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1. Introduction. In [9] L. H. Loomis studies an abstract version of the

von Neumann-Murray dimension theory for rings of operators in Hilbert

space. He takes as context a complete orthocomplemented weakly modular

(oc.w.m.) lattice L together with a dimensional equivalence relation (d.e.r.)

on L, i.e., an equivalence relation on L satisfying axioms A, B, C and D'

[9, p. 4]. (See §2 for this and other definitions and background material.)

Hence it seems of interest, particularly from the lattice theoretic point of

view, to have necessary and sufficient conditions on a complete oc.w.m.

lattice L in order that there exist a d.e.r. on L. The answer to this particu-

lar question is fairly simple, and is given in Theorem 8.2 of this paper:

If L is a complete oc.w.m. lattice, then there exists a d.e.r. on L if and only

if L satisfies the following standard covering condition [2, p. 100]: (p) if

a covers a A b then a V b covers b. Of course dimension theory ordinarily

concentrates on the locally finite case. This case is considered in Theorem

4.24: If L is a complete oc.w.m. lattice, then there exists a locally finite

d.e.r. on L if and only if L is locally modular. Related results of purely

lattice theoretic interest are that if L is a locally modular complete oc.w.m.

lattice then JiG^: [0,x] is modular} is the largest modular ideal in L,

and the relation of being a modular pair is symmetric in L (Theorems 4.17

and 5.4).

A lattice will be called a von Neumann lattice if it is complete, comple-

mented, and modular, and the lattice operations are continuous, i.e., if

axioms I, II, III, IV and V introduced by John von Neumann in [18] are

satisfied. The theory of perspectivity in von Neumann lattices is developed

extensively in [14] and [18], and our results in §§4, 5 and 6 are an applica-

tion and in a certain sense an extension of that theory. In particular we call

attention to the fact that some of the harder results on perspectivity imply

that if L is an oc. von Neumann lattice then perspectivity is a d.e.r. on L.

Some of the facts in [14] were first proved by T. Iwamura in [7], for in-

stance complete additivity of the dimension function. However we will refer

to [14] since it is a complete and unified exposition.

§2 of the paper contains background material and some basic lemmas
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and definitions. §3 then presents an intrinsic decomposition of the general

complete oc.w.m. lattice into four parts. This provides the context for the

rest of the paper, and a more detailed outline is given at the end of §3.

Many of the results in this paper were contained in the author's thesis

(Harvard, 1962). The author is happy to express his gratitude to his thesis

advisor Professor L. H. Loomis for his guidance and encouragement. The

author is also especially indebted to Professor G. Birkhoff and Professor

G. W. Mackey for helpful advice and criticism.

2. Preliminaries. For a lattice which has them, least and greatest elements

will almost always be denoted by 0 and 1. A lattice is orthocomplemented (oc.)

if it has least and greatest elements and an involutory anti-automorphism

x —> x' such that for each x, x' is a complement of x (x V x' = 1, x A *' = 0)

[9, p. 3j. The mapping x —is the orthocomplementation. Elements x, y

of an oc. lattice are orthogonal, written x _L y, if and only if x ^ y'. A set S

in an oc. lattice is orthogonal if and only if x ± y whenever x and y are

distinct elements of S, and an indexed set {*,•:»£/} is orthogonal if i ^j,

i G / and j G I implies x, _L x}.

The least upper bound of a set S will be denoted by sup S and the greatest

lower bound by inf S, when they exist, except that the least upper bound

of an orthogonal set may be denoted by 2S (x = IS means that S is an

orthogonal set with least upper bound x). In the same way, x + y may be

used for x V y if x J_ y, and x - y for x A y' if x =- y (to write x + y will

imply that xly).

An oc. lattice is weakly modular (w.m.) if and only if [9, p. 4j:

(M) x £ y implies y = x + (y - x) (=xV(yAx')).

Lemma 3 of [9j gives several conditions equivalent to weak modularity,

one of which is clearly equivalent, just by orthocomplementation:

(M3) x^y   implies   y = xA(yVx').

For the remainder of this section we restrict our attention to a complete

oc.w.m. lattice L. Then by M3, a ^ x, b> y and a ± b imply that a + b

> x + y.

Lemma 2.1. Let TC L be an orthogonal set, let M = \ J j [0,f j: t G T\, and

define a: AT—[0,2T] by setting a(f) = sup{/(f): «G T) for f in M. Then

a is one-one and preserves arbitrary joins and meets, and if f and g are in M

with g(t) = t - f{t) for te T, then a(g) = (2T) - «(/).

Proof. If S C M, then (sup S) (r) = sup j f(t): f G S} for t G T, so a(sup S)

= supja(/): /GSj since taking joins is completely commutative. Now if

/ and g are in M and g(t) = t - /(f) for t G T, then /(f,) _L g(t2) for any t,

and h in T, so a(f) _L a(g). But «(/Vtf) = 2T, so a(g) = (2T) - a(/),
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by the above-mentioned consequence of weak modularity. By taking ortho-

con: plemeats in [0, DT], it follows that a also preserves arbitrary meets.

To prove (one-one) -ness, let / E M, g G M and / ^ g; then we may suppose,

by symmetry, that there is a t„E T with f(t0) $g(t0). Setting h = f\Jg,

it follows that h{Q > g(t0) and sup\h(t): t0 ̂  t E T\^ sup{g(t):t0^tET\.

Using the same consequence of weak modularity as before, it follows that

«(/) V«(g) = a(h) > a(g), SO «(/) *a(g). Q.E.D.

Remark. This lemma generalizes a special case of the remark on p. 489

of [lj, and is also suggested by the results on p. 73 of [2j. For complete

oc. lattices the statement is equivalent to weak modularity, since by ap-

plying it to the case T = {x, x' \ the property (M3) can be derived. It also

has Lemmas 28 and 29 on p. 536 of [8] and Lemma 5 on p. 6 of [9] as imme-

diate corollaries.

A relation ~ on L will be called a dimensional equivalence relation (d.e.r.)

if it is an equivalence relation and satisfies the following axioms [9, p. 4]:

(A) a ~ 0 implies a = 0.

(B) If b ~ cii + a2 then there exist bx and 62 such that bx ~ au 62~ «2 and

b = b, + fc2.
(C) If {a,:iE^( and \bt:iEl\ are orthogonal, and a^b, for every

i, then 2{a;: iG/}~2{o,: i'E/}.

(D') If a and b are perspective then a ~ 6.

(Elements a and b are perspective if they have a common complement,

i.e., there is a c with oVe = 6 Vc = l, o A c = 6 A c = 0.) If ~ is a d.e.r.

on L then (L, ~) is a dimension lattice. If ~ is a d.e.r. on L an element

xEL is called finite (with respect to ~) if x~y ^ x implies y = x, and

otherwise x is infinite [9, p. 6j. If every nonzero element of L is infinite

then both ~ and (L, ~) are said to be of type III [9, p. 2j. We shall call

both ~ and (L, ~) locally finite if every nonzero element dominates a nonzero

finite element. Let F be the set of all finite elements in a dimension lattice.

Then Lemma 6 [9, p. 7] and Theorem 7 [9, p. 25] together say that F is an

ideal; if (L, ~) is locally finite then it is also true that every element of L is a

join of elements of F. If a < b, and c is such that aVc = d1 = 6Vc and

a A c = do = b A c, then by the corollary to Lemma 41 of [9, p. 24], we

have b — du ~ dx — c ~ a — d0 < b — d0 so b — du is infinite, hence dx is in-

finite and is not in F. Thus xGf implies [0,x] has no five element non-

modular sublattice, and hence is modular. Thus F is modular as a sub-

lattice of L.

If L is any complete oc.w.m. lattice we shall call a sublattice M closed

if it is closed under arbitrary joins and meets: SQM implies supS£Af

and inf S E M. The center of L is the set of all x such that the isomorphism

of [O.xjx [0,x'J into L given by Lemma 2.1 is onto. We refer to [15J for

properties of the center of L; the proofs given there apply to complete

oc.w.m. lattices. In particular, an element is central if and only if it has
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a unique complement, the center is a closed sublattice of L, and (supS) A b

= sup {x A 6: x G S j if S is a subset of the center or if b is in the center.

