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by
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Introduction. Let p be a prime number such that q = \(p — 1) is also a

prime number. Let be the set of symbols 1, ■ • • ,p, and let © be a nonsolva-

ble transitive permutation group on Q. In a previous paper [ 6] the following

theorem has been established: If © is not triply transitive, then © is isomor-

phic to either LF(2,7) with p = 7 or LF(2,11) with p = 11, where LF(2,l)

denotes the linear fractional group over the field of / elements. Now the

purpose of this work is to improve this theorem as follows, namely, the

following theorem will be proved.

Theorem. If © is not quadruply transitive, then © is isomorphic to LF(2,5)

with p = 5 or LF{2,1) with p = 7 or LF(2,11) with p = 11.

Hence, in particular, if p > 11, then © is quadruply transitive.

The main idea of the proof given below is quite similar to that of [ 5], [ 6].

Therefore we use the same notation as in [ 6]. First of all, in order to prove

the theorem, likewise in [6, Introduction], we can assume that (i)p > 11;

(ii) © is simple; (iii) let ^ be a Sylow p-subgroup of © and let Nsty be the

normalizer of ^3 in ©. Then Nsty has order pq; and (iv) let O be a Sylow

o-subgroup of ©. Then G has order q and the cycle structure of a permuta-

tion ( ^ 1) of Q consists of two q-cycles. Let CsO and NsO be the centrali-

zer and the normalizer of G and ©, respectively. Then CsO = O. Let the

order of NsO be equal to qr. Then r divides q — 1. Let 9J be a Sylow q-

complement of NsO. Then 9? is cyclic of order r. We put q — 1 = rs.

X0, X° and Xqo denote irreducible characters of the symmetric group

© over fi, whose values are given by a{S) — 1, i{a(S) — l}{a(S) — 2}

- ß(S) and !«(S)ja(s) - 3} + ß(S), respectively, where a(S) and ß(S) de-

note the number of symbols of Q fixed by S and the number of transpositions

in the cycle structure of S, respectively. Moreover, (X, Y)(X, Y = A,B,C,D)

denotes an irreducible character of © which has p-type X and o-type Y. By

a theorem of Frobenius [6, Proposition A] © is quadruply transitive, if and

only if X» restricted on © and Xoo restricted on © are irreducible. Now ©

will be assumed to be triply transitive [6, Theorem] but not quadruply

transitive. Then it will be shown that XjJ restricted on © is irreducible

(Lemma 7) and that the decomposition of Xoo restricted on © into its

irreducible components has the following form:
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Xm=Z(D,C)h
1 = 1

where (D, C)/s (i = 1, •••,«) are g-exceptional characters of © and have

degree rp (Lemma 6). Herein we get s > 1, because we have supposed that ®

is not quadruply transitive. Furthermore, by a theorem of Brauer [ 6, Prop-

osition B]

is a rational integer for every g-regular element G of ©, which imposes a

strong restriction on the cycle structure of permutations of © because of

s> 1.

Now using a theorem of Frame [6, Proposition G] we show that a repre-

sentation corresponding to (D, C),(t = 1, • • -,s) can be realized in the real

number field (Lemma 8), which implies that r is even (Lemma 9). Hence

let / be the involution in 9i.

Finally we apply an idea somewhat similar to Fryer [3]. Namely, we

identify fi with GF(p), the field of p elements. Let P be an element (^ 1) of

^ß. Then we will find convenient analytic representations for P and I

(Lemma 10). By means of these analytic representations we can verify the

existence of a permutation of ® (a word of P and I) which contradicts (*).

But our present method requires the inspection of many words, though all

of them have the form IP0, where a is an integer.

1. Decompositions of Xo restricted on © and Xqo restricted on ©.

Lemma 1. There are only four possible cases of the decomposition of Xo re-

stricted on © into the irreducible characters of ©:

(i) X° restricted on © is irreducible.

(ii) X°= (A,B) + (D,A), where the degrees of (A,B) and (D,A) are equal

to (q — 2)p + 1 and p, respectively.

(iii) Xo =ZUi(A,C),+ (B,A)+Z^l(B,D)i, where the degrees of
(A,C)i (i—1, • ••,«), (B,A) and (B..D), (i = 1, • • -,s - 2) are equal to

(r — l)p 4- 1 with 8q = — 1 [ 6, Proposition B], 2p — 1 and p — 1, respectively.

(iv) Xo = 2Xi(A,C), + (D,A) +ZS>=i(B,D)lt where the degrees of

(A,C)i (i=« 1, •••,#), (D,A) and (B, £)), (i = 1, • ■ -,s - 1) are equal to

(r — l)p 4-1 with bq= — 1, p and p — 1, respectively.

