the operator J), the equations (2) and (5) are equivalent. In

[4] attention was focused on an equation of the form (2) whose solution

was expressible as a discrete product integral. Here, instead, we choose

to work with (5). This has the advantage, among others, of avoiding the

artificial adjunction of an identity to certain spaces of kernels(3). By

what amounts to a successive approximations procedure, (5) will be shown

to have a solution Q. Then X = I + r(Q) is a nonsingular solution of (1)

and hence implements the similarity J ~ J + P.

1. Preliminaries. Given Volterra operators K :/(x) -> ß k(x,y)f(y) dy

and L:f(x)—> f» l{x,y)f{y) dy, then (under mild restrictions on the ker-

nels k and /) KL is the Volterra operator

KL:f(x)->f* k*l(x,y)f(y) dy,

where

(6) k * l(x,y) = j k(x, v)Kv,y) dr,.

Instead of dealing with the operators directly we will work with spaces of

kernels and the composition k * I. To begin with, by 'kernel' we will simply

mean a (measurable) complex-valued function k(x,y) on 0^y<x^l.

For a > 0 we define

(7) I * I a. - = ess-sup I k(x, y) (x - y)1" |

(where ess-sup denotes the essential supremum with respect to Lebesgue

measure).

In order to relate ||/2|a,„ and |X||r, the operator norm of

K:f{x)->r k(x,y)f(y) dy

f3) (5) might well be thought of as the Wiener-Hopf form of (2). In this connection, see [lj, [2j.
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on Lr(0,1), we need the following version of a theorem of M. Riesz (see

[3, p. 518]).

Theorem 1.1. Let (S,2,n) be a positive measure space and k a measurable

function on S X S with

ess-sup jJk(x,y) \u (dy) g, M < °o ,

and

ess-sup I \k(x,y)\u (dx) gM.
y     J s

Then K: f(x) —> Jsk(x,y)f(y)u (dy) is a bounded operator on Lr(S,2,n)

(l^rg, °o) with \\K\\r ^ M.

Lemma 1.2. //||*|| „,«.■< do, then K:f(x)-> Jix k(x,y)f(y) dy is a bounded

operator on Lr(0,1) (1 ^ r ^ oo) and

|*|, Si-|*IL.
a

Proof. We have, immediately from (7)

C1 Cx dy
ess-sup I   \k(x,y)\ dy g sup I --
iiiiii   Jo osisijo (x — y)

and

ess-sup I   \k(x,y)\ dx g \\k\\a,„ sup  |-r-—,
ni>Sl   Jy 0S>S1 Jy   (X - y)

and hence, by Theorem 1.1, we get \\K\\rg C||/z|a,„ with C= £ (xa~1)-ldx

= 1/a.

Lemma 1.3. // k and I are kernels for which ||*||„,„, < °° and < °°,

then

\k*i\a+ß,„$B(«,ß)\k\a,4iu„

(where B(a,ß) is the beta function).

Proof. Since |Ä(x,i,)/(,,y)| ^ (P||„,„ |i|A _)/((* - v)1 °(v - y)'-*) es-

sentially, it follows that (essentially),

l*wu.y)UH.,.M,.f;(l.T)4_y)1.,

Since the last integral is B(a,ß), this is equivalent to the asserted in-

equality.
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At this point we remark that all kernels encountered here will have

II k 1 a, » < 00 for some a > 0 and the correspondence mentioned above

between the composition * and composition of operators is valid. Like-

wise associativity holds; (k*l) *m = k* (I* m). We write

kw = k*k*---*k (n-factors).

For example, we have for the iterates of J,

where

«/»:/(*)^ P l""(*,y)/(y) dy,

i""U, y) = ^
(n-D! '

Lemma 1.4. // ||£||„,„ < <*>, then

T(na)

(where T denotes the gamma function).

Proof. This holds for n = 1. Assuming inductively that it holds for ra,

we have, by Lemma 1.3,

|*(B+1' || (n+lK . = I *w * k || tn+ Oo,. ^ B(na, a) \\kw || m„ „ || k || „ .

r(««) r((rt + l)a)

The last equality follows from the identity B(y,a) = r(y)T(a)/T(y + a).

Lemma 1.5. // ||&||„,«, < °°, then the norms of the operators

JT:/(x)^ f* kw(x,y)f(y) dy

satisfy

Thus lim||||^" = 0, i.e., K is a quasi-nilpotent operator on Lr(0,1), and

hence I + \K is nonsingular for every complex number X.

Proof. By Lemma 1.2, ||X"||r g (I/a) ||fc""|U,„. By the preceding lemma,

this in turn is majorized by r(a)n\\k\\na:Jar(na). That lim |JFf"|^" = 0

now follows since lim F(na)1" = oo when a > 0.