Thus the center is a complete Boolean algebra, and if T is an orthogonal

subset of the center with sup T = 1, the mapping in Lemma 2.1 is an iso-

morphism onto L. For e in the center of L and x in L, x = (x A e) V (x A e'),

so x A e = 0 implies x ^ e'. Weak modularity shows that this last property

characterizes central elements of L.

If (Lu ~,) and (L2, ~g) are dimension lattices they have a direct product

(L, ~) formed by setting L = X L2 and defining (x^xj ~ (yi.yj to mean

*i~iyi and x2~2y2. As elements of the center are related to lattice de-

compositions, so certain elements of the lattice are related to dimension

lattice decompositions: an element e of a dimension lattice (L, ~) is invari-

ant if x ~y ^ e implies x ^ e [9, Lemma 21, p. 12J. If we define ~c to be

~ restricted to [0,e\, invariance of e is exactly the condition that makes

(|0,ej, ~e) a dimension lattice direct factor of (L, ~) [9, Theorem 2, p. 13J.

Also the set of invariant elements is a closed Boolean subalgebra of the

center of L [9, Theorem 2j. Every dimension lattice is uniquely a direct

product of a locally finite dimension lattice and a type III dimension lattice

[9, pp. 2; 19].
If E is any closed Boolean subalgebra of a complete oc.w.m. lattice L,

and x£L write |x| for the least element of E greater than or equal to x;

I x I will be called the .E-cover, or the central cover in case E is the center of

L. (See [18, p. 242] or [9, p. 13J.) If E is the set of invariant elements of

a dimension lattice, Loomis calls |x| the hull of x [9, p. 13J. Notice that

for TcL, I sup T\ — supj |f|:f G T\. Another useful fact is contained in

the following lemma.

Lemma 2.2. If x and y are perspective elements of L, then \ x\ = |y|.

Proof. (The proof for von Neumann lattices given on p. 243 of [18]

applies, but we shall give a slight variation which uses the orthocomple-

mentation.) Let 2 be a common complement of x and y. Then x A 2 = 0

and 2 ^ |z'|', so x A\z'\' = 0; hence x^\z'\ and |x| ^ |z'|. But xf l\z'

= 0, so Iz' I ^ |x| in the same way. Thus |x| = |z'|, and the same proof

shows that |y| = |z'|, so |x| = |y|. Q.E.D.

Lemma 2.3. // T is a subset of L such that distinct elements of T have

orthogonal E-covers, then the natural isomorphism of \ \ {[0,11 \ J: t G T j onto

[0,\ZT\\ takes MlO.fJ: <GTj onto [0,lT\.

Proof. Clear.

Let L be a complete oc.w.m. lattice and E a closed subalgebra of the

center. Some of the interaction between E and L can be studied via the

functions \a: [0, |a| ]H £—> [0,a], defined for a G e ^ |a|, eG-E by

\a(e) = a A e.
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Lemma 2.4. For any a EL, K is a Boolean algebra isomorphism of [0,\a\]

(~)E into the center of [0,a].

Proof. By weak modularity, \af\e\=e, so X„ is one-one. Clearly

K(ei A e2) = X^eJ A KieJ, and X,,^ V ej = \a(ei) V Xa(e2) because ex and

e2 are in the center of L. Thus if e = | a | is in E, then X„( | a | — c) is a comple-

ment of Xa(e) in [0,a]. Furthermore, if eg |a| is in E and x ^ a, then

x A Xa(e) = x f\a f\e = x t\e. Hence x A X0(e) = 0 implies x = e', so x = |a|

- e and x = Xa( | a | - e). Thus Xa( | a | - e) is the only complement of Xa(e)

in [0,a]. Q.E.D.
Thus if x is an atom in L, then | x| is an atom in E.

Definition 2.5. An element a £ L is called multiplicity free with respect

to £ if X„ takes [0,|a| ]n£ onto [0,a].

If £ is the center of L, the qualifying phrase "with respect to E" may be

omitted. In a dimension lattice (L, ~) an element is called simple relative

to ~ if and only if it is multiplicity free with respect to the Boolean algebra

of invariant elements [9, p. 2]. The terminology we use is borrowed from

the theory of group representations [ll]. The following lemma helps to

clarify the nature of multiplicity free elements.

Lemma 2.6. The following conditions are equivalent:

(i) a is multiplicity free with respect to E,

(ii) the mapping x—>|x| from [0,a] into [0, |a| ] Pi -E is one-one,

(iii) if x = a, y = a and x _L y, then |x| A |y| =0.

Proof. Take X„ as in Definition 2.5 and let \pa be the mapping x—>|x| of

condition (ii). Then a is multiplicity free if and only if Xa o \f/a is the identity

on [0,o]. But ^0oXa is always the identity on [0, |a| ]C\E, so Xao^0 is the

identity if and only if \pa is one-one. Thus (i) and (ii) are equivalent.

If ^a is one-one and x,y are elements of [0,a] with e= |x| A |y| 5^0,

then x A e = y A e because | x A e | = e= \y Ae\. Hence | x | A | y \ ^0 im-

plies x X. y. Thus (iii) follows from (ii). On the other hand suppose (iii)

holds and let |x| = +tt(x) = 4<a(y) = |y|. Then |xVy| = |x| V|y| = |x|. Set

2= (x Vy) - x.Then|z| ^ |x Vy| = |x|, and x _L z, so \z\ = \x\ A\z\ =0.

Hence 2 = 0, so x = y. Similarly y ^ x, so x = y. Thus \pa is one-one, and

(hi) implies (ii). Q.E.D.
Another helpful fact is this:

Lemma 2.7. Let L be a complete oc.w.m. lattice and let Ex and E2 be closed

Boolean subalgebras of the center of L with Ex c E2. If a is multiplicity free

with respect to Ex then a is multiplicity free with respect to E2.

Proof. This is obvious from Definition 2.5.

3. A decomposition. We begin with a definition. The term "join-dense"

was suggested by M. D. Maclaren, and the motivation for studying local
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modularity arises from the fact that locally finite dimension lattices are

locally modular as lattices (§2).

Definition 3.1. Let L be a complete oc.w.m. lattice. A set X C L will

be called join-dense in L if and only if a E L implies a = sup(X f) [0,a]).

An ideal of L will be called modular if it is modular as a sublattice of L. Call

L locally modular if and only if L has a join-dense modular ideal.

Now let L be an arbitrary complete oc.w.m. lattice with center E. Let

ex = sup Si where Si is maximal among the orthogonal subsets of {e E E: [0,e]

is locally modular}, and set Lx = [0,ej. If whenever eESi we have chosen

Meto be a join-dense modular ideal in [0,e], then the natural isomorphism

°f IT I [0, d]: e E Si } onto Lx takes Yi {Me: e E Sx} onto a join-dence modu-

lar ideal in Lx. Hence Lx is locally modular. The maximality of Sx implies

that Lx is the largest locally modular direct summand of L. Let e2 = supS2,

where S2 is maximal among the orthogonal subsets of j e E E: e ± ex and

[0,e] contains no nonzero multiplicity free elements). Then L2= [0,e2] is

the largest direct summand of L with these two properties: (a) L2 has no

nonzero locally modular direct summand, (b) L2 contains no nonzero mul-

tiplicity free elements. A third application of Zorn's Lemma enables us to

take a largest atom-free direct summand of [0, (ex V e2)'], call it L3 = [0,e3].

Then every nonzero central element of L3 dominates a nonzero multiplicity

free element, by choice of L2, so there is a set X of multiplicity free ele-

ments of L3 such that xx ?± x2 in X implies \ xx\ _L | x2|, and 2 { | x\: x E X}

= e3. Then ZX is a multiplicity free element with central cover e3. In fact,

e3 is the largest element of the set of central elements e such that e is the

central cover of a multiplicity free element and [0,e] has no nonzero locally

modular direct summand. Lastly, L42 [0, (ex V e2 V e3)'] has no nonzero

locally modular direct summand and every nonzero central element of L4

dominates an atom; in fact L4 is the largest such direct summand of L.