Proof. (Cf. [5], Lemma 5.) Since Xo (P) = 1, by a theorem of Brauer [6,

Proposition B] an irreducible character of © of p-type A or p-type C with

Sp = 1 must appear as an irreducible part of Xo restricted on ©. Then in-

specting the degree table in [ 6] we see that no irreducible character of p-type

C with 5P = 1 can appear. Now if it is (A, D), then we get (i). If it is (A, B),

then it is easy to see that we get (ii). Hence let us assume that is has type
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(A, C). Since Xo is a rational character, the whole family of the characters

of q ■ type C will appear as irreducible parts of Xo restricted on ©. Now

inspecting the degree table in [6] we see that bq = — 1 and that they have

degree (r — l)p + 1 and multiplicity 1. Thus we have that

Xo(X) = £ (A,C),(X) + ...
i=i

for every permutation X of ©, where the part • • • does not contain (A, C),

(i = 1, •••,«) any more. By a theorem of Brauer [6, Proposition B] we have

that XXi (A, C); (P) = s. Therefore irreducible characters of © of p-type B

or p-type C with 5P = — 1 must appear in the part • • • with the sum of mul-

tiplicities at least s — 1. But the sum of degrees of the part ■ • • equals (s — 1)

(p — 1) + p. Hence, checking up the degree table in [6] we see that no

character of p-type C with 8P = — 1 can appear, and that only characters

of type (B,D) with degree p — 1 except just one character (B, A) with

degree 2p — 1 or (D, A) with degree p can appear.

Let § be the maximal subgroup of ® leaving the symbol 1 of fi fixed.

Let Y0 be the character of § whose values are given by a(X) — 2 for every

permutation X of Jp. Then since is doubly transitive by a previous result

[6, Theorem], Y0 is an irreducible character of Jp. Let Yo be the charac-

ter of ® induced by YQ. Then by a theorem of Frobenius [6, Formula (11)]

we have that

(# ) Y*0(X) = X0(X) + Xo (X) + Xoo(X)

for every permutation X of

Now let us assume that some (B, D) appears in the part • • • with multipli-

city v > 1. Then by (#) and by the reciprocity theorem of Frobenius we

have that

(B,D)(X) = i>Y0(X) + ...

for every permutation X of For X = 1 this gives that p — 1 = v(p — 2)

+ which is obviously a contradiction. Thus if (B, A) appears, then we

get (iii). If (D, A) appears, then we get (iv).

Lemma 2. There are only four possible cases of the decomposition of Xoo re-

stricted on @ into the irreducible characters of ©:

(i) Xoo restricted on © is irreducible.

(ii) Xoo= (A,B) + (B,D), where the degrees of (A,B) and (B,D) are

equal to (q - 2)p + 1 and p — 1, respectively.

(iii) Xoo = B=,(A,C), + B=i(ß.ö)., where the degrees of (A,C),

(i = 1, •••,«) and {B, fl), (i = 1, ■ • -,s) are equal to (r — l)p + 1 with 6q = — 1

and p — 1, respectively.
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(iv) Xoo = (D> C)i, where the degree of (D, C), (i = 1, • • -,s) is equal

to rp with 5q = — 1.

Proof. (Cf. [5, Lemma 6].) Let Q be an element of © or order q. Since

Xoo(Q) = - 1, by a theorem of Brauer [6, Proposition B] an irreducible

character of © of g-type B or g-type C with bq = — 1 must appear as an

irreducible component of Xqoo restricted on ©.If it has g-type B, then we

see from the degree table in [6] that it is an (A, B) with degree (g — 2)p + 1

or a (D,B) with degree (g — l)p. If it is a (D,B), then we get (i). If it is an

(A, B), then we get (ii). Now let us assume that is has g-type C with 5, = — 1.

Then since Xoo is a rational character, the whole family of the g-exceptional

characters of © must appear as irreducible components of Xoo restricted

on ©. Again by inspecting the degree table in [6], we see that they are of

type (A, C) with degree 0 — l)p + 1 or (D, C) with degree rp. If they are

of type (D, C), we get (iv). Hence let us assume that they are of type (A, C).

Then from the degree table in [ 6] we see that they have multiplicity 1. Thus

we obtain that

■

Xoo(X) = £ (A,C),(X) + ...
i-i

for every permutation X of ©, where the part • ■ • does not contain (A, C),

(i = 1, ■■■,s) any more. By a theorem of Brauer [6, Proposition B] we have

that £/=i (A, C), (P) = s. Therefore irreducible characters of © of p-type

B or p-type C with 5P = — 1 must appear in the part • • • with the sum of

multiplicities at least s. But the sum of degrees of the part • • • equals

s(p — 1). Hence from the degree table in [6] we see that only characters of

type (B, D) with degree p — 1 can appear. The rest of the proof is the same

as in Lemma 1.

Lemma 3. Neither of Xo restricted on © nor Xqo restricted on © contains

(B, D) of degree p — 1 as its irreducible component.

Proof. (Cf. [5, Lemma 7].) By (#) and by the reciprocity theorem of

Frobenius we have that

(B,D)(X) = Y0(X) + L(X)

for every permutation X of where L is a linear character of Jp. Since ©

is triply transitive by a previous result [6, Theorem]. By a theorem of

Frobenius [ 6, Proposition A] X0 is orthogonal to both X« restricted on ©

and Xoo restricted on ©. Hence we have that (B,D) ^ X0. Let 1» and 1$

be principal characters of © and £>, respectively. Let l| be the character

of © induced by 1^ . Then we have that

1$ = X0+ 1«.
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Thus (B, D) restricted on f> does not contain 1$ as its irreducible compo-

nent. Thus we have that L ^ 1$, . Let L* be the character of © induced by

L. Then by the reciprocity theorem of Frobenius we have that

L*(X) = (B,D){X)+M(X)

for every permutation X of ©, where M is a linear character of ©. Since

Lr^l$, we have that M ^ 1®. Since © is assumed to be simple, this is

a contradiction.

