TRANSITIVE PERMUTATION GROUPS OF DEGREE $p=2 q+1, p$ AND q BEING PRIME NUMBERS. III

By
NOBORU ITO

Introduction. Let p be a prime number such that $q=\frac{1}{2}(p-1)$ is also a prime number. Let Ω be the set of symbols $1, \cdots, p$, and let \mathbb{N} be a nonsolvable transitive permutation group on Ω. In a previous paper [6] the following theorem has been established: If \mathbb{E} is not triply transitive, then \mathbb{E} is isomorphic to either $L F(2,7)$ with $p=7$ or $L F(2,11)$ with $p=11$, where $L F(2, l)$ denotes the linear fractional group over the field of l elements. Now the purpose of this work is to improve this theorem as follows, namely, the following theorem will be proved.

Theorem. If \mathbb{H} is not quadruply transitive, then \mathbb{H} is isomorphic to $L F(2,5)$ with $p=5$ or $L F(2,7)$ with $p=7$ or $L F(2,11)$ with $p=11$.

Hence, in particular, if $p>11$, then \mathbb{B} is quadruply transitive.
The main idea of the proof given below is quite similar to that of [5], [6]. Therefore we use the same notation as in [6]. First of all, in order to prove the theorem, likewise in [6, Introduction], we can assume that (i) $p>11$; (ii) \mathcal{E} is simple; (iii) let \mathfrak{P} be a Sylow p-subgroup of \mathscr{B} and let $N s \mathfrak{P}$ be the normalizer of \mathfrak{P} in \mathbb{H}. Then $N s \mathfrak{P}$ has order $p q$; and (iv) let \mathfrak{Q} be a Sylow q-subgroup of \mathbb{E}. Then \mathfrak{Q} has order q and the cycle structure of a permutation $(\neq 1)$ of \mathfrak{Q} consists of two q-cycles. Let $C s \mathfrak{Q}$ and $N s \mathfrak{Q}$ be the centralizer and the normalizer of \mathfrak{Q} and \mathfrak{S}, respectively. Then $C s \mathfrak{Q}=\mathfrak{Q}$. Let the order of $N s \mathfrak{Q}$ be equal to $q r$. Then r divides $q-1$. Let \Re be a Sylow q complement of $N s \mathfrak{Q}$. Then \Re is cyclic of order r. We put $q-1=r s$.
X_{0}, X_{0}^{0} and X_{00} denote irreducible characters of the symmetric group S over Ω, whose values are given by $\alpha(S)-1$, $\frac{1}{\frac{1}{2}\{\alpha(S)-1\}\{\alpha(S)-2\}}$ $-\beta(S)$ and $\frac{1}{2} \alpha(S)\{\alpha(s)-3\}+\beta(S)$, respectively, where $\alpha(S)$ and $\beta(S)$ denote the number of symbols of Ω fixed by S and the number of transpositions in the cycle structure of S, respectively. Moreover, $(X, Y)(X, Y=A, B, C, D)$ denotes an irreducible character of \mathbb{E} which has p-type X and q-type Y. By a theorem of Frobenius [6, Proposition A] \mathcal{E} is quadruply transitive, if and only if X_{0}^{0} restricted on $\left(\mathscr{H}\right.$ and X_{00} restricted on (H) are irreducible. Now (H) will be assumed to be triply transitive [6 , Theorem] but not quadruply transitive. Then it will be shown that X_{0}^{0} restricted on $(\mathbb{E}$ is irreducible (Lemma 7) and that the decomposition of X_{00} restricted on $(\mathbb{)}$ into its irreducible components has the following form:

[^0]$$
X_{00}=\sum_{i=1}^{s}(D, C)_{i}
$$
where $(D, C)_{i}$'s $(i=1, \cdots, s)$ are q-exceptional characters of © \mathbb{H} and have degree $r p$ (Lemma 6). Herein we get $s>1$, because we have supposed that $\mathbb{B})$ is not quadruply transitive. Furthermore, by a theorem of Brauer [6, Proposition B]
\[

$$
\begin{equation*}
(D, C)_{1}(G)=\frac{1}{s}\left[\frac{1}{2} \alpha(G)\{\alpha(G)-3\}+\beta(G)\right] \tag{*}
\end{equation*}
$$

\]

is a rational integer for every q-regular element G of $₫$, which imposes a strong restriction on the cycle structure of permutations of \mathbb{E} because of $s>1$.

Now using a theorem of Frame [6, Proposition G] we show that a representation corresponding to $(D, C)_{i}(i=1, \cdots, s)$ can be realized in the real number field (Lemma 8), which implies that r is even (Lemma 9). Hence let I be the involution in \Re.