In the rest of the paper, §4 deals with Lx, showing that a "nice" dimension

theory is implicit in the local modularity, §5 shows that Lx is semi-modular,

§6 gives sufficient conditions that L = Lx and necessary and sufficient condi-

tions that L4 = 10 j and L3 X L4 = {0}, §7 shows that L2 X L3 is essentially

type III, §8 returns to the general L, and §9 gives examples of L3 ^ {0}

and L4 ̂  |[ 0}.

4. The locally modular case. Throughout this section, L will denote a

complete oc.w.m. lattice which is locally modular, and E will denote the

center of L. The union of a chain of modular ideals is a modular ideal, and

a set containing a join-dense set is join-dense, so by Zorn's Lemma there

is an ideal J in L which is join-dense and which is maximal in the collection

of modular ideals of L. 11 will be seen in Theorem 4.18 that J = \ a E L: [0, a]

is modular}, and hence that L has only one such ideal. However we have

no short proof of this fact and hence must proceed with an apparently

arbitrary choice of J.
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TV main goal of this section is to define a locally finite d.e.r. ~ on L

so thai every element of E is invariant (see §2). This will be accomplished

as follows: ~ can be defined on J using the modularity of J and a "dimen-

sion function" d on J can be associated with ~. Then extend d to a func-

tion d on L and define a ~ b to mean d(a) = d(b). The appropriate prop-

erties of d then show that ~ is as desired.

If ag J, then [0,a] is modular, so [0,a] is a von Neumann lattice, by

a theorem of I. Kaplansky [8]. Hence in dealing with elements of J the

results of [14] and [18] are available. For a and b in J define a ~ 6 to mean

a and 6 are perspective in [0,a V b]. By Theorem 3.1 on p. 17 of [18] a ~ 6

if and only if x £ J and x 2: a V i implies a and 6 are perspective in [0, x],

and a ~ 6 if and only if there is an x £ J such that x = a V o and a is

perspective in b in [0,x]. From this it follows easily that ~ is an equivalence

relation, because perspectivity is an equivalence relation on any von Neumann

lattice [18, p. 265].

Definition 4.1. Elements a and 6 of J are related, written apb, if there

exist x and y with 0 < x ^ a, 0 < y :£ 6, and x ~ y. Otherwise a and b are

unrelated, written abb.

For a and b in J, write a < b to mean that there is an = 6 with a ~ au

not excluding the possibility that a ~ 6. Then aö6 if and only if x ^ a and

x -< 6 imply x = 0. For a £ J set Ji(a) = {x £ J: 0<y^x implies ypa \

and e/2(a) = jx£e/: xöa). For any x and y in L, y is a complement of

both (x Vy) — y and x - (x Ay) in [0,x Vy] (see [9, p. 24]), so if x and

y are in J and x is not orthogonal to y, then xpy. Suppose z ~ x and xpa,

say 0 < Xi i£ x and X! ~ yi with Q<yv^a, and let c = x\Jz\/a. Then

~ and perspectivity are the same on [0,c], and [0,c] is a von Neumann

lattice so the perspectivity mapping of [0,xj onto [0,2] takes xx into an

element zx = z with Zi~*j [18, pp. 17-19]. Thus Zi~yl, and zpa. Hence

x£«/i(a) and y£e/2(a) implies x±y. Setting e^supJ^a) and e2

= supe/2(a), we have e! _L c2.

Lemma 4.2. (See Theorem 3 on p. 13 of [9]) et = |a|, e2 = |a|'.

Proof. If x £ J and x A e2 = 0, then 0 < y = x implies ypa, so x £ Ji(a).

Hence if x£L and x A e2 = 0, then x is a join of elements of Ji(a), so

x ^ ex. Thus ej is the only complement of e2, ey and e2 are in E, and ex + e2 = 1.

Since a = elf this implies that |a| = ev If x£ Ji(a), then

x = supjy: y = x and y <a\,

so x ^ j a I, sincey = |y| ^ |a| whenever y -< a (Lemma 2.2). Hence e: = |a|.

Theorem 4.3. // a£J, i/ie function e-^e A a ta^es [0, |a|Jn£ isomor-

phically onto the center of [0,a].

Proof. It is an isomorphism into the center of [0,a], by Lemma 2.4, so
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suppose c is in the center of [0,a]. Then y ^ a and y <c implies y ^ c, so

J,(c) Pi [0,o] = [0,cj and J2(c) Pi [0,a] = [0,a - cj. Set 6=|c| A a. Then

6 ̂  c and &E J. Now 6 ^ |c|, so 4G</i(c); but also 6 g o, so 6 S c. Q.E.D.

To define a dimension function on J, we shall use an element of J with

central cover 1 as a standard to which we compare the other elements

(see [9, p. 20], [15, p. 228]), otherwise the resulting equivalence relation

would not be locally finite. The next theorem shows that such an element

exists and we then proceed with the construction of the dimension function.

For a £ L it will be convenient to write J0(a) for J f) [0,a].

Theorem 4.4. There is an element u£J with \u\ = 1.

Proof. Let T be maximal among the orthogonal subsets of J with the

property that tx ̂  t2 in T implies \ tx\ L\t2\. Then 2{ \ t\: t £ T \ = 1. Let

a be the  natural isomorphism  of J| { [0, \t\ ]: t £ T}  onto L. Then

{e/0( I * I)' tG.T\) is a modular ideal in L containing J and hence

equals J. Hence, if u = IT then uGJ and |u| =1.

Let S denote the Stone space of E, i.e., the set of all maximal dual ideals

of E. For e££E, a(e) will denote the set (s£.S: e£sj and <b(e) will de-

note the characteristic function of a(e). Then S is given the weakest topology

in which all (p{e) are continuous. The result is that a is an isomorphism of

E onto the Boolean algebra of all open-and-closed subsets of S. We shall

write C*(S) for the set of continuous extended real-valued functions on

S and C*(S) for the set of elements of C*(S) which take on the values

+ 00 and — <x> at most on a nowhere dense set. Then C*(S)+ (C*(S)^)

will denote the set of positive valued elements of C*(S) (C*(S)). The

necessary facts about this situation are found in [4], [16] and [17]. In

particular, S is compact and Hausdorff, and the closure of any open set

is open since E is complete. Hence C*(S) and C*(S) + are complete lattices

while C*(S) and C*(S) r are conditionally complete. Pointwise function

operations make sense in C*(S)+ if we agree that always a -f (4- <x>) = + a>

+ a= + co, and a • (+ 00) = + a> . (a) = + « if a ^ 0, but 0-(+°°)

= (4- 00).0 = 0. To make C*(S) a vector lattice we need slightly different

operations; to define them one needs to know another fact: if h is real-

valued and continuous on a residual set R in S then there is exactly one

A* in C*(S) whose restriction to R is h. (A set is residual if and only if its

complement is first category, countable intersections of residual sets are

residual, and open dense sets are residual.) Now if / and g are in C*(S),

let U and V be open dense sets on which / and g are respectively finite-

valued. Then U f) V is open and dense, and f + g and fg are obtained by

taking the unique elements of C*(S) which agree with the pointwise sum

and product on U f) V. If the zeros of / are also nowhere dense, the func-

tion l/f is similarly defined. We now have the necessary notation and

background to study dimension functions.
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THEOREM 4.5. To each element u of J with \u\ = 1 there is associated,

uniquely, a function d: J—>C*(S) + with the following properties:

(i) d{u) = 1,

(ii) for x£ J, the support of d(x) is a(|x|),

(iii) for x and y in J, x~y if and only if d(x) = d(y),

(iv) for iE(/ and e£.E, d(e A x) = <p(e)d(x),

(v) ifxEJand yEJ, d(x V y) + d(x A y) = d(x) +d(y),
(vi) if \Xi'. iE/} is an increasing directed set with least upper bound

igj, then d(Xi) j d(x).

Proof. Let a£J with a = u. Then by Theorem 4.4 the center of [0,a]

is naturally isomorphic to E, so the dimension function Da induced by

perspectivity on |0,a] may be assumed to take values in C*(«S)+ [14, p. Ill J.