From Lemmas 1, 2 and 3 we get

Lemma 4. Case (iv) of Lemma 1 and Cases (ii) and (iii) of Lemma 2 cannot

occur. Similarly, Case (iii) of Lemma 1 cannot occur if s > 2.

Lemma 5. Case (iii) of Lemma 1 cannot occur.

Proof. Let us assume that this case occurs. Then by Lemmas 2, 3 and 4

we obtain that s = 2 and that Xqo restricted on © is irreducible. Let JT be

the subgroup of © consisting of all the permutations in © each of which

fixes each of the symbols 1 and 2 of ft. Let 1 g be the principal character of $

and 1 $ be the character of © induced by 1 jf . Then by a theorem of Froben-

ius [6, Formula (8)] we have that

(**)       ii(X) = u(x) + 2X0(X) + xo (X) + Xoo(X)

for every permutation X of ©. Thus the norm of lg is nine.

Let (ft)2 be the set of all the ordered pairs (x,y) such that x and y are dif-

ferent symbols of ft. We represent © as a permutation group 7r(@) on (ft)2.

Since © is assumed to be simple, this permutation representation of © is

faithful. The character of *■(©) is equal to l|. It is known [2,§207] that

the number of orbits of $ as a subgroup of *-( ©) equals the norm of lg. Put

r = ft — {1,2}. (r)2 is to be understood likewise, (ft)2. Then it is easy to

see that (r)2 is divided into three orbits r, (i = 1,2,3) of $ as a subgroup

of *•(©). Since © is triply transitive on Q by a previous result [ 6, Theorem],

$ is transitive on r. Hence each r, (i = 1,2,3) contains an ordered pair of

the form (3, *). Furthermore, since © is triply transitive, we can choose 9?

so that 9? fixes the symbols 1, 2 and 3 of ft individually. Let us consider the

act of 9? on the set of ordered pairs of the form (3, *) of r, (i = 1,2,3). Then

it is easy to see that the length of r, (i = 1,2,3) is equal to (p — 2)rx; with

Xi + x2 + x3 = 4. This implies that just one of x, (t = 1,2,3) is equal to 2

and the other two are equal to 1. Then by a theorem of Frame [6, Proposi-

tion F ] the number

p \p(p- l)}7(p-2)4(p-2)V2

(p - l)4^ p{p - 3){(r- DP + 1 f2(2p - 1)
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is a rational integer. Dividing F by p6g3 we obtain that

„ (P - 2)7r28

ri    |(r-l)p + l}2(2p-l)

is a rational integer. Since (p — 2, 2p — 1) = 3 and since r is prime to 3, we

can put 2p - 1 = 3"A with Uo^7and (A,3) = 1. Since (p - 3, 2p - 1)

divides 5, we can put A = 5bB with 0 g 6 g 2 and (B, 5) = 1. Then we have

that B = 1 and 2p — 1 = 3"56. Since 2p = 2 (mod 4), a must be even:

a = 2aj. If b = 2bt is even, then we have that

2p - 2 = 4g = (301541 + l)(3fll561 - 1),

which is obviously a contradiction. Thus b is odd and hence 6=1. This im-

plies that p = 23 or 1823, which is a contradiction to a result of Parker and

Nikolai [7].

Lemma 6. Case (iv) of Lemma 2 occurs.

Proof. Let us assume that Xoo restricted on © is irreducible. If X« re-

stricted on © is irreducible, too, then by a theorem of Frobenius [ 6, Proposi-

tion A] © is quadruply transitive on fi against the assumption. Hence Case

(ii) of Lemma 1 must occur. Let Ns$ be the normalizer of $ in ®. Let lNsg

be the principal character of Ns $ and let 1 be the character of © induced

by ljvsjt- Then by a theorem of Frobenius [6, formula (9)] we have that

(##) 1Ä.*(X) = U(X) + X0(X) + Xoo(X)

for every permutation X of ©. Thus by (**) and (# #) the norms of 1«

and ltog are equal to 8 and 3, respectively.

Let {fi }2 be the family of all the subsets of fi each of which consists of two

different symbols of fi. We represent © as a permutation group tt{ © } on

{fi )2. Since © is simple, this permutation representation of © is faithful.

The character of © ( is equal to ljv»«- It is known [2, §207] that the num-

ber of orbits of Ns$ as a subgroup of ir{ © ( equals the norm of ljv««. { r}2

is to be understood likewise, { fi|2. Then it is easy to see that (r)2 is divided

into two orbits Tj and r2 of f as a subgroup of *■(©) and that Ns$ as a

subgroup of irj © ( is transitive on j r }2. Then by the proof of Lemma 4 of

[6] the lengths of and r2 are equal to each other and hence it is equal to

i(p — 2)(p — 3). By a theorem of Frame [6, Proposition F], the number

jp(p-l)j6(p-2)4i(p-2)2(p-3)2

Fm-

(P- l)4-p(p-3)p{(a-2)p + l)

is a rational integer. Since (p - 2, (g - 2)p + 1) = 1, dividing F by
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p44o2(p - 2)6,

we obtain that

Fi" ip-3)
2) (o - 2)p 4-1}

is a rational integer, which is obviously a contradiction.