Finally we apply an idea somewhat similar to Fryer [3]. Namely, we identify Ω with $G F(p)$, the field of p elements. Let P be an element $(\neq 1)$ of \mathfrak{F}. Then we will find convenient analytic representations for P and I (Lemma 10). By means of these analytic representations we can verify the existence of a permutation of (B) (a word of P and I) which contradicts (*). But our present method requires the inspection of many words, though all of them have the form $I P^{a}$, where a is an integer.

1. Decompositions of X_{0} restricted on (B) and X_{00} restricted on \mathcal{H}.

Lemma 1. There are only four possible cases of the decomposition of X_{0}^{0} restricted on (\$) into the irreducible characters of (\$):
(i) X_{0}^{0} restricted on $(\mathbb{B}$ is irreducible.
(ii) $X_{0}^{0}=(A, B)+(D, A)$, where the degrees of (A, B) and (D, A) are equal to $(q-2) p+1$ and p, respectively.
(iii) $\quad X_{0}^{0}=\sum_{i=1}^{s}(A, C)_{i}+(B, A)+\sum_{i=1}^{s-2}(B, D)_{i}$, where the degrees of $(A, C)_{i} \quad(i=1, \cdots, s), \quad(B, A)$ and $(B, D)_{i} \quad(i=1, \cdots, s-2)$ are equal to $(r-1) p+1$ with $\delta_{q}=-1[6$, Proposition B], $2 p-1$ and $p-1$, respectively.
(iv) $X_{0}^{0}=\sum_{i=1}^{s}(A, C)_{i}+(D, A)+\sum_{i=1}^{s-1}(B, D)_{i}$, where the degrees of $(A, C)_{i} \quad(i=1, \cdots, s), \quad(D, A)$ and $(B, D)_{i} \quad(i=1, \cdots, s-1)$ are equal to $(r-1) p+1$ with $\delta_{q}=-1, p$ and $p-1$, respectively.

Proof. (Cf. [5], Lemma 5.) Since $X_{0}^{0}(P)=1$, by a theorem of Brauer [6, Proposition B] an irreducible character of (5) of p-type A or p-type C with $\delta_{p}=1$ must appear as an irreducible part of X_{0} restricted on $(\uplus$. Then inspecting the degree table in [6] we see that no irreducible character of p-type C with $\delta_{p}=1$ can appear. Now if it is (A, D), then we get (i). If it is (A, B), then it is easy to see that we get (ii). Hence let us assume that is has type
$(A, C) . S$ ce X_{0} is a rational character, the whole family of the characters of q type C will appear as irreducible parts of X_{0}^{0} restricted on \mathbb{B}. Now inspecting the degree table in [6] we see that $\delta_{q}=-1$ and that they have degree $(r-1) p+1$ and multiplicity 1 . Thus we have that

$$
X_{0}^{0}(X)=\sum_{i=1}^{s}(A, C)_{i}(X)+\cdots
$$

for every permutation X of $\left(\mathbb{B}\right.$, where the part \ldots does not contain $(A, C)_{i}$ $(i=1, \cdots, s)$ any more. By a theorem of Brauer [6, Proposition B] we have that $\sum_{i=1}^{s}(A, C)_{i}(P)=s$. Therefore irreducible characters of \mathbb{E} of p-type B or p-type C with $\delta_{p}=-1$ must appear in the part \cdots with the sum of multiplicities at least $s-1$. But the sum of degrees of the part \ldots equals $(s-1)$ $(p-1)+p$. Hence, checking up the degree table in [6] we see that no character of p-type C with $\delta_{p}=-1$ can appear, and that only characters of type (B, D) with degree $p-1$ except just one character (B, A) with degree $2 p-1$ or (D, A) with degree p can appear.

Let \mathfrak{S} be the maximal subgroup of \mathscr{B} leaving the symbol 1 of Ω fixed. Let Y_{0} be the character of \mathfrak{F} whose values are given by $\alpha(X)-2$ for every permutation X of \mathfrak{S}. Then since \mathfrak{S} is doubly transitive by a previous result [6, Theorem], Y_{0} is an irreducible character of \mathfrak{E}. Let Y_{0}^{*} be the character of \mathbb{H} induced by Y_{0}. Then by a theorem of Frobenius [6, Formula (11)] we have that

$$
Y_{0}^{*}(X)=X_{0}(X)+X_{0}^{0}(X)+X_{00}(X)
$$

for every permutation X of (\mathbb{E}).
Now let us assume that some (B, D) appears in the part \ldots with multiplicity $v>1$. Then by (\#) and by the reciprocity theorem of Frobenius we have that

$$
(B, D)(X)=v Y_{0}(X)+\cdots
$$

for every permutation X of \mathfrak{G}. For $X=1$ this gives that $p-1=v(p-2)$ $+\cdots$, which is obviously a contradiction. Thus if (B, A) appears, then we get (iii). If (D, A) appears, then we get (iv).