Lemma 1.6. // kernels k and I are continuous on0^y<x^l and |*|0,«,,

ll'IL-<°°, then k*l is continuous on 0 ^ y < x ^ 1. // a + ß > 1, then

k*l is continuous on O^y^x^l with k * l(x, x) = 0.



1965] volterra operators 185

Proof. By the assumption, k(x,y) = m(x,y)/(x - y)' " and /(x,y)

= n(x,y)/(x — y)' ", where m and n are continuous and bounded on 0

•gy < *   1. When y < x the variable change >? = y + t(x — y) gives

' mjx.y + t(x - y)\n[y + t(x - y),y\

(1 - t)> "t1-"

Denote the integrand above by /u >l(i)- If 0 ^ ya < xu s 1 and (x,y) con-

verges to (xu,yu), then the number k*l(x,y) converges to k*l(xu,y0), by

the dominated convergence theorem. For /u,v,(f) converges to f^^t)

when 0 < f < 1 and |/U.»W1 ^ const/(1 - t)1 "t1 That fc*/(x,y) con-

verges to 0 as (x,y) converges to (x0, xu) follows also from the above ex-

pression for k*l providing a + ß > 1.

Lemma 1.7. If k(x,y) is continuous onO^i^y^l, Mx.y) = dk(x,y)/dx

and l(x,y) are continuous on 0 s y < 11 1, and ||Ai||„,„, I'L,. < 00 for

some a,ß > 0 fften,

a

— k */(x,y) = *, */(x,y) -f ^(x,x)/(x,y).
dx

Proof. For 0 £y <x £ 1,

i        +-*«J(*,y)J
n

= I -^-t(>j,y) di/+^ I    *U,i?)i(»?,y) di»

+ I -z-Kv,y) dn.

As ft—>0, the first integral converges to k{*l(x,y) by dominated con-

vergence, the second to k(x,x)l(x,y) by continuity of the integrand (recall-

ing that y < x), and the third to 0 since the integrand is integrable, uni-

formly in ft, in an interval about x.

We continue to use the subscript 1 to denote differentiation with respect

to x. From Lemmas 1.6 and 1.7 we have the following

Proposition 1.8. If a is continuous on 0 ^ y < x ^ 1 and \\a\\a< oo

then 1 * a and V'1 *a are continuous on 0 i y s r s 1 and vanish identically

on the diagonal. Moreover, (1'"' * a)x = 1* a and (Vl> *a)u = a. Conversely,

if q is such that

(i) q and <?i are continuous on 0 ^ y £ x iS 1,

(I) (ii) q(x, x) = q,(x, x) = 0 on 0 ^ x ^ 1, and

(iii) qn exists and is continuous onO g y < x ^ 1

aftd I qu I „, „ < oo for some a > 0,
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then Qi = 1 *qn and q = 1U) *gu.

2. The "integral" P. In this section we are concerned with the integration

of the derivational equation AX = Q where Q is a Volterra operator. If

we assume a solution X = r(Q) of the form

r(Q) :f(x)^ j r(o)(x,y)/(y) dy,

then in terms of the kernels, the equation becomes

(8) 1 * r(o) - r(o) * 1 = o.

Let J&a be the class of kernels which are continuous on0^y<x^l and

for which ||a||„ „ < oo. We set

(9) i<=lu'*J¥a,

i e., is the class of kernels of the form q = 1U)* a with a £ -QC It fol-

lows by Lemmas 1.3 and 1.6 that the spaces -Qf„ and jz^, decrease as a

increases and satisfy the relations

The latter is the form taken here by condition (4) of the introduction.

The space can alternately be characterized as the class of kernels

q satisfying the conditions (I) of Proposition 1.8. For q £ l/a, we set

(ii) |fl|„ = «9nlU + lkilUi,~-

By Lemma 1.3 and Proposition 1.8 it follows that

l|g|.+2,~ = ttiu'*gulU2.-= , \n IkiilU*
ct(a + 1)

and

a

and hence all linear combinations of |g||„+2,»,||Qi||«+i,, , and |gii|„,„, which

include ||<7ii||„,. give equivalent norms on Our choice (11) above is

dictated by convenience.

We remark finally that i?^ and J&„ are Banach spaces under their re-

spective norms.

Theorem 2.1. If q(EM, then the kernel r(q) defined by

r(o)(x,y)=——      oU + x-y,f)d£      (0 g y < x g 1)
dxdy Jo

satisfies (8), belongs to ££a and ||r(o) ||0>* g\q\a-
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Proof. Since Oi and qu are continuous on 0|y-)-f ix^l (<>0) the

Leibniz rule for differentiating an integral with parameter can be applied

twice to ,/I? o(£ + x - y,£) d£. This gives (applying either d2/dxdy or

d'/dydx)

r(fl)(x,y) = - J   qu{t + x - y,Q d£ + qAx,y).