As we already have noticed in the introduction, using a theorem of Brauer

[6, Proposition B] we get the following important formula from Lemma 6:

(•) (D,C),(G) = i[|«(G){«(G) -3} +i8(G)]

for every q-regular element G of ©.

Now let us consider 7r{ © }. The character of xj ® j is equal to InsS- By

(# #) and by Lemma 6 the decomposition of l*-s» into its irreducible compo-

nents has the following form:

s

(i) lfct = l» + Xo+Z (AC),.

Moreover, let A be an orbit of Ns $ as a subgroup of 7r{ ® j with length x.

Let C(A) be the commuter of ir{ ®} as the permutation matrix group cor-

responding to A. Using Schur's lemma we can reduce C(A) to a diagonal

form:
p — 1 times   rp times rp times

I a, ft, •      cu "',cu -".c,, •••,€,) ,

where a, 6 and c, (i = 1, • • -,s) are algebraic integers. Then using a method

Wielandt [8, §29] we see that a and b are rational integers, and furthermore

we obtain the following three equalitities:

(ii) a = x,

s

(iii) 0 = a + b(p - 1) + rp £ c„

(iv) Jp(p - l)a - a2+ 62(p - 1) + rp £ jc,f.

Lemma 7. Xu restricted on ® is irreducible.
o

Proof. Let us assume that Xu restricted on © is reducible. Then Case (ii)
o

of Lemma 1 occurs. Using (i) and (**) we see that the norms of 1*>,* and
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1$ are equal to s 4 2 and s 4- 7, respectively. It is known that the number

of orbits of f as a subgroup of ir(®) and of Ns$ as a subgroup of ir{ ® } is

equal to the norms of 1$ and of lust, respectively [2, §207]. Hence it is

easy to see that (r)2 is divided into s 4 1 orbits Tu - ••, T,+1 of t as a sub-

group of tt(®). Let x, be the length of r,(i = 1, • • -,s + 1). Since © is triply

transitive by a previous result [6, Theorem], $ is transitive on r. Hence

each r, (i = 1, •••,*+ 1) contains an ordered pair of the form (3, *). Further-

more, since ® is triply transitive, we can choose 9f so that 9? fixes the sym-

bols 1, 2 and 3 of ß individually. Let us consider the act of 9? on the set of

ordered pairs of the form (3, *) of r,- (i = 1, •••,»+ 1). Then it is easy to see

Xi= (p - 2)ry, (i = 1, •••,«+ 1) with

•+1

(v) £ yt = 2s.
i=i

Similarly, j T j2 is divided into s orbits r(l), • • ■, r(s) of Ns® as a subgroup

of ir{ ® (. By (v) there exist at least two different j's (1 = s = + 1) such that

y}- = 1. Now let us assume that there exist just two such j's. Then the other

s — 1 y/s must be equal to 2. Now by a theorem of Frame [6, Proposition F]

the number

_ )p(p - 1) }'+5(p - 2)4(p - 2)i+1r'+12"1

(p- l)4pj(o-2)p4l!psrs

is a rational integer. Since (p - 2, (q — 2)p + 1) = 1, dividing F by

p4<7s+1(p - 2)s+5

we obtain that

(0-2)p + l

is a rational integer. Since (9 — 2)p + 1 = (p - 2)sr — 2, we have that

(r, (g - 2)p 4-1) = 2. This implies that (g - 2)p 4 1 = 2A. If A = 2B is even,

then we obtain that (g - 2)p = (2s4 D(2B - 1), which implies that 2B+1

> p. This contradicts that p = 2q + 1. But this is a contradiction, because of

g = 2 (mod 3). Thus A must be odd. Then we obtain that (g — 2)p 4 2

= 0 (mod3). In fact, if q = 1 (mod3), then p = 2g 4 1 = 0 (mod3), and if

g = 3, then p = 7. Therefore we can assume that there must exist at least

three different j's (1 ^i^s + 1) such that y = 1. Then one of such r/s

can be considered as an orbit, say TO), of Ns$ as a subgroup of *{ © |.

Then the length of r(;) equals j(p — 2)r. In particular, this implies that

r is even. By a previous result [4, Theorem 2] we can assume that r ^ 4.

Now in the preceding consideration put A = r0). Then we have (ii), (iii)

and (iv) with x = \{p — 2)r. From (ii) and (iii) we obtain that — r — b
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= 0 (mod p) and that 4b = yr with an odd integer y. Then we can put b = zp

— r with an integer z and we obtain that 4zp — 4r = yr. Thus we can put

4z = wr with an odd integer w, and we obtain that y = wp — 4. Now from

(iv) we obtain that (46)2 = r2(wp - 4)2 g 4p(p - 2)r, which implies that

r(wp — 4)2 ^ 4p(p - 2). Thus we see that w must be positive. If w ^ 3, then

we have that (3p - 4)2 ̂  4p(p - 2)/r ^ p(p - 2), which implies that 4p2

+ 8 ^ lip. This is a contradiction. Thus we must have that w = 1 and

4b = rp - 4r = r(p - 4). Put this value of b into (iv) and multiply by 16.