Lemma 2. There are only four possible cases of the decomposition of X_{00} restricted on (\mathbb{S}) into the irreducible characters of \mathbb{B} :
(i) X_{00} restricted on $(\mathcal{)}$ is irreducible.
(ii) $X_{00}=(A, B)+(B, D)$, where the degrees of (A, B) and (B, D) are equal to $(q-2) p+1$ and $p-1$, respectively.
(iii) $X_{00}=\sum_{i=1}^{s}(A, C)_{i}+\sum_{i=1}^{s}(B, D)_{i}$, where the degrees of $(A, C)_{i}$ $(i=1, \cdots, s)$ and $(B, D)_{i}(i=1, \cdots, s)$ are equal to $(r-1) p+1$ with $\delta_{q}=-1$ and $p-1$, respectively.
(iv) $X_{00}=\sum_{i=1}^{s}(D, C)_{i}$, where the degree of $(D, C)_{i}(i=1, \cdots, s)$ is equal to $r p$ with $\delta_{q}=-1$.

Proof. (Cf. [5, Lemma 6].) Let Q be an element of \mathbb{E} or order q. Since $X_{00}(Q)=-1$, by a theorem of Brauer [6, Proposition B] an irreducible character of $\left(\mathbb{S}\right.$ of q-type B or q-type C with $\delta_{q}=-1$ must appear as an irreducible component of X_{000} restricted on $(\mathbb{H}$. If it has q-type B, then we see from the degree table in [6] that it is an (A, B) with degree $(q-2) p+1$ or a (D, B) with degree $(q-1) p$. If it is a (D, B), then we get (i). If it is an (A, B), then we get (ii). Now let us assume that is has q-type C with $\delta_{q}=-1$. Then since X_{00} is a rational character, the whole family of the q-exceptional characters of \mathcal{E} must appear as irreducible components of X_{00} restricted on $(\mathbb{E}$. Again by inspecting the degree table in [6], we see that they are of type (A, C) with degree $(r-1) p+1$ or (D, C) with degree $r p$. If they are of type (D, C), we get (iv). Hence let us assume that they are of type (A, C). Then from the degree table in [6] we see that they have multiplicity 1 . Thus we obtain that

$$
X_{00}(X)=\sum_{i=1}^{s}(A, C)_{i}(X)+\cdots
$$

for every permutation X of $\left(\$\right.$, where the part \cdots does not contain $(A, C)_{i}$ ($i=1, \cdots, s$) any more. By a theorem of Brauer [6 , Proposition B] we have that $\sum_{i=1}^{s}(A, C)_{i}(P)=s$. Therefore irreducible characters of $B S$ of p-type B or p-type C with $\delta_{p}=-1$ must appear in the part \ldots with the sum of multiplicities at least s. But the sum of degrees of the part ... equals $s(p-1)$. Hence from the degree table in [6] we see that only characters of type (B, D) with degree $p-1$ can appear. The rest of the proof is the same as in Lemma 1.

Lemma 3. Neither of X_{0} restricted on (s) nor X_{00} restricted on (s) contains (B, D) of degree $p-1$ as its irreducible component.

Proof. (Cf. [5, Lemma 7].) By (\#) and by the reciprocity theorem of Frobenius we have that

$$
(B, D)(X)=Y_{0}(X)+L(X)
$$

for every permutation X of \mathfrak{W}, where L is a linear character of \mathfrak{W}. Since (S) is triply transitive by a previous result [6, Theorem]. By a theorem of Frobenius [6, Proposition A] X_{0} is orthogonal to both X_{0}^{0} restricted on (S) and X_{00} restricted on $\left(\mathscr{5}\right.$. Hence we have that $(B, D) \neq X_{0}$. Let $1_{@}$ and $1_{\mathscr{p}}$ be principal characters of \mathscr{H} and \mathfrak{F}, respectively. Let $1_{\mathscr{\Phi}}^{*}$ be the character of \mathscr{E} induced by $1_{\mathfrak{p}}$. Then we have that

$$
1_{5}^{*}=X_{0}+1_{\leftrightarrow} .
$$

Thus (B, D) restricted on \mathfrak{W} does not contain $1_{\mathfrak{p}}$ as its irreducible component. Thus we have that $L \neq 1_{\mathfrak{p}}$. Let L^{*} be the character of \mathbb{E} induced by L. Then by the reciprocity theorem of Frobenius we have that

$$
L^{*}(X)=(B, D)(X)+M(X)
$$

for every permutation X of \mathbb{G}, where M is a linear character of \mathbb{G}. Since $L \neq 1_{\mathfrak{S}}$, we have that $M \neq 1_{\mathbb{G}}$. Since © is assumed to be simple, this is a contradiction.
From Lemmas 1, 2 and 3 we get
Lemma 4. Case (iv) of Lemma 1 and Cases (ii) and (iii) of Lemma 2 cannot occur. Similarly, Case (iii) of Lemma 1 cannot occur if $s>2$.