Applying Satz 1.4, Hilfssatz 1.4 and Hilfssatz 1.5 on pp. 112-115 of [14],

we see that Da satisfies (ii)-(vi) on [0, a J. Hence the set of zeros of Da{u)

is nowhere dense, and the equation da(x) = (1 /Da(u))Da(x) defines a func-

tion da: [0,a]^C*(S)+ with da{u) = 1. Now (ii)-(v) clearly hold for da

on [0,a]. To verify (vi), recall that D0(x,) } D(x) in the lattice C*(S) +

implies that D„(x,;s) ] Da(x;s) for a residual set of s E S and hence

(l/Da(u))(s)Da(xi;s) I (l/Da(u))(s)Da(x;s) for a (perhaps smaller) residual

set of sES; thus (l/Da(u))D{Xi) ] (l/Da(u))D(x). If d' is another func-

tion [0,a]^C*(S)+satisfying (i)-(vi) then setting D'{x) = (l/d'(a))d'{x)

defines a function satisfying (ii)-(vi) for which D'(a) — 1. By Satz 3.3 on

p. 129 of [14], D' = Da. Since (l/d(o)) = D'(u) = Da(u), it follows that

d' = da. (Cf. the corollary of Theorem 5.3 in [15].) Now define d: C*(S) +

by taking d(x) = da(x) for any a = u V x; the above argument shows that

da and db agree on [0,a A b], so d is well-defined. Properties (i)-(vi) follow

from properties (i)-(vi) for the da, and the uniqueness of d follows from the

uniqueness of each da. Q.E.D.

Fix an arbitrary kE</ with |u| = 1, and let d: J—>C*(S)+ be given by

the theorem. Extend d to a function from L to C*(S)+ by defining

d{a) = supjd{x): xEWI,

the supremum being taken in C*(S)+. If d is to maintain property (vi)

on L, this equation must hold. This function d will be called the dimension

function on L determined by u. We now investigate the properties of d. Let

us write d(a;s) for the value of d{a) at s.

Lemma 4.6. If aEL and eEE, then d{e f\a) = <j>(e)d(a).

Proof. This follows immediately from Theorem 4.5 (iv) once one notices

thatJ0(e Aa) = je Ax: xEMa)\.

Lemma 4.7. If aEL and tut2,--- are all in Ju(a) and if d(tn) = d(a)

- 1/n for n = 1,2,      then a = sup|t„: n = 1 j.
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Proof. First notice that d(a) G C*(S), i.e., d(a) is finite-valued on an

open everywhere dense set. Set x = supjf„: re = 1,2, •••[; then x ^ a. If

a > x, then there is a nonzero y G Ju(a — *) • Thus there must be an s G S

and an integer k ^ 1 such that 1/& < d(y;s) < 4- m and d(a;s) < + «>.

But d(a;s) £ d(tk + y;s) = d(tk;s) + d(y;s) = d(a;s) - 1/k 4- d(y;s)

>d(a;s). This contradiction proves x = a. Q.E.D.

The following piecing-together process is useful.

Definition 4.8. Let {x,: i G / } be an indexed set in L. An element y£L

will be called a mosaic of the set or of the x,'s if there are an orthogonal

subset T of £ and a function u: T—*I such that 2T= 1 and

y= 2je AxM(e): e£T(.

The definition of course applies with only a minor change to nonindexed

sets. Also the given set is always contained in the set of its mosaics. Taking

an analogy with measurable functions from a sequence of functions con-

verging in measure, one can construct a sequence (of mosaics of the given

sequence) which converges uniformly a.e. This is the type of change in

behavior we shall make by taking mosaics.

Lemma 4.9. Let j x,: i G I \ be directed upward in L and let

/= sup{c/(x,): i G /},

in C*(S)+. Define a sequence fuf2, ■■■ in C*(S) by setting fn(s) = f(s) — 1/n

if s G F, where F is the closure of the set where f is finite, and fn(s) = n if

sGS — F. Then there is an increasing sequence of mosaics of the x/s, say

yi,y& • • -i such that fn ^ d(yn) f£ / for each integer n = 1,2, • • •.

Proof. The set of mosaics is also directed upward and d(y) ^ / for any

mosaic y, so it suffices to find a mosaic y„ with /„ g d(yn).

Let T be the set of elements e££ for which there is an i G / such that

d(x,) ^ /„ on a(e), and let T0 be a maximal orthogonal subset of T. The

maximality of T„ implies 2T0 = 1, since the set of s G «S for which f(s)

= sup j d(x,; s): i G / }, /n(s) < 4 00, and /„(s) + 1/n. ^ /(s), is a residual set.

By the choice of Tu, there is a function Tu^> I such that d(x„te)) ^ fn

on ff(e) whenever e G Tü. Let yn be the mosaic constructed using T0 and

ß. Then for e G T0, e A y„ = e A *„(«) so d(y^ ^ A on cr(e). Hence d(yn) ^ /„.

Corollary 4.10. Let a^L and suppose d(a) is in C*(S). TVien. there is

an increasing sequence tut2, •■■ in J^a) such that for each n we have d{tn)

S: d(a) — 1/n and hence also such that a = sup{f„: n = 1,2, •••}.

Proof. The hypotheses of the lemma are satisfied by Jo(a) and f = d(a),

and we have /„ = d(a) — 1/n in this case. The set of mosaics of J0(a) is

just Ju(o), as in the proof of Theorem 4.4. The proof is completed by ap-

plying Lemma 4.9 and Lemma 4.7 in that order. Q.E.D.
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Now we begin the attack on the properties of d needed to prove the

dimension lattice axioms. Notice that we are proving from the lattice struc-

ture alone the properties which hold for a dimension function on an axio-

matic dimension lattice (see |9j and [15J). In connection with the next

lemma, note that x' is a complement of y if and only if y' is a complement

of x.

Lemma 4.11. // x and y are in J and y' is a complement of x then x ~y.

Proof. Set yi = (x Vy) Ay' = y' — (x' Ay'), and let a be the isomor-

phism of [0, x Vyjx [0,x' Ay'J into L as in Lemma 2.1. Then x Ayi ^ x

Ay' = 0 since y, g y, and a(yhx' Ay') = y' and a(x,0) = x, so

1 = x Vy'

= «(xVy„0 V(x' Ay'))

= a(rVy„x'A/);

but a(x Vy.x' Ay') = 1, and a is one-one, so x Vyi = x Vy. Thus yt is

a complement of both x and y in [0,x VyJ.

Lemma 4.12. // x £ J, y £ L, and x' is a complement of y, then d(x) = d(y).

Proof. Let t £ Ju(y) and set r = (t V x') A x. Then r A x' = 0 = t A x'

because r = x and i = y, and r V x' = t V x' by weak modularity. In

[0,( Vx'J, x' is the orthocomplement of r, and applying Lemma 2.1 to

[0,f V x'J X [0, (t V x')'J we see that r' = x' V (t V x')' is a complement of

Since r and i are in J, by Lemma 4.11 we conclude r ~ t, so d(r) = d(<).

Thus d(t) = d(x), and hence d(y) ^d(x), so d(y)£C*(S). By Corollary

4.10, there is an increasing sequence fi,f2> ••• in J such that d(tn) ] d(y)

and tn I y. For each n, set r„ = x A (x' V L). Then rur2, ■■■ is an increasing

sequence. Now t'n A x j 0 because f„ V x' | y V x' = 1. Taking orthocom-

plements in [0,xj, we get r„ j x. Hence d(rn) ] d(x), because [0,xj is a

von Neumann lattice. But cf(r„) = d(tn) just as d(r) = d(t) above, and

d(tn) I d(y), so d(y) =d(x).

Theorem 4.13. //a arcd 6 are in L, then d(a — (a A 6)) = d((a V o) — 6).

Proof. Let x £ J0(a — (a /\ b)) and set y = (6 V x) — 6. Restricting to

[0,6 V xj, x and y satisfy the hypotheses of Lemma 4.12, so d(x) = d{y)

^ d((a V b) - b). Thus d(a - (a A b)) ^ d((a V 6) - 6). Applying this
to b' and a', we see that d(b' - (ft'A a')) = d((6' VV) - a'). But 6'

- (b'A a') = (a V b) - ft and (6' VV) - a' » a - (a A 6),sod(a - (a A b))

^d((a\/ b) - b).

Lemma 4.14. // a and b are in L and a ± b, then d(a + b) = d(a) + d(b).