Then we obtain that

4p(p - l)(p - 2)r - 4(p - 2)V + r2(p - 4)2(p - 1) + 16pr £ |c,|2.
i=i

Dividing it by r we obtain that

(vi) 4p(p -l)(p-2) = 4(p - 2)2r + r(p - 4)2(p - 1) + 16p £ |c,|2.
i=i

From (vi) we see that r = 0 (mod 4) and r ^ 0 (mod 8). Put r = 4r, with an

odd natural number rv Then dividing (vi) by 8 we obtain that

op(p-2) = 2r1(p-2)2+r1o(p-4)2+2p £ |c,|2.
1=1

If rx ̂  3, then we obtain that p(p — 2)/(p — 4)2 ̂  3, which implies that

lip ^ p2 + 24. This is a contradiction. Thus r, must be equal to 1 and r = 4.

Now let us consider the irreducible character (D, A) of © of degree p

in Xo restricted on ö>. Since X° is rational, (D, A) is rational, too. By ( # )

we have that

(D,A)(X) = Y0(X)+Z(X)

for every permutation X of where Z is a (reducible) rational character of

of degree 2 (cf. 5, Lemma 9). If Z is irreducible, by a theorem of Brauer

[6, Proposition BJ Z must have g-type C. But then Z cannot be rational.

Thus Z is a sum of two linear characters of £>: Z = Li + L2. If L! = L2,

then let L* be the character of induced by L^ Then by the reciprocity

theorem of Frobenius, we have that L* = 2(D,A) + Since the degree

of L* is equal to p, this is obviously a contradiction. Thus we obtain that

Li ^ L2. Furthermore, since 1$ = l<g + X0, we have that Li ^ 1$ ^ L2 and

that Li and L2 must be algebraically conjugate. Let the field of characters

Li (i = 1,2) be the field of mth roots of unity. Then the degree of this field

equals <b(m) = 2. Thus we obtain that m = 3 or m = 4. Let 3?' be the com-

mutator subgroup of Then the index of in $ is divisible by m. By

Sylow's theorem we have that § = &'NsQ . Thus the order of NsO which
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equals 4g is divisible by m. Thus we obtain that m = 4. This implies that

contains a subgroup 99? of index 2. Let e be the character of § whose kernel

is 30?. Let e* be the character of © induced by e. Using a theorem of Brauer

and Tuan [ 6, Proposition C] we see that e* = (D, A)x is an irreducible char-

acter of ®, which is different from (D, A) because of L, e (i = 1,2). Then

the first g-block Bi(q) of © contains four characters 1@>, (D,A), (D,A)l

and (A, B). Since r = 4, by a theorem of Brauer [ l] we must have the fol-

lowing degree equation in ßi(o).

l+p+p = rp + (q-2)p+l.

This is absurd. Thus Xo restricted on © must be irreducible.
0

By Lemmas 6 and 7 we have that

Xoo(G) - Xo(G) - 2ß(G)-l = Z (D,C)i(G) - Xo(G)
(=1

for every permutation G of ®. Thus we obtain the following equality:

(vii) Z |0(G)|2 = - (s + 2)g,
Ge© 4

where g is the order of ©.

2. (/-exceptional characters (D, C), (i = 1, • • -,s).

Lemma 8. A representation corresponding to (D,C)i (1'= 1, ■■•,s) can be

realized in the real number field.

Proof. Let e, be a primitive gth root of unity and let Q be the rational

number field. Then by a theorem of Brauer [ 1] all the (D, C),'s (1 = 1, • • s)

are Q{eq)-conjugate. Thus all the (D, C),'s (i = 1, • • -,s) have the same quad-

ratic signature [6, Introduction]. Now by a theorem of Frame [6, Proposi-

tion G] we can count the number R of real orbits of Ns$ as a subgroup of

7rj ® } in the following way:

Ä=- L U«(G2)|a(G2)-l| + 0(G2)l
gg€« l l j

= - Z \ \{«(G) + 20(G) \{a(G) + 20(G)       + 25(G)]
g 06» L z, J

where 5(G) denotes the number of 4-cycles in the cycle structure of G as a

permutation of ®. Then using (vii) we obtain that

R = \s + 2+- IS(G).
^ 8 ggw
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On the other hand, we have that R = 2 + ts, where e = 1, Oor — 1, according

as (D,C)'s (i — 1, •••,«) have the quadratic signature 1, 0 or — 1, respec-

tively. Comparing with two expressions of R we obtain that < = 1.

Lemma 9. r is even.

Proof. Let Q be an element of © of order q. Since by Lemma 8 (D, C);'s

are real characters, we obtain that (D, C), (Q) = (D, C), (i = 1, • • •, s).