Lemma 5. Case (iii) of Lemma 1 cannot occur.
Proof. Let us assume that this case occurs. Then by Lemmas 2, 3 and 4 we obtain that $s=2$ and that X_{00} restricted on \mathscr{E} is irreducible. Let Ω be the subgroup of \mathcal{E} consisting of all the permutations in \mathcal{B} each of which fixes each of the symbols 1 and 2 of Ω. Let 1_{Ω} be the principal character of Ω and $1 *$ be the character of © induced by 1_{Ω}. Then by a theorem of Frobenius [6, Formula (8)] we have that

$$
\begin{equation*}
1_{\stackrel{*}{*}(X)=1_{\Theta}(X)+2 X_{0}(X)+X_{0}^{0}(X)+X_{00}(X), ~(X)} \tag{**}
\end{equation*}
$$

for every permutation X of \mathbb{G}. Thus the norm of 1_{Ω}^{*} is nine.
Let $(\Omega)_{2}$ be the set of all the ordered pairs (x, y) such that x and y are different symbols of Ω. We represent © as a permutation group $\pi(\mathbb{E})$ on $(\Omega)_{2}$. Since \mathbb{E} is assumed to be simple, this permutation representation of \mathbb{E} is faithful. The character of $\pi(\mathbb{O})$ is equal to 1_{Ω}^{*}. It is known [2,8207] that the number of orbits of Ω as a subgroup of $\pi(\mathbb{(})$ equals the norm of 1_{Ω}^{*}. Put $\Gamma=\Omega-\{1,2\} .(\Gamma)_{2}$ is to be understood likewise, $(\Omega)_{2}$. Then it is easy to see that $(\Gamma)_{2}$ is divided into three orbits $\Gamma_{i}(i=1,2,3)$ of Ω as a subgroup of $\pi(\mathcal{G})$. Since ${ }^{(G)}$ is triply transitive on Ω by a previous result [6 , Theorem], Ω is transitive on Γ. Hence each $\Gamma_{i}(i=1,2,3)$ contains an ordered pair of the form ($3,{ }^{*}$). Furthermore, since \mathbb{H} is triply transitive, we can choose \Re so that \Re fixes the symbols 1,2 and 3 of Ω individually. Let us consider the act of \mathfrak{R} on the set of ordered pairs of the form (3, *) of $\Gamma_{i}(i=1,2,3)$. Then it is easy to see that the length of $\Gamma_{i}(i=1,2,3)$ is equal to $(p-2) r x_{i}$ with $x_{1}+x_{2}+x_{3}=4$. This implies that just one of $x_{i}(i=1,2,3)$ is equal to 2 and the other two are equal to 1 . Then by a theorem of Frame [6, Proposition F] the number

$$
F=\frac{\{p(p-1)\}^{7}(p-2)^{4}(p-2)^{3} r^{3} 2}{(p-1)^{4} \frac{1}{2} p(p-3)\{(r-1) p+1\}^{2}(2 p-1)}
$$

is a rational integer. Dividing F by $p^{6} q^{3}$ we obtain that

$$
F_{1}=\frac{(p-2)^{7} r^{2} 8}{\{(r-1) p+1\}^{2}(2 p-1)}
$$

is a rational integer. Since $(p-2,2 p-1)=3$ and since r is prime to 3 , we can put $2 p-1=3^{a} A$ with $1 \leqq a \leqq 7$ and $(A, 3)=1$. Since $(p-3,2 p-1)$ divides 5 , we can put $A=5^{b} B$ with $0 \leqq b \leqq 2$ and $(B, 5)=1$. Then we have that $B=1$ and $2 p-1=3^{a} 5^{b}$. Since $2 p \equiv 2(\bmod 4), a$ must be even: $a=2 a_{1}$. If $b=2 b_{1}$ is even, then we have that

$$
2 p-2=4 q=\left(3^{a_{1}} 5^{b_{1}}+1\right)\left(3^{a_{1}} 5^{b_{1}}-1\right)
$$

which is obviously a contradiction. Thus b is odd and hence $b=1$. This implies that $p=23$ or 1823 , which is a contradiction to a result of Parker and Nikolai [7].