Proof. Clearly d(a + 6) ^ d(o) +d(6). To prove the reverse inequality,
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we first suppose a £ J. If t £ </n(o + b), then ((a V 0 - a) E e/o(o), so d(f)

£ d(a V f) = d(a) + d((a V f) - a) £ d(a) + d(b). Thus d(a + b) ^ d{a)
+ d(6) for a £ J, so d(a + 6) = d(a) + d(6) for a£J.

Consider now the general case. Let x E J»{a + b). By the first case, and

since (a V x) — a ^ 6, we have

d(x) ^ d(a V x)

^ d(x) + d((a V x) - x)

= d(x - (a A x)) + d(a A x) + d((a V x) - x)

= d((a V x) - a) + d(a A x) 4- d(a - (a A x))

= d((a V x) - a) + d(a)

^ d(6) + d(a).

Hence d(a + b) ^ d(a) + d(6) in general. Q.E.D.

The next theorem is needed to prove axiom D' and is also essential in

the proofs of several facts about J.

Theorem 4.15. If a and b are in L, then d(a V b) + d(a Ab) = d(a) + d(b).

Proof. Apply Theorem 4.13 and then Lemma 4.14.

Now let us prove the above-mentioned facts about J.

Theorem 4.16. The ideal J is the set of all a£L for which d(a) E C*(S).

If a E«/ and b E L, and if a and b have a common complement, then igj

and a ~ b.

Proof. The set of all i£L with d(x) E C*(S)+ is an ideal by Theorem

4.15. This ideal has a positive valuation into C*(S), namely d, and can be

proved to be modular by the argument used to prove that a lattice with

a positive real-valued valuation must be modular [2, p. 76]. This ideal

contains J and hence is equal to J. The rest now follows from Lemma 4.12

and Theorem 4.5.

Now we can prove that J is unique.

Theorem 4.17. The ideal J is the set of all a^L such that [0,a] is modular.

Thus J is the largest modular ideal in L, and hence is unique.

Proof. We need only prove that a £ J if [0,a] is modular, so suppose

[0,a] is modular. Then as in Theorem 4.4, we can choose first a b £ J0(a)

with 161 = j a I, and then a c£ J„(|6|') with |c| = Then 6 + c£ J
and 16 + c I = 1, so 6 + c may be taken as the element u used in constructing

the "dimension function" d. The center of [0,6] is naturally isomorphic to

the center of [0,a\ and to [0, |6| jn£, both by Theorem 4.3. Thus a(|a|)

is naturally identified with the Stone space of the center of [0,aj, and the

restriction of d to [0,a] may be regarded as having values in C*(<r(|a|
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Let d, be the dimension function induced by perspectivity on [0, aJ such

that di(b) = 1. That this exists is seen as in the proof of Theorem 4.5, and

as in the proof of Theorem 4.5, dx and d must agree on [0,y] whenever

bfkyEJvifl). Furthermore, if x, ] x = a then d^Xj) j dx(x), so dx(a)

= supjd^x): xE</0(a)j = supjd(x): x£Jn(o)j = d(a). Thus d(a)

EC AS), so aEJ-
These theorems will now be used to prove further properties of d. The

first of these would follow immediately from Theorem 4.15 and d(0) = 0,

if d(l) were in CAS).

Theorem 4.18. // elements a and b in L have a common complement,

then d(a) = d(b).

Proof. For every eE E, a A e and b A e have a common complement.

Let ei be the largest element of E such that a AexEJ- By Theorem 4.16,

ex is also the largest element of E such that bl\exE<3, and dfaA^i)

= d(b Aex). If d(a) took a finite value on a(l — ex) then d(a) would be

bounded on a nonempty a(e) (eEE) not contained in a{ex). By Theorem

4.16, this contradicts the choice of eu so d(o) is identically + °° on <r(l — ex).

Similarly d(6) is identically + oo on <r(l — ex).

Lemma 4.19. If aEL and d(a) = + oo, then there is an orthogonal se-

quence Xx,X2l ••• m e/o(o) sucA ^af- cacA d(xn) _ 1.

Proof. Let T be a maximal orthogonal subset of \xEJu(a): d(x) ä 1(.

It will suffice to prove that T is infinite. If T were finite we would have

x = lTEJo(a), so d(x) E C*(S) +. Now d(a) = d(x) + d(o - x) by Lemma

4.14, so d(a — x) = + oo. By Lemma 4.10 there is a yEJoia — x) with

d(y) = 1, and thus Tujy) contradicts the maximality of T. Hence T

is infinite.

Theorem 4.20. Suppose a and b are in L with d(a) = d(b) and b = bx + b2.

Then a = ax + a2 with d(ax) = d(bx) and d(a2) = d(62).

Proof. Let ex be the largest element of E for which bx A exE J (ei is

the largest element of E for which d(bx A E C*(S)), and similarly choose

e2for b2. By restricting to [0,ei/\e2\, [0,ex Ac2J, [0, e2 A J and [0,e[ /\e2\

and noticing the symmetry of the situations in [0,ex/\e!2\ and [0,e2A^iJ,

we may consider the following cases separately: (i) d(a) = d(6)EC*(S),

(ii) d(bx) E CAS) but d(a) = d(fc) = d(62) = + », and (iii) d(6,) = d(62)

= d(a) = d(6) = + oo.

In Case (i), a\/bEJ so [0,aVöJ is a von Neumann lattice and the

result follows immediately from Satz 1.4, p. 112 of [14J.

Case (ii). Let yx,y2, ■•■ be an increasing sequence in Jy(a) such that for

every n we have d(y„) ^ n (Lemma 4.9). For each n = 1, choose enEE

so that <r(en) is the interior of the set on which d(bx) ^ n. Then
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IJ\a{en); re = 1,2,...}

is an open everywhere dense set. Set e0 = 0, and set

y = 2|y„ A (en - en_x): re =1,2, •••}.

Then y is in Ju(a), and d(y) ^d(6i). Now [0,öx V3^] is a von Neumann

lattice because &iVy£t/, so there is an a^y with d(ai) =d(öi). Both

d(a — aO and d(62) are then identically infinite, so we may take a2 = a — ax.

Case (iii). Let xuX2,      be an orthogonal sequence in J0(a) with d(x„)

2i 1 for each, re. Set    = 2j xa: k }z 1} and a2 = a — a!. Then d(at) and

d(a2) are identically + <=° and a = ax + a2. Q.E.D.

As the last fundamental fact, we prove that d is completely additive on

orthogonal sets. Since we already know it is finitely additive, the following

theorem implies the desired result. The proof of this theorem for the type I

case was in the author's thesis, but the proof in the general case was dis-

covered only after receiving a private communication from M. D. MacLaren

which stated a theorem giving a lattice theoretic characterization of locally

finite dimension lattices which is different from the one given in the present

paper. His result, combined with the results of §5, provides another proof

of part (i) of Theorem 4.23.

Theorem 4.21. If |x,: iE/} is an increasing directed family in L with

least upper bound x, then d(x,) J d(x) in C*(S).

Proof. Let / = supjd(x,): i £ 1) in C*{S). For e££, then <b(e) ■ f is the

least upper bound of the d(e A x,) and e A x, ] e A x. Let et be the largest

element of E such that ex A x £ J, and let et be the largest element of E

such that / is identically + a> on <r(e2). Since f^d(x), we have ex J_ e2.

Since [O^Ax] is a von Neumann lattice, we have 0(ei) ■f=d{el/\x),

and clearly 0(e2) •/ = d(e2 Ax). Thus the proof will be complete if eY + e2

= 1. This will follow if x l\eEJ whenever / is bounded on o-(e), so it

suffices to prove that x£ J if / is bounded. If <r(eu) is the interior of the

zero set of /, then x A e0 = 0. Now let T be a maximal orthogonal subset

of j e £ E: f is bounded away from 0 on a(e)\. Then U|<x(e): e£T}

is dense in the support of /; furthermore x will be in J if e £ T implies

x A e £ J. Hence we may suppose there is an e > 0 such that / ^ e.