Then using a theorem of Brauer [6, Proposition B) we see that X(Q)

= X(Q~l) for every irreducible character X of ®. Thus Q and Q 1 are con-

jugate in ©. Therefore r is even.

Now let P be an element (V 1) of ^ß. Let Q be an element in iVs^ß of order

q. Let / be an involution such that IQI = Q-1, whose existence is secured

by Lemma 9.

3. Analytic representations for P and /. Now we identify Q with GF(p).

Then we choose x' = x + 1 as an analytic representation for P. We can put

Q1 PQ — P"\ that is, PQ = QPa, where a is a certain primitive root modulo

p. Since P is transitive on GF(p), we can assume that Q fixes the element 0

of GF(p). Let f(x) be an analytic representation for Q. Then we have that

f(x + 1) = /(x) + a2. From this we see that x' = a2x is an analytic repre-

sentation for Q. Then Q transfers squares and nonsquares in GF(p) to

squares and nonsquares in GF(p), respectively. Since IQI = Q~\ I fixes the

element 0 of GF(p). Since Q is transitive on the set of nonzero squares in

GF(p), we can assume that / fixes the element 1 of GF(p). Let g(x) be an

analytic representation for /. Then using IQ = Q"1/ we obtain that a2g(x)

= g(a~2x). Taking x = 1 we obtain that a2 = g(a~2) and recurrently a2'

= g(a '2'). Similarly we obtain that g(a 2,1)=a2g(a~2'+>). From these

equalities we see that

is an analytic representation for /.

Now we notice that because of p = 2q + 1, - 1 is a nonsquare in GF(p)

and every square in GF(p) other than 0 and 1 is a square of some primitive

root modulo p. Thus replacing Q by its suitable power, we see that a can be

any primitive root modulo p. Therefore we obtain the following lemma.

Lemma 10. Take x' = x + 1 as an analytic representation for P. Then

{1 / x   if x is a nonzero square in GF(p),

bjx   if x is a nonsquare in GF(p)

is an analytic representation for I, where b (?^0, 1) is any square in GF(p).

1/x if x is a nonzero square in GF(p),

a2/x if x is a nonsquare in GF(p)
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Let us consider the permutation IPC in &, where c is a nonzero square in

GF(p). Using Lemma 10 the analytic representation of IF* can be de-

scribed as follows: (I) x' = (1 + cx)/x if x ^ 0 is a square in GF(p); (II) x'

= (b + cx)/x if x is a nonsquare in GF(p); (III) 0' = c. Similarly, the

analytic representation of (IP0)2 can be described as follows: (IV) x'

= {x + c(l + cx) }/(l + cx) if x ^ 0 and 1 + cx are squares in GF(p), where

1 + cx ^ 0 because c and x are squares in GF(p) and — 1 is a nonsquare in

GF(p); (V) x' = \bx + c(l + cx) )/(l + cx) if x ^ 0 is a square in GF(p) and

if 1 + cx is a nonsquare in GF(p); (VI) x' = {x 4- c(b + cx) |/(6 + cx), if x

and b + cx are nonsquares in GF(p); (VII) x' = \ bx + e(6 + cx) }/(6 + cx), if

x is a nonsquare in GF(p) and if b + cx ^ 0 is a square in GF(p); (VIII) 0'

= 1/c; (IX) ( - 6/c)' - c.

4. The case where 2 is a nonsquare in GF(p). Let m be a square in GF(p).

Then we denote by y/m the quadratic residual solution, namely, the solution

which is a square in GF(p), of the equation x2 = m.

Since p = —1 (mod 3), using the quadratic reciprocity law we see that 3

is a square in GF(p).

Lemma 11. We can assume that 13 is a nonsquare in GF(p).

Proof. Let us assume that 13 is a square in GF(p). Take b = — 2 in Lemma

10 and consider IP3 with c = 3. At first we show that a(IP3) = 2. Let us as-

sume that x' = x in (I). Then we get x2 = 1 + 3x. Hence we obtain that x

= H3±Vl3). Since }(3+ \/l3)(3 - \/l3) = - 1, just one of the solu-
tions is a square in GF(p). Let us assume that x' = x in (II). Then we get x2

= 3x — 2, which implies that x = 2. Next we show that ß(IP3) = 0. In order

to do this we have only to show that any element of GF(p) which is fixed by

(IP3)2 is already fixed by IP3. Herein we want to notice that the solutions

x' = x of (IV) and of (VII) are coincident with those of (I) and (II), respec-

tively. In fact, let us assume that x' = x in (IV). Then we get x + cx2 = x

+ c(l + cx). Dividing this by c we obtain that x2 = 1 + ex. Let us assume

that x' = x in (VII). Then we get bx 4 cx2 = bx + c(b + cx). Dividing this

by c we obtain that x2 = b 4- cx. Therefore we need consider only (V) and

(VI). Let us assume that x' = x in (V). Then we get x4 3x2= — 2x

4 3(1 4 3x), which implies that (x — 1)2= 2. This is a contradiction, be-

cause we have assumed that 2 is a nonsquare in GF(p). The same holds on

(VI).
Now from (*) we obtain that DC^IP3) = — 1/s, which must be an inte-

ger. But since we have assumed that s > 1, this is a contradiction.