Lemma 6. Case (iv) of Lemma 2 occurs.
Proof. Let us assume that X_{00} restricted on \mathbb{B} is irreducible. If X_{0}^{0} restricted on $(\mathbb{S}$ is irreducible, too, then by a theorem of Frobenius [6, Proposition A] \mathbb{B} is quadruply transitive on Ω against the assumption. Hence Case (ii) of Lemma 1 must occur. Let $N s \Omega$ be the normalizer of Ω in \mathbb{B}. Let $1_{N s \Omega}$ be the principal character of $N s \Omega$ and let $1_{N s \Omega}^{*}$ be the character of \mathbb{B} induced by $1_{N s \Omega}$. Then by a theorem of Frobenius [6, formula (9)] we have that (\#\#)

$$
1_{N s \Omega}^{*}(X)=1_{\Leftrightarrow}(X)+X_{0}(X)+X_{00}(X)
$$

for every permutation X of \mathbb{E}. Thus by (**) and (\#\#) the norms of 1_{Ω}^{*} and $1_{N s, R}^{*}$ are equal to 8 and 3 , respectively.

Let $\{\Omega\}_{2}$ be the family of all the subsets of Ω each of which consists of two different symbols of Ω. We represent $(\mathcal{B}$ as a permutation group $\pi\{\Theta\}$ on $\{\Omega\}_{2}$. Since \mathbb{E} is simple, this permutation representation of \mathbb{E} is faithful. The character of $\pi\{\leftrightarrow \in\}$ is equal to $1_{N s \Omega}^{*}$. It is known [2, §207] that the number of orbits of $N s \Omega$ as a subgroup of $\pi\{\mathscr{G}\}$ equals the norm of $1_{N s \Omega}^{*} .\{\Gamma\}_{2}$ is to be understood likewise, $\{\Omega\}_{2}$. Then it is easy to see that $(\Gamma)_{2}$ is divided into two orbits Γ_{1} and Γ_{2} of Ω as a subgroup of $\pi(\Theta)$ and that $N s \Omega$ as a subgroup of $\pi\{\mathbb{(J \}}\}$ is transitive on $\{\Gamma\}_{2}$. Then by the proof of Lemma 4 of [6] the lengths of Γ_{1} and Γ_{2} are equal to each other and hence it is equal to $\frac{1}{2}(p-2)(p-3)$. By a theorem of Frame [6, Proposition F], the number

$$
F=\frac{\{p(p-1)\}^{6}(p-2)^{4} \frac{1}{4}(p-2)^{2}(p-3)^{2}}{(p-1)^{4} \frac{1}{2} p(p-3) p\{(q-2) p+1\}}
$$

is a rational integer. Since $(p-2,(q-2) p+1)=1$, dividing F by

$$
p^{4} 4 q^{2}(p-2)^{6}
$$

we obtain that

$$
F_{1}=\frac{(p-3)}{2\{(q-2) p+1\}}
$$

is a rational integer, which is obviously a contradiction.
As we already have noticed in the introduction, using a theorem of Brauer [6, Proposition B] we get the following important formula from Lemma 6:

$$
\begin{equation*}
(D, C)_{1}(G)=\frac{1}{s}\left[\frac{1}{2} \alpha(G)\{\alpha(G)-3\}+\beta(G)\right] \tag{}
\end{equation*}
$$

for every q-regular element G of (s).
Now let us consider $\pi\{\leftrightarrow\}$. The character of $\pi\{\mathbb{H}\}$ is equal to $1_{N s i}^{*}$. By (\# \#) and by Lemma 6 the decomposition of $1_{N s s}^{*}$ into its irreducible components has the following form:

$$
\begin{equation*}
1_{N s,}^{*}=1_{\Theta}+X_{0}+\sum_{i=1}^{s}(D, C)_{i} . \tag{i}
\end{equation*}
$$

Moreover, let Δ be an orbit of $N s \Omega$ as a subgroup of $\pi\{\Leftrightarrow\}$ with length x. Let $C(\Delta)$ be the commuter of $\pi\{\Theta\}$ as the permutation matrix group corresponding to Δ. Using Schur's lemma we can reduce $C(\Delta)$ to a diagonal form:

$$
\begin{gathered}
p-1 \text { times } r p \text { times } \quad r p \text { times } \\
\left\{a, b, \cdots, b, c_{1}, \cdots, c_{1}, \cdots, c_{s}, \cdots, c_{s}\right\},
\end{gathered}
$$

where a, b and $c_{i}(i=1, \ldots, s)$ are algebraic integers. Then using a method Wielandt [8, §29] we see that a and b are rational integers, and furthermore we obtain the following three equalitities:

$$
\begin{equation*}
a=x \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
0=a+b(p-1)+r p \sum_{i=1}^{s} c_{i} \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} p(p-1) a=a^{2}+b^{2}(p-1)+r p \sum_{i=1}^{s}\left|c_{i}\right|^{2} . \tag{iv}
\end{equation*}
$$