Let yi,y2, • • • be an increasing sequence of mosaics of the x,'s, such that

for each re, we have d(y„) ^ / - 1/re. Let y = supjy„: re = 1,2, • • •}. Then

y g x, and if y < x there is an i £ I with x; > x, A y, so 2, = x, — (x, A y)

> 0. Then for any re ̂  1 we have d(yn V x,) because the mosaics are

directed and each x, is a mosaic, but d(y„ V x,) ^ d(y„) + d(2t) ^ / — 1/re

+ d(z,) and not every d(2,) — 1/re ^ 0. Thus y = x.

Choose now an re ^ 2/t and set tu = y„, t, = y„+i - y„, t2 = yn+2 - yn+l,....

Then for any m^l we have d(i, +-h tj ^ «/2 S d(f„). Thus there
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is an orthogonal sequence r,,r2, ■■■ in [0,i0| with rx ~ tu r2~t2, For

distinct m and k, we have rm _L rk, tm J_ tk, rm _L tk and <m J. rk. Thus rm V im

_L rk V i*. Also, for every m there is a um in [0, rm V tm\ with um A rm = um A tm

= rm A fm = 0 and um V rm = wm V tm = rm V fm. Set r = 2 j rm: m = 1,2, • • • |,

t=l\tm: m = 1,2, • • • (, and u = 2j um: m = 1,2, • ■ • j. Then by Lemma

2.1, uAr=iiAt = rA( = OanduVr=uV<=rV( (cf. Theorem 3 of

[6]). Since r£ J, this implies t£J, by Theorem 4.16. Thus x = t0+ t is

in J. Q.E.D.

Theorem 4.22. // (x,: i(El\ is an orthogonal set in L with least upper

bound x, then

d(x) m 2{d(x,):

Proof. The sum on the right-hand side is defined to be the least upper

bound of the finite sums, and d{x^ + • • • + x,n) = d(xn) + • • • + d(x,J, so

the equality follows directly from Theorem 4.21.

This completes our study of d, and we have shown that the basic prop-

erties extend from the modular case to the locally modular case. Now these

facts can be used to prove a theorem about dimension lattices.

Theorem 4.23. Let L be a complete orthocomplemented weakly modular

lattice. If L is locally modular, then there exists a dimensional equivalence

relation ~ on L such that:

(i) (L, ~) is a locally finite dimension lattice,

(ii) an element a EL is finite with respect to ~- if and only if [0,a\ is

modular,

(iii) an element e £ L is invariant with respect to ~ if and only if e is in

the center of L,

(iv) if a and b are finite with respect to ~, then a — b if and only if a and

b are perspective.

Proof. By Theorem 4.17, the set J of all elements a£L for which [0,aj

is modular is an ideal and is join-dense. Take an element u£j with \u\ = 1,

by Theorem 4.4, and define d on J as in Theorem 4.5. Now extend d to L

as it was done preceding Lemma 4.6, and define a ~~ b to mean d(a) = d(6).

Then axiom A is clear, and axioms B, C and D' are contained in Theorems

4.20, 4.22 and 4.18, respectively. Thus (L, ~) is a dimension lattice. Theo-

rem 4.16 implies that J is the set ja£L: d(a) G C*(S) j. Since C*(S)

is a vector lattice, and b < a implies d(a) = d(b) + d(a - b) and d(a - b)

0, every element of J is finite. But if d(a) is infinite on a nonempty open

set, i.e., d(a) E C*(S), Lemma 4.19 makes it possible to construct b<a

with d(b) = d(a). This proves (ii). Since J is join-dense, we see that L is

locally finite. Now if e is central and a <e, then d(a;s) = 0 for s not in

a{e). Thus for x G «/u(a), we have d(e A x) = <fi(e) ■ d(x) = d(x) so e A x = x;
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hencee f\a = a and a ^e. This proves (iii), leaving only (iv). But Theorem

4.5 (iii) says that for elements of J, d(a) = d(b) implies a and b are perspec-

tive in [0,o V b], and if a and b are perspective in [0,a V b] they are per-

spective in L, so a £ J, b £ J and d{a) = d(b) imply a is perspective to b.

The converse part of (iv) is just axiom D'.

Corollary 4.24. // L is a complete orthocomplemented weakly modular

lattice, then there exists a locally finite-dimensional equivalence relation on L

if and only if L is locally modular.

5. Semi-modularity. A pair (x,y) is a modular pair, written (x,y)M, if

x ^ 2 implies x A (y V 2) = (x A y) V 2. A pair (x, y) is a dual-modular pair,

written (x,y)DM, if x ^ 2 implies (x V y) A 2 = x V (y A 2). (See [2, p. 100],

[10, p. 166].) We shall say that a lattice is semi-modular to signify that the

relation (x,y)M is symmetric, i.e., (x,y)M implies (y,x)M [2, p. 101]. In

an orthocomplemented lattice, (x,y)M if and only if (x',y').DAf, so an

orthocomplemented lattice is semi-modular if and only if the relation

(x,y)DM is symmetric. Let x^z and set zx= (xVy) A z. Then y f\zx

= y A 2, so (x V y) A 2 = x V (y A z) if and only if zx = (x V y) A «i

= x V (y A Zi). Thus to test the pair (x,y) for dual modularity we need

only consider elements 2£[x,xVy].

Let L be a locally modular complete oc.w.m. lattice. We shall prove

that L is semi-modular, using a proof analogous to the proof of Theorem

III-6 of [10]. By Theorem 4.17, the set J = jx£L: [0,x] is modular) is

a join-dense ideal and is the largest modular ideal. As in §4, write J0(x) for

J A [0, x] whenever x £ L.

Lemma 5.1. Let a(£J and let b, cEL with a 5S c. Then a V (b Ac)

= (a V b) Ac. Thus a £ J and b £ L implies (a, b)DM; hence also (a, b)M,

since a ^ 2 implies zEJ-

Proof. By Lemma 2.1, x—>(6 Ac) Vx is an isomorphism of

[0, (6 Vc) - (6 Ac)]

onto [6 A c, 6 V c] and hence provides the latter with a join-dense modular

ideal. Set ax = a\J (b Ac). Then [ftAc,^] is modular by Theorem 4.16

since a, — 6Ac~a — a Ab Ac. Also (at V 6) A c = 0[ if and only if

a V (6 Ac) = (a V b) A c Set a2 = (a! \J b) Ac; then a2 ̂  at. Also a, V &

= a2 V 6 and ax A b = a2 A b = b A c, so and a2 are perspective in

[6 A c, 6 V c]. Hence at — 6 A c and a2 — 6 A c are perspective in L. Since

Oi — 6 A c £ J, Theorem 4.16 shows that a2 — 6 A c £ J, and since a2 — b Ac

^0[- 6 Ac, a2 - 6 A c = d! - & A c; thus a2 = a;. Q.E.D.

For ideals Ä\ and K2 of L, let Kx V #2 denote the ideal generated by Kx

and K2. The next lemma is the analogue of the fact that the vector sum

of a finite-dimensional subspace and a closed subspace is closed.
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Lemma 5.2. If a EL and cEJ then J0(a V c) = Jü(a) V Ju(c).

Proof. Clearly Ju(a) V J0(c) C Ju(a V c), so let xG</0(o Vc). Then

x\J cE Ma V c) and (x V c) A a G «/0(a). By Lemma 5.1, (a A (x V c)) V c
= (iVc) A(a Vc) = xVc, so x VcG J0(a) V«/0(c). Hence iG</0(«)

VJo(c).

Theorem 5.3. Tne following conditions are equivalent for elements a and

bof L
(i) Jo(aVo) = J0(a) V J0(b),

(ii) J0(a) V </n(°) m join-dense in [0,oVi],

(iii) (a,b)DM.

Proof. Clearly (i) implies (ii). (ii) implies (iii): Let a = c = a V b. We

must prove c = a V (6 A c), which will be true if J0(a) V «/o(& A c) is join-

dense in [0,cJ. Let 0 < z = c. Now c = a V 6 and we have assumed J0(o)

V'J0(b) is join-dense in [0,a Vo], so there can be chosen x G: J0(a) and

yEJo(b) with (xVy) Az^O. Set 2i = (x Vy) Az; using modularity in

J, we compute

xVtyACxVzJ) = (xVy) A(xVzi)

= X V Z\.