Lemma 12. We can assume that 5 is a nonsquare and 7 is a square in GF(p).

Proof. At first let us assume that 5 is a square and 7 is a nonsquare in

GF(p). Take b = — 2 in Lemma 10 and consider IP with c = 1. Likewise,
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in Lemma 11 we can show that a(IP) = 2 and 15(1 P) = 0. In fact let us

assume that x' = x in (I). Then we get x2 = 1 + x. Hence we obtain that

x = |(1 ± V'5)- Since Hl + \/5)(l - v 5) = - 1, just one of the solutions

is a square in GF(p). Let us assume that x' = x in (II). Then we get x2 = — 2

+ x. Hence we obtain that x = i(l ± Vv - 7))- Since \(\+y/(-7)

(1 — V ( — 7)) = 2, just one of the solutions is a nonsquare in GF(p). Now

let us assume that x' = x in (V). Then we get x + x2 = — 2x + 1 + x, which

implies that (x + l)2 = 2. This is a contradiction. The same holds on (VI).

Therefore using (*) we obtain the same contradiction as in Lemma 11.

Next let us assume that both 5 and 7 are squares or nonsquares in GF(p).

Then we get a(IP) = 1 and ß(IP) = 0. In order to get a contradiction from

(*) we only have to know that IP is q-regular. Now IP is really q-regular,

because the cycle structure of IP contains a 3-cycle (0, 1,2).

Lemma 13. // 13 is a nonsquare and if 7 is a square in GF(p), then there

exists a permutation in G contradicting (*).

Proof. Take b = 4 in Lemma 10 and consider IP0 with c2 = 12 in GF(p).

We show that a(IP) = 2 and ß(IPc) = 0. In fact, let us assume that x' = x

in (I). Then we get x2 = — 1 + ex. Hence we obtain that x = \c =fc 2. Since

(\c + 2)( \c — 2) = — 1, just one of the solutions is a square in GF(p). Let

us assume that x' = x in (II). Then we get x2 = 4 + ex. Hence we obtain that

x = r,c ± V7. Since (*fC + \/7)(£c — y/l) = - 4, just one of the solutions

is a nonsquare in GF(p). Now let us assume that x' — x in (V). Then we get

x + ex2 = 4x + c + 12x, which implies that jx - (5c/8) j2 = 91/16 - 7.13/16.

By assumption this is a contradiction. The same holds on (VI).

5. The case where 2 is a square in GF(p). The idea of the proof in this case

is almost the same as in §4. The elements 2 and 3 are squares in GF(p). At

first we show that the elements 5, 7,11,13 and 17 can be assumed as squares

in GF(p). Then the key lemma (Lemma 19), which is also quite elementary,

shows that under these circumstances we can assume that all the elements

in GF(p) are squares in GF(p), which is obviously an absurdity.

Lemma 14. We can assume that 17 is a square in GF(p).

Proof. Let us assume that 17 is a nonsquare in GF(p). Take b = 4 in

Lemma 10 and consider IP with c2 = 8. We show that a(IP°) = 2 and

/3(/Pc) = 0. Let us assume that x' = x in (I). Then we get x2 = cx + 1.

Hence we obtain that x = kc ± \/3. Since (|c + y/'3)(\c — \/3) = — 1,

just one of the solutions is a square in GF(p). Let us assume that x' = x

in (II). Then we get x2 = cx + 4. Hence we obtain that x = ?c± y/6. Since

({c + \/6)( he — \/6) = — 4, just one of the solutions is a nonsquare in

GF(p). Let us assume that x' = x in (V). Then we get cx2 — 3x = c + 8x,



164 noboru ito [April

which implies that jx - (llc/16) [2 = 153/32 = 9.17/32. This is a contradic-

tion. The same holds on (VI).

Lemma 15. We can assume that 13 is a square in GF(p).

Proof. Let us assume that 13 is a nonsquare in GF(p). Take b = 3 in

Lemma 10 and consider IP2 with c = 2. We show that «{IP2) = 2 and

ßilP2) = 0. Let us assume that x' = x in (I). Then we get x2 = 1 + 2x.

Hence we obtain that x = 1 ± y/2). Since (1 + v/2)(l - \/2) = — 1, just

one of the solutions is a square in GF(p). Let us assume that x' = x in (II).

Then we get x2 = 3 + 2x. Hence we obtain that x = — 1. Let us assume that

x' = x in (V). Then we get 2x2 + x = 3x + 2(1 + 2x), which implies that

jx - (3/2) }2 = 13/4. This is a contradiction. The same holds on (VI).

Lemma 16. We can assume that 5 is a square in GF(p).

Proof. Using Lemma 15, let 13 be a square in GF(p). Let us assume that 5

is a nonsquare in GF(p). Take b = 4 in Lemma 10 and consider IP3 with

c = 3. We show that a(/P3) = 2 and ßdP3) = 0. Let us assume that x' = x

in (I). Then we get x2= 3x+ 1. Hence we obtain that x= i(3± -\/l3).