Lemma 7. X_{0}^{0} restricted on (ξ) is irreducible.
Proof. Let us assume that X_{0} restricted on \mathbb{E} is reducible. Then Case (ii) of Lemma 1 occurs. Using (i) and $\left({ }^{* *}\right)$ we see that the norms of $1_{N s i}^{*}$ and
$1_{\* are equal to $s+2$ and $s+7$, respectively. It is known that the number of orbits of Ω as a subgroup of $\pi(\mathbb{B})$ and of $N s \Omega$ as a subgroup of $\pi\{\mathbb{M}\}$ is equal to the norms of 1_{Ω}^{*} and of $1_{N S}^{*} R$, respectively [$2, \S 207$]. Hence it is easy to see that $(\Gamma)_{2}$ is divided into $s+1$ orbits $\Gamma_{1}, \cdots, \Gamma_{s+1}$ of Ω as a subgroup of $\pi(\Theta)$. Let x_{i} be the length of $\Gamma_{i}(i=1, \cdots, s+1)$. Since \mathbb{H} is triply transitive by a previous result [6, Theorem], \Re is transitive on Γ. Hence each $\Gamma_{i}(i=1, \cdots, s+1)$ contains an ordered pair of the form ($3,{ }^{*}$). Furthermore, since \mathscr{B} is triply transitive, we can choose \Re so that \Re fixes the symbols 1,2 and 3 of Ω individually. Let us consider the act of \Re on the set of ordered pairs of the form ($3,{ }^{*}$) of $\Gamma_{i}(i=1, \cdots, s+1)$. Then it is easy to see $x_{i}=(p-2) r y_{i}(i=1, \cdots, s+1)$ with

$$
\begin{equation*}
\sum_{i=1}^{s+1} y_{i}=2 s \tag{v}
\end{equation*}
$$

Similarly, $\{\Gamma\}_{2}$ is divided into s orbits $\Gamma(1), \cdots, \Gamma(s)$ of $N s \Omega$ as a subgroup of $\pi\{\mathbb{(S)}\}$. By (v) there exist at least two different j 's $(1=s=+1)$ such that $y_{j}=1$. Now let us assume that there exist just two such j 's. Then the other $s-1 y_{j}^{\prime}$'s must be equal to 2 . Now by a theorem of Frame [6, Proposition F] the number

$$
F=\frac{\{p(p-1)\}^{s+5}(p-2)^{4}(p-2)^{s+1} r^{s+1} 2^{s-1}}{(p-1)^{4} p\{(q-2) p+1\} p^{s} r^{s}}
$$

is a rational integer. Since $(p-2,(q-2) p+1)=1$, dividing F by

$$
p^{4} q^{s+1}(p-2)^{s+5}
$$

we obtain that

$$
F_{1}=\frac{2^{2 s} r}{(q-2) p+1}
$$

is a rational integer. Since $(q-2) p+1=(p-2) s r-2$, we have that $(r,(q-2) p+1)=2$. This implies that $(q-2) p+1=2^{A}$. If $A=2 B$ is even, then we obtain that $(q-2) p=\left(2^{B}+1\right)\left(2^{B}-1\right)$, which implies that $2^{B}+1$ $>p$. This contradicts that $p=2 q+1$. But this is a contradiction, because of $q \equiv 2(\bmod 3)$. Thus A must be odd. Then we obtain that $(q-2) p+2$ $\equiv 0(\bmod 3)$. In fact, if $q \equiv 1(\bmod 3)$, then $p \equiv 2 q+1=0(\bmod 3)$, and if $q=3$, then $p=7$. Therefore we can assume that there must exist at least three different j 's $(1 \leqq j \leqq s+1)$ such that $y_{j}=1$. Then one of such Γ_{j} 's can be considered as an orbit, say $\Gamma(j)$, of $N s \Re$ as a subgroup of $\pi\{\circledast\}$. Then the length of $\Gamma(j)$ equals $\frac{1}{2}(p-2) r$. In particular, this implies that r is even. By a previous result [4, Theorem 2] we can assume that $r \geqq 4$. Now in the preceding consideration put $\Delta=\Gamma(j)$. Then we have (ii), (iii) and (iv) with $x=\frac{1}{2}(p-2) r$. From (ii) and (iii) we obtain that $-r-b$
$\equiv 0(\bmod p)$ and that $4 b=y r$ with an odd integer y. Then we can put $b=z p$ $-r$ with an integer z and we obtain that $4 z p-4 r=y r$. Thus we can put $4 z=w r$ with an odd integer w, and we obtain that $y=w p-4$. Now from (iv) we obtain that $(4 b)^{2}=r^{2}(w p-4)^{2} \leqq 4 p(p-2) r$, which implies that $r(w p-4)^{2} \leqq 4 p(p-2)$. Thus we see that w must be positive. If $w \geqq 3$, then we have that $(3 p-4)^{2} \leqq 4 p(p-2) / r \leqq p(p-2)$, which implies that $4 p^{2}$ $+8 \leqq 11 p$. This is a contradiction. Thus we must have that $w=1$ and $4 b=r p-4 r=r(p-4)$. Put this value of b into (iv) and multiply by 16. Then we obtain that

$$
4 p(p-1)(p-2) r=4(p-2)^{2} r^{2}+r^{2}(p-4)^{2}(p-1)+16 p r \sum_{i=1}^{s}\left|c_{i}\right|^{2}
$$

Dividing it by r we obtain that
(vi) $4 p(p-1)(p-2)=4(p-2)^{2} r+r(p-4)^{2}(p-1)+16 p \sum_{i=1}^{s}\left|c_{i}\right|^{2}$.