From this follows the continuity of r(q) on 0^y<x^l and

r(«)(x,y)s J/d^'^r-. d{ + (x-y)al9i|.+l,-

< ll<?ulU,» + IIgiII= kU
(x-y)1- (x-y)1"'

Hence ||T(q) ||„,„ £\q\„. Since

1 * r(o) (x, y) = £ dn[ ä^y /0 ^ + » "* y' $ d*\

ry i v=i

9i({ + u-y,Ö d^ + o^y)

= ?(x,y) - Jo gi(l + x-y,ö dt

+ f*<iM>& *-«(y,y)
and

r(0).l(x,y)=£d{^J\a + x-,>f) «]

= f 9i({ + xdf

= X 9i(U)df-J[ 9itt + *-y.ö.<<t

we have

1 * r(<?) - r(o) * 1 = q(x,y) - J 9i(|,«) df - c(y,y).

But the last two terms vanish since <7(E '/„ so that (4) is satisfied by T(q).

Remark. For a kernel k of the form k(x,y) = m(y)/m(x), it can be

shown that the equation

k*T(q) - T(q) *k = q

is formally solved by
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w    v     m(y)    d2   f> m^ + x-y)
Hq)(x,y) = —— ——     q(i + x-y,t)-—--d{

m(x) dxdyjo m(£)

provided q(x, x) = q^x, x) = 0. By using this observation, results analogous

to those of the present paper can be obtained for Volterra operators K

with kernels k of the above type.

3. Solution of the operator equation Q + Pr(Q) = — P. For Volterra

operators P and Q with kernels p,gGJ?„ the operator equation (5) is

equivalent to

(12) g + p*r(g) = -p,

i.e., to the integro-differential equation

q(x,y)+J^ PM[^/U 9(* + i»-y,0 -P(*.y).

We show that, given any p G J^,, this equation is uniquely solvable for

<?G Si.
We show in fact that, given p G C/„, the mapping

(13) rp:g-p*r(g)

is quasi-nilpotent on any of the spaces From this follows the existence

of (/+ Tp)1 and hence the unique solvability of

(14) g + p*r(g)=r

for g G given any r G The critical thing, then, is to obtain esti-

mates of the norms of the iterates of the operator rp.

Lemma 3.1. If p G ^ ond gG     dien p*r(g) G-2a+n and

(15) |p*r(fl)|„+„£B(«,0)|p|.|9|„.

Proof. We have

p*r(g) = lw'*Pn * r(g) G iW) * •/„* /,Ciu'* ■/„.„= y„+,

and

(p^gD^p^rto),   and   (p * r(g))u = pu * T{q).

Hence by Lemma 1.3

II (p * r(g))ill„+,+!,- _i B(a + l,ß) ||pJa+1,,|| r(g) ||„,.

and

\\(p*nq))nLu,.^B(a,ß) \\PnL.4 H<?)

Now (15) is obtained by adding the two inequalities and then using the

fact that flUg)^,« = |g|^ and B(y,ß) g B(a,ß) when y ^ a.

Theorem 3.2. //p G 'Sa then Tp:q—>p* r(q) is a bounded quasi-nilpotent
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operator on './,. Hence, given r£ './,, the equation (14) is uniquely solvable

forqE 'S*

Proof. An easy induction argument using Lemma 3.1 and the identity

B(a,ß) = r(a)r(ß)/r(a + ß) yields

.....      ^ T(a)T{ß) .„.

Since the norms |- |, increase with 7, we surely have |lp(o)|^ dominated

by the right-hand side of the above inequality. Since limr(na + ß)i" = 00

the theorem follows.

4. The similarity of J + P and J. On the basis of Theorems 3.2, 2.1,

and Lemma 1.5 and the general considerations of the introduction we

have our main result.

Theorem A. // p G y0 for some a > 0, then the operators J and J + P

where

and

J.f(x)-* f/(y) dy

P:f[x)^r p(x,y)f(y) dy

are similar on L'(0,1) (1 ^ r ^ 00). This similarity J+P^J is imple-

mented by the operator X=I+T(Q), r(Q) being the Volterra operator

with kernel

iL
dxdy Jo

where q G y„ is the unique solution of q -f p * V(q) = — p.

The preceding theorem can be strengthened by a modification of a

procedure used by Volterra-Peres [9j and Kalisch [5j.

Let G: f(x) —> JÜ*g(x,y)f(y) dy be a Volterra operator whose kernel

satisfies

(i) g(x,y) and g^x.y) are continuous on O^y^x^l.

(ii) g(x,x) > 0 and fülg(x,x) dx = c.