Since y A (x V Zi) ̂  b Ac, this shows that x VZ\ is in J0(a) V </o(6 Ac),

and hence so is zx. Thus for nonzero zE [0,c], (t/0(o) V </o(6 A c)) Pi [0,2]

^ j 0 j, which is what we were to prove.

(iii) implies (i): Clearly Ju(a) V Jo(b) C Ju(a V 6), so suppose x E Jo(a V o).

Set Xi = a V x, x2 = X! - a, and x3 = (6 A xj - (a Ab). Then x - a A x

and x2 are perspective, having a V (a V x)' as a common complement

(Lemma 2.1), so x2 E J by Theorem 4.16. Since (a, b)DM, we may compute

as follows:

Xj - a V (6 A x,)

= aV[(aAt)V((öAx1)-(aA6))J

= oV[(aAi)V x3J

= a V x3.

From the first equality it follows that x2 = x, - a = (a V (b A xj) - a and

x3 = (6 A Xj) - (a A ö) = b A Xi - a A b A xt are perspective. Hence x3 E J

by Theorem 4.16, and since xx = a V x3, Lemma 5.2 implies that «/„(x^

= J0(a V x3) = J0(a) V Jo(Xi). Since xG^oW and J0(x3) C J0(6), this

shows that x E Ju(a) V Jo(°), as desired.

Theorem 5.4. If L is a complete orthocomplemented weakly modular lattice

which is locally modular, then L is semi-modular.
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Proof. The equivalence of conditions (i)and (iii)in Theorem 5.3 shows

that the relation {a,b)DM is symmetric.

Remark. The proof that (i) and (iii) are equivalent is easily done without

mentioning (ii), but it seems of interest to notice that (i) and (ii) are equiva-

lent. In the atomic case (i) and (ii) are obviously the same.

6. Sufficient conditions for local modularity. The following is a standard

covering condition [2, p. lOOj:

(p) if x covers x A y then x V y covers y.

For oc.w.m. lattices it is equivalent to this: if x — x A y is an atom then

x V y — y is an atom. An atom is always multiplicity free (m.f.) and the

central cover of an atom is an atom in the center (§2). On the other hand,

if 0 < x S e, if x is m.f., and if e is an atom in the center, then x is an atom.

Hence we may strengthen (p) as follows, for oc.w.m. lattices:

(p^) if x — x A y is m.f. then x\J y — y is m.f.

Both (p) and (p+) are equivalent to their duals by orthocomplementation.

Thus (p) implies both (£') and (£") [2, p. 66]. A chain c0<c1< ••■ <ck

is connected if 1 k implies c, covers c,-_i [2, p. 11].

Lemma 6.1. Let M be an oc.w.m. lattice satisfying (p), in which every non-

zero element dominates an atom, and suppose that a0 = 0 < ax < ••• < a„ = 1

is a maximal chain in M. If bü = 0 < 6X < • • • < bn_i is a connected chain

in M then 1 covers 6„_i.

Proof. We proceed by induction on n. For n = 1 the lemma is obvious;

suppose it is proved for n g k, and consider n = k + 1. If ak ^ bk, then by

the case n = k, ak covers 6fc„:. Hence ak = bk, giving the desired result. If

Ok ̂  bk, then ak\/ bk> ak, so ak\/ bk — 1. Now at V bk covers ak, so bk covers

Ok A bk, by the dual of (p). Let us construct a connected chain c0 = 0 < cx

< ■ ■ ■ < Ck i in [0,ak A bk\. We may take cx to be an atom ^ ak A bk, and

proceed by induction. Suppose we have chosen cy < c2 < • ■ • < c, connected,

and j < k — 1. If Cj = ak A bk, then c„ = 0 < cx < ■ ■ • < cl < bh is a maximal

chain in [0,6t], and applying the case n = ; + 1 we contradict the existence

of the connected chain 60 = 0 < bx < ■ ■ ■ < bk. Thus c; <ak A bk so (ak A bk)

A c] > 0 and we can choose an atom Pj = (a* A bk) f\c'j. By (p), cJ+1

= c, V Pj covers Cj, and c0 = 0 < cY < ••• < cJ+1 is connected. Taking the

chain so constructed, the case n = k applied to [0,ak] shows that ak covers

Ck-i. Since ak> ak f\bk^ ch.-u we see that ak covers ak f\bk. Hence 1

= ak V bk covers bk.

Theorem 6.2. (cf. Lemma 4.2 of [13]). Let M be an oc.w.m. lattice satis-

fying (p), in which every nonzero element dominates an atom, and suppose

there is a finite maximal chain in M. Then M is modular.
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Proof. If a < 6, the method used in Lemma 6.1 can be used to construct

connected chains in [0,6 — a). By Lemma 6.1 the lengths of such chains

are bounded, so [0,b — a\ has a finite maximal chain. Since [a, b\ is isomor-

phic to [0,b — a\, [a,b\ has a finite maximal chain. Thus every finite chain

can be imbedded in a connected chain. Since every connected chain in M

is finite, by Lemma 6.1, every chain in M is finite. Hence M is modular

by Theorem 3, Chapter V of [2j.

Theorem 6.3. Let L be a complete oc.w.m. lattice containing an atom, and

with center = {0,1}. Then L is locally modular if and only if (p) holds in L.

Proof. If L is locally modular, then there exists a d.e.r. ~ on L by Theo-

rem 4.23. Then for each x and y, x — x Ay ~ x V y - y, so if x — x A y is

an atom so is x V y — y. Thus (p) holds in L.

Now suppose that L satisfies (p) and let e be the join of all the atoms

in L. If x G L and there is an atom a not orthogonal to x, then x A (a V x')

= (a V x') — x' is an atom by (p). Thus for any x£L, x A e = 0 implies

x _L e, so e is in the center of L. But e > 0, so e = 1, and L is atomic. Let J

be the ideal in L generated by the atoms. Then J is join-dense since L is

atomic. If au---,ak are atoms in L and z = ax\J ■ ■ ■ V ak, then (p) holds

in [0,z\ because for x and y in [0,z], the elements x — x A y and x V y — y

are the same whether calculated in [0,zj or L. By Theorem 6.2, each such

[0,zjis modular, so J is modular. Thus L is locally modular. Q.E.D.

The next lemma follows immediately from Lemma 2.6.

Lemma 6.4. // x is m.f. in L and y f£ x ^ z, then y is m.f. in [0,zj.

Lemma 6.5. If L is a complete oc.w.m. lattice satisfying (p^), then the

element e = supj x£L: x is m.f. j is in the center of L. Furthermore, if 0 < x

= e, then xisa join of m.f. elements and there is at least one m.f. element y = x

with\y\ =\x\.

Proof. Let x £ L be such that y = x implies y is not m.f. If 2 is m.f. and

x JLz, then x A (x A z')' and (x V z') A (2')' have a common complement

(Corollary to Loomis' Lemma 41), the latter being nonzero because x V z'

> z', and m.f. by Lemma 6.4. Thus x A (x A z')' is m.f. by (p+), and we

have contradicted our assumption about x. Thus x is orthogonal to every

multiplicity free element, so x _L e. Now if x A e = 0, and 2 is m.f., x ^ 2;

thus x A e = 0 implies x ± e. Hence e£E. The first assertion of the last

sentence is an easy consequence of what we have already done. Note that

if T is a set of m.f. elements in L and x ^ y in T implies | x| _L |y|, then

supT is m.f. Using Zorn's lemma, we now can easily find a y^x with

|y| = |x| and y m.f.

Theorem 6.6. Let L be a complete oc.w.m. lattice with a closed subalgebra,

E, of the center, such that if x — x Ay is m.f. with respect to E then x\J y — y
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is m.f. with respect to E. If 1 is a finite join of elements which are m.f. with

respect to E then L is modular.

Proof. We shall imbed L as a sublattice of a direct product of modular

lattices. Let S be the Stone space of E, regarded for now only as the set of

all maximal dual ideals of E. Given s ES, define a congruence relation on

L by x = y if and only if there is an e G s with x A e = y A e. Let Ls denote

the quotient lattice, and hs the quotient homomorphism. Now any lattice

homomorphic image of an oc.w.m. lattice can be given an orthocomple-

mentation, uniquely, so that the homomorphism preserves orthocomple-

ments. In that case the image is also weakly modular. Thus each Ls is in a

natural way oc.w.m. and hence so is M = II\LS: sGSj. For x in L de-

fine h(x) in M by (h(x))(s) =hs(x). Then h is an orthocomplementation

preserving homomorphism. To prove that h is one-one, it suffices to note

that hs(x) > hs(x A y) if and only if | x - (x A y) | G s. The proof will be

completed by showing that each Ls satisfies the hypotheses of Theorem

6.2 and hence is modular.