From (vi) we see that $r \equiv 0(\bmod 4)$ and $r \neq 0(\bmod 8)$. Put $r=4 r_{1}$ with an odd natural number r_{1}. Then dividing (vi) by 8 we obtain that

$$
q p(p-2)=2 r_{1}(p-2)^{2}+r_{1} q(p-4)^{2}+2 p \sum_{i=1}^{s}\left|c_{i}\right|^{2}
$$

If $r_{1} \geqq 3$, then we obtain that $p(p-2) /(p-4)^{2} \geqq 3$, which implies that $11 p \geqq p^{2}+24$. This is a contradiction. Thus r_{1} must be equal to 1 and $r=4$.

Now let us consider the irreducible character (D, A) of $(\mathcal{H}$ of degree p in X_{0}^{0} restricted on Θ. Since X_{0}^{0} is rational, (D, A) is rational, too. By (\#) we have that

$$
(D, A)(X)=Y_{0}(X)+Z(X)
$$

for every permutation X of \mathfrak{W}, where Z is a (reducible) rational character of \mathfrak{S} of degree 2 (cf. 5 , Lemma 9). If Z is irreducible, by a theorem of Brauer [6, Proposition B] Z must have q-type C. But then Z cannot be rational. Thus Z is a sum of two linear characters of $\mathfrak{S}: Z=L_{1}+L_{2}$. If $L_{1}=L_{2}$, then let L_{1}^{*} be the character of \mathbb{B} induced by L_{1}. Then by the reciprocity theorem of Frobenius, we have that $L_{1}^{*}=2(D, A)+\cdots$. Since the degree of L_{1}^{*} is equal to p, this is obviously a contradiction. Thus we obtain that $L_{1} \neq L_{2}$. Furthermore, since $1_{\text {है }}^{*}=1_{\aleph}+X_{0}$, we have that $L_{1} \neq 1_{\mathfrak{ß}} \neq L_{2}$ and that L_{1} and L_{2} must be algebraically conjugate. Let the field of characters $L_{i}(i=1,2)$ be the field of m th roots of unity. Then the degree of this field equals $\phi(m)=2$. Thus we obtain that $m=3$ or $m=4$. Let \mathfrak{S}^{\prime} be the commutator subgroup of \mathfrak{S}. Then the index of \mathfrak{S}^{\prime} in \mathfrak{S} is divisible by m. By Sylow's theorem we have that $\mathfrak{F}=\mathfrak{F}^{\prime} N s \mathfrak{Q}$. Thus the order of $N s \mathfrak{Q}$ which
equals $4 q$ is divisible by m. Thus we obtain that $m=4$. This implies that \mathfrak{G} contains a subgroup \mathfrak{M} of index 2 . Let \boldsymbol{e} be the character of \mathfrak{E} whose kernel is \mathfrak{M}. Let e^{*} be the character of \mathbb{E} induced by e. Using a theorem of Brauer and Tuan [6, Proposition C] we see that $e^{*}=(D, A)_{1}$ is an irreducible character of \mathbb{H}, which is different from (D, A) because of $L_{i} \neq e(i=1,2)$. Then the first q-block $B_{1}(q)$ of \mathbb{H} contains four characters $1_{\mathscr{H}},(D, A),(D, A)_{1}$ and (A, B). Since $r=4$, by a theorem of Brauer [1] we must have the following degree equation in $B_{1}(q)$.

$$
1+p+p=r p+(q-2) p+1
$$

This is absurd. Thus X_{0} restricted on $(\mathbb{\$}$ must be irreducible.
By Lemmas 6 and $7{ }^{0}$ we have that

$$
X_{00}(G)-X_{0}(G)=2 \beta(G)-1=\sum_{i=1}^{s}(D, C)_{i}(G)-X_{0}(G)
$$

for every permutation G of \mathbb{B}. Thus we obtain the following equality:

$$
\begin{equation*}
\sum_{G \in \oiint}\{\beta(G)\}^{2}=\frac{1}{4}(s+2) g \tag{vii}
\end{equation*}
$$

where g is the order of (G).
2. q-exceptional characters $(D, C)_{i}(i=1, \cdots, s)$.