(iii) (d/dt)g\t) and (d/dOgiW are continuous on 0 s; < g 1, where gU)

= *(*,*) and =gAt,t).

(iv) gn(x,y) is continuous on 0^y<x^l and ||gn||„,,, < °°, where

0 <o ^ 1.

Corollary B. G is similar to cJ.

This will follow easily from the next lemmas.
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Lemma 4.1. Let G be as above with c = 1, and set n(x) = Jlxg(t,t) dt.

Then Sn:f(x) —>f(n(x)) is a bounded nonsingular operator on Lr(0,1).

Moreover, H = S-1GSn is a Volterra operator whose kernel h satisfies h(x,x)

= 1 and the conditions (i) to (iv) above.

Proof. Since g(t,t) is continuous and > 0 on 0 g t ^ 1, and Jilg(t,t) dt

= 1, both n and m = n 1 give continuously differentiable changes of vari-

able on [0,1]; dn/dx = g(x,x) and dm/dx = g(m(x),m(x))~1. Thus Sn

and S-1 = Sm are bounded operators on Lr(0,1) (bounds ^ || dm/dx || L/r and

Idn/dx||y, respectively). Moreover, since

S-lGSJ(x)
/•mix

Jo
g(m(i),y)/(m(v)) dy ■■

g(ro(x),m(y))

g(m(y),m(y))
/(y) dy,

H = Sn lGSn is a Volterra operator with kernel

g(m(x),m(y))
h(x,y) =

satisfying/i(x,x) = 1. Now

Ai(x,y) =

and

g(m{y),m{y))

gi(m(x),m(y))

g[m(y))g[m(x))

hn(x,y) =
1

g(m(y))

dg
/  / \ g(m(x),m(y)) — (m(x))

gn(m{x),m(y)) dt

g\m{x)Y g[m(x)y

In view of the above expression for hu the continuity of hx and dhjdt

follows from the continuity of gi and dgjdt. Similarly, hn is continuous

on0i£y<xi=lby the assumptions (i)-(iv) on g. To see that hn satisfies

the proper growth condition at the diagonal, hn(x,y) = 0[(x — y)"-1],

notice that in the above expression for hn, only the term containing

gn(m(x), m(y)) can be unbounded near x = y. But by the assumption (iv)

ong„, gn(m(x),m(y)) = 0[(m(x) - m(y))""1] which in turn is 0[(x - y)a"1]

since x - y = n(m(x)) - n(m(y)) = fjfi*g(t, t) dt.

Lemma 4.2. Let H be a Volterra operator whose kernel h satisfies h(x,x) = 1

and (i) to (iv) above and set k(x) = exp^MM) dt. Then Mk: f(x) -^k{x)f(x)

is a bounded nonsingular operator on Lr(0,1). Moreover, Q = Mk~lHMk is a

Volterra operator whose kernel q satisfies (i), (iv) and q(x,x) = 1, Oi(x, x) = 0.

Proof. Since MhyHMh: f(x) - (k(y)/k{x))h(x,y)f(y) dy, Q is a

Volterra operator with kernel g(x,y) = h(x,y) exp[ - fyxh1(.t, t) dt\ so

that g(x, x) = h(x, x) = 1 and
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qi(x,y) = [hi(x,y) - ft,(x,x)ft(x,y)]exp|^- J hAf.t) it

gn(*,y) =[ M*,y) - h(x,y) ̂(x) + ̂ (x^Mx.yjJexp^-J^ MM)

Thus Oi(x, x) = Ai(x,x) - ft1(x,x)ft(x,x) = 0. That the properties (i) and

(iv) hold for q follows from the above expressions for q, qx and qn and the

assumptions (i) to (iv) on ft.

Proof of B. Multiplying by 1/c, G can be normalized so that ßl g(t,t) dt

— 1. Then by the lemmas, G is similar to a Volterra operator Q whose

kernel satisfies o(x,x) = 1, c7j(x,x)=0, and (i) and (iv). But then the

operator P = Q — J has kernel p = q — 1 £ Jz£ and hence by Theorem A,

Q = J + P is similar to J.

5. Applications. The Volterra operator G:f(x) —> JZX g(x,y)f(y) dy is

similar to J if, say,

g(x, y) — eMl _>'    where a is any complex number

or if

(x - y)""1
g(x,y) = 1 + — where0^2.

l (p)

This latter example shows that J is similar to J + J1* when 0 ^ 2 where

e/11 is the fractional integral operator,

J":f(x) - ~ J\x - y)" lf(y) dy.

By a result of Kalisch [ 7), J is not similar to J + J" when ß < 2. Thus

Theorem A is sharp with respect to the allowable algebraic singularity

of pn at the diagonal.
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