Since |(3 + \/13) (3 — \/l3) = — 1, just one of the solutions is a square

in GF(p). Let us assume that x' = x in (II). Then we get x2 = 3x 4- 4. Hence

we obtain that x = — 1. Let us assume that x' = x in (V). Then we get 3x2

4 x = 4x 4 3(1 4 3x), which implies that (x — 2)2 = 5. This is a contradic-

tion. The same holds on (VI).

Lemma 17. We can assume that 11 is a square in GF(p).

Proof. Using Lemma 16 let 5 be a square in GF(p). Let us assume that 11

is a nonsquare in GF(p). Take b = 3 in Lemma 10 and consider IP0 with

c2 = 6. We show that a(/.F) = 2 and j3(/Pc) = 0. Let us assume that x' = x

in (I). Then we get x2 = 1 4 ex. Hence we obtain that x= J(c± \/l0).

Since \(c + \/l0)(c — \/l0) = — 1, just one of the solutions is a square in

GF(p). Let us assume that x' = x in (II). Then we get x2 = 3 4 ex. Hence

we obtain that x = £(c± 3\/2). Since \(c + 3\/2)(c - 3\/2) = - 3, just

one of the solutions is a nonsquare in GF(p). Let us assume that x' = x in

(V). Then we get cx2 4 x = 3x 4 c(l 4 cx), which implies that ) x - (2c/3) }2

= 11/3. This is a contradiction. The same holds on (VI).

Lemma 18. We can assume that 7 is a square in GF(p).

Proof. Using Lemmas 15 and 16 let 5 and 13 be squares in GF(p). Take

b = 2 in Lemma 10 and consider IP0 with c2 = 5. We show that ailP2) = 2

and ß(IP°) = 0. Let us assume that x' = x in (I). Then we get x2 = 1 4 cx.

Hence we obtain that x = i(c± 3). Since |(c + 3)(c-3) = -1, just one

of the solutions is a square in GF(p). Let us assume that x' = x in (II).

Then we get x2 = 2 + cx. Hence we obtain that x= \(c± \/l3). Since



1965] transitive permutation groups 165

He + \/l3)(c — = — 2, just one of the solutions is a nonsquare in

GF(p). Let us assume that x' = x in (V). Then we get

x + cx2 = 2x + c(l + cx),

which implies that {x — (3c/5) |2 = 14/5. This is a contradiction. The same

holds on (VI).

Lemma 19. We can assume that every element in GF(p) is a square in GF(p).

Proof. Let / be the least prime number which is a quadratic nonresidue

modulo p. Then by Lemmas 14—18,1 is greater than 17. Let us assume that

/= 1 (mod 3). Then take b = 9 in Lemma 10 and consider IP* with c2

= i — 16, where, by assumption, / — 16 is a square in GF(p). We show that

a(IP*) = 2 and ß(IP*) = 0. Let us assume that x' = x in (I). Then we get

x2 = cx + 1. Since, by assumption, c2 + 4 = / — 12 is a square in GF(p), we

obtain that x = He ± (/ - 12)1/2). Since \{c + (/ - 12)1/2)(c - (/ - 12)1/2)

= — 1, just one of the solutions is a square in GF(p). Let us assume that

x' = x in (II). Then we get x2 = cx + 9. Since we have assumed that

I = 1 (mod 3), / + 20 is divisible by 3. If (/ + 20)/3 > /, then / < 10. Thus

(/ + 20)/3 is less than I and therefore it is a square in GF(p). Hence we ob-

tain that x = |(c± (I + 20)1/2). Since \(c + (/ + 20)1/2)(c - (i + 20)1/2)

= — 9, just one of the solutions is a nonsquare in GF(p). Let us assume that

x'= x in (V). Then we get x + cx2 = 9x + c(l + cx), which implies that

x-[(l- 8)c/2(/ - 16) |2 === /(/ - 12)/4(/ - 16). This is a contradiction. The

same holds on (VI).

Now let us assume / = 2 (mod 3). Then take b = 4 in Lemma 10 and con-

sider IP* with c2 = / — 9, where, by assumption, / — 9 is a square in GF(p).

We show that a(IP*) = 2 and ß(IP*) = 0. Let us assume that x' = x in (I).

Then we get x2 = cx + 1. Since, by assumption, c2 + 4 = / - 5 is a square

in GF(p), we obtain that x = He ± (/ - 5)1/2). Since Hc+(/-5)1/2)

• (c — (I — 5)1/2) 5= — 1, just one of the solutions is a square in GF{p). Let us

assume that x' = x in (II). Then we get x2 = 4 + cx. Since we have assumed

that / = 2 (mod3), I + 7 is divisible by 3. If (/ + 7)/3 > /, then / < 3. Thus
(/ + 7)/3 is less than / and therefore it is a square in GF(p). Hence we obtain

that x = He± (/ + 7)1/2). Since \(c + (/ + 7)1/2)(c - (1 + 7)1/2) === - 4, just

one of the solutions is a nonsquare in GF(p). Let us assume that x' — x

in (V). Then we get x + cx2 = 4x + c(l + cx), which implies that

\x- (/-6)c/2(/-9))2=/(/-8)/4(/-9). This is a contradiction. The

same holds on (VI).
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