Lemma 8. A representation corresponding to $(D, C)_{i}(i=1, \ldots, s)$ can be realized in the real number field.

Proof. Let e_{q} be a primitive q th root of unity and let Q be the rational number field. Then by a theorem of Brauer [1] all the ($D, C)_{i}$'s $(i=1, \cdots, s)$ are $Q\left(e_{q}\right)$-conjugate. Thus all the $(D, C)_{i}$'s $(i=1, \cdots, s)$ have the same quadratic signature [6, Introduction]. Now by a theorem of Frame [6, Proposition G] we can count the number R of real orbits of $N s \Omega$ as a subgroup of $\pi\{\Theta\}$ in the following way:

$$
\begin{aligned}
R & =\frac{1}{g} \sum_{G \in \circlearrowleft}\left[\frac{1}{2} \alpha\left(G^{2}\right)\left\{\alpha\left(G^{2}\right)-1\right\}+\beta\left(G^{2}\right)\right] \\
& =\frac{1}{g} \sum_{G \in \circlearrowleft}\left[\frac{1}{2}\{\alpha(G)+2 \beta(G)\}\{\alpha(G)+2 \beta(G)-1\}+2 \delta(G)\right]
\end{aligned}
$$

where $\delta(G)$ denotes the number of 4-cycles in the cycle structure of G as a permutation of $(\oiint$. Then using (vii) we obtain that

$$
R=\frac{1}{2} s+2+\frac{2}{g} \sum_{G \in M} \delta(G) .
$$

On the other hand, we have that $R=2+\epsilon s$, where $\epsilon=1,0$ or -1 , according as $(D, C)_{i}$'s $(i=1, \cdots, s)$ have the quadratic signature 1,0 or -1 , respectively. Comparing with two expressions of R we obtain that $\epsilon=1$.

Lemma 9. r is even.
Proof. Let Q be an element of \mathscr{H} of order q. Since by Lemma $8(D, C)_{i}$'s are real characters, we obtain that $(D, C)_{i}(Q)=(D, C)_{i}\left(Q^{-1}\right)(i=1, \cdots, s)$. Then using a theorem of Brauer [6, Proposition B] we see that $X(Q)$ $=X\left(Q^{-1}\right)$ for every irreducible character X of \mathbb{H}. Thus Q and Q^{-1} are conjugate in $₫($. Therefore r is even.

Now let P be an element $(\neq 1)$ of \mathfrak{B}. Let Q be an element in $N s \mathfrak{B}$ of order q. Let I be an involution such that $I Q I=Q^{-1}$, whose existence is secured by Lemma 9 .
3. Analytic representations for P and I. Now we identify Ω with $G F(p)$. Then we choose $x^{\prime}=x+1$ as an analytic representation for P. We can put $Q^{-1} P Q=P^{a^{2}}$, that is, $P Q=Q P^{a^{2}}$, where a is a certain primitive root modulo p. Since P is transitive on $G F(p)$, we can assume that Q fixes the element 0 of $G F(p)$. Let $f(x)$ be an analytic representation for Q. Then we have that $f(x+1)=f(x)+a^{2}$. From this we see that $x^{\prime}=a^{2} x$ is an analytic representation for Q. Then Q transfers squares and nonsquares in $G F(p)$ to squares and nonsquares in $G F(p)$, respectively. Since $I Q I=Q^{-1}, I$ fixes the element 0 of $G F(p)$. Since Q is transitive on the set of nonzero squares in $G F(p)$, we can assume that I fixes the element 1 of $G F(p)$. Let $g(x)$ be an analytic representation for I. Then using $I Q=Q^{-1} I$ we obtain that $a^{2} g(x)$ $=g\left(a^{-2} x\right)$. Taking $x=1$ we obtain that $a^{2}=g\left(a^{-2}\right)$ and recurrently $a^{2 i}$ $=g\left(a^{-2 i}\right)$. Similarly we obtain that $g\left(a^{-2 i-1}\right)=a^{2} g\left(a^{-2 i+1}\right)$. From these equalities we see that

$$
x^{\prime}= \begin{cases}1 / x & \text { if } x \text { is a nonzero square in } G F(p), \\ a^{2} / x & \text { if } x \text { is a nonsquare in } G F(p)\end{cases}
$$

is an analytic representation for I.
Now we notice that because of $p=2 q+1,-1$ is a nonsquare in $G F(p)$ and every square in $G F(p)$ other than 0 and 1 is a square of some primitive root modulo p. Thus replacing Q by its suitable power, we see that a can be any primitive root modulo p. Therefore we obtain the following lemma.

Lemma 10. Take $x^{\prime}=x+1$ as an analytic representation for P. Then

$$
x^{\prime}= \begin{cases}1 / x & \text { if } x \text { is a nonzero square in } G F(p), \\ b / x & \text { if } x