First we prove that an element a of Ls is an atom if and only if there

is an m.f. x in L with (jc| £s and hs(x) = a. Suppose that |x| Es and

hs(x) = a is not an atom. Then there is ab in Ls with 0 < b < a. Choose

y so that hs(y) = b, and set yx = x A y. Then y, ^ x and 0 < fts(yi) < hs(x),

so \yi \ Gs and |x — yt| Es and hence e— |y,| A |x — yx| Es. Hence x is

not m.f., by Lemma 2.6. Conversely, suppose that |x| Es, and that eEs

implies x A e is not m.f., i.e., suppose there is no m.f. element z with hs(z)

= hs(x). Choose y S x to be m.f. and with |y| = | x|. Then 0 < hs(y) 5S hs(x);

and hs(y) < hs(x), since otherwise there would be an e £ s with x A e = y A e

and hence with x f\e m.f. Thus fts(x) is not an atom. If | x| is not in s, then

fts(x) = 0, also not an atom. It now follows that every nonzero element of

Ls dominates an atom.

To show that (p) holds in Ls, let a, b be in Ls with a covering a Ab, and

choosex,y in L with hs(x) = a, hs(y) = b. Since a A (a A b)' = fts(x A fx A y)')

is an atom, there is an c£s for which (x A e) A ((x A e) A (y A e))'

= (xA(xAy)') Ae is m.f. By (p+), then ((x A e) V (y A «?)) A (y A e)'
is m.f.,  so  (a V 6) A o' = As(((x A e) V (y A c)) A (y A e)') is an atom.

Now if xh • • - ,x„ are m.f. elements of L with join 1, the nonzero elements

of [ha(xi): 1 S i Ss n.) are atoms with join 1. By (p) it follows that Ls has

a finite maximal chain.

Theorem 6.7. Let L be a complete oc.w.m. lattice with an m.f. element u

such that \u\ = 1. Then L is locally modular if and only if (pT) holds in L.

Proof. If L is locally modular, then there is a locally finite d.e.r. ~ on

L such that every central element is invariant. Then an element x is m.f.

if and only if y,z in [0,xj and 0 < yx ^ y ± z ^ zx > 0 implies zx   y,. This
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property of x is preserved under ~, and always x-xAy~xVy— y, so

(p+) holds.

For the converse let 2 be a finite join of elements which are m.f. with

respect to the center, E. Notice that an element x ^ 2 is m.f. with respect

to E in L if and only if it is m.f. with respect to \z l\e: e££) in [0,2].

Thus by Theorem 6.6 the interval [0,zj is modular. The ideal generated

by the m.f. elements is therefore modular, and the proof that it is join-dense

is the same as the proof in Theorem 6.3 that the ideal generated by the

atoms is join-dense.

7. The type III case. Let (L, ~) be a type III dimension lattice, and let

E be the set of invariant elements. If 0 < x E L and if x were m.f. with

respect to E, then [0, | jc| J would be a type I direct summand of L, so L has

no such elements x. The following theorem is the converse of this fact.

Theorem 7.1. Let L be a complete oc.w.m. lattice and let E be a closed

Boolean subalgebra of the center. Suppose L has no element x > 0 which is

m.f. with respect to E, and define x ~ y to mean \x\ = \y\. Then (L, ~) is a

type III dimension lattice in which E is exactly the set of invariant elements.

Proof. Axiom A is true because | x | _ x, and axiom C is true because

I sup T\ = sup| \ t\: tE T}. Axiom D' is just Lemma 2.2. If 0 < x£ L, then

x is not m.f., so there is a y = x such that the element e = \y\ A |x — y|

> 0. Then e = | e A y | = | e A (x — y) |, so every nonzero element dominates

orthogonal nonzero elements with the same £-cover. An easy Zorn's lemma

argument shows that if 0 < x E L, then there exist orthogonal elements

y,2 with x = y + 2 and |x| = |y| = \z\. An easy application of this proves

axiom B, and it also shows that (L, ~) is type III.

Now suppose eE E and %<e. Then |x| = e, so x _ e. Thus every ele-

ment of E is invariant. If x is not in E then |x| ~ x but |x| > x, so x is

not invariant.

Corollary 7.2. If L is a complete oc.w.m. lattice with no atoms, then there

is a d.e.r. ~ on L such that (L, ~) is a type III factor.

Proof. Take £= {0,1} in Theorem 7.1.

8. The general case. Let L be a complete oc.w.m. lattice and consider

again the decomposition L = Lx X L,X L;i X Lt of §3.

Lemma 8.1. There is a d.e.r. — on L if and only if L4 = {0}. Furthermore,

~ can be chosen so that the center is the set of invariant elements if and only

if L;j = {0 j as well.

Proof. Every atom in a dimension lattice belongs to the type I part,

which is locally modular, so if a d.e.r. exists then L4 = {0}. A product of

dimension lattices is a dimension lattice, there is a d.e.r. on Lt by Theorem
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4.23, and there is a d.e.r. on L2 X La by Theorem 7.1 and Corollary 7.2,

so if L4 = j 0 [ there exists a d.e.r. on L. If L3 = j 0} also, then Theorems

4.26 and 7.1 imply that ~ can be chosen so that every central element is

invariant. On the other hand, suppose (L, ~) is a dimension lattice with

every central element invariant. Then every nonzero m.f. element is simple

with respect to ~ and hence belongs to the type I part of L, which is con-

tained in Li. Hence L6 = )0j.

Theorem 8.2. Let L be a complete oc.w.m. lattice. There exists a d.e.r. on

L if and only if (p) holds in L and there exists a d.e.r. on L for which every

central element is invariant if and only if (p+) holds in L.

Proof. Straightforward applications of Theorems 6.3 and 6.7 show that

L4 = {0) if and only if (p) holds in L and that L6 X L4 = {0} if and only

if (p ) holds in L.

Corollary 8.3. Let L be a complete oc.w.m. lattice such that if x and y are

perspective there is an automorphism a of L such that a(x) = y. Then there is

a d.e.r. on L for which the set of invariant elements is just the center of L.

Proof. The multiplicity freeness of an element is preserved by automor-

phisms, and x — x A y is perspective to xVy-y, so (p+) holds in L.

9. Two examples. We exhibit here two examples showing that both L3

and L4 of §§3 and 8 can differ from {0 j.

Let K be the horizontal sum [12 J of the Boolean algebra of subsets of a

three element set with itself. The diagram of K is in Figure 1. (The example

of Dilworth [3, p. 21] would also serve as well.)

Then K is an atomic orthomodular lattice of finite length which is not

modular, and hence K is an example of nonzero L4.

Let E be any complete Boolean algebra with no atoms, e.g., the Boolean

algebra of Lebesgue measurable subsets of the unit interval modulo null

sets. Then let S be the Stone space of E and let M be the set of continuous

functions from S to the K of the preceding example, K having the discrete

topology; M is a subset of the complete orthomodular lattice of all func-

tions from S to K, F(S;K). It is easy to see that M is an orthomodular

Figure 1



1965] orthocomplemented weakly modular lattices 31

sublattice of F(S;K), because an element of F(S;K) is continuous if and

only if the inverse image of each point is open. Let { /,: i G / ( be any sub-

set of M and let g be its least upper bound in F(S; K). Using the fact that

the closure of an open set in S is open [17, p. 186 J and the fact that K is

finite, one can construct a continuous h: S—>K which agrees with g on an

open everywhere dense set. Then h is the least upper bound of { /,: i G / J

in M, so M is complete. If a is an atom in K and / is the constant function

whose value is a, then it is not hard to see that / is multiplicity free with

respect to the natural image of E in M. Thus M is complete and ortho-

modular and has a multiplicity free element with central cover 1, but M

has no locally modular direct summand. Hence M gives an example of a

nonzero L3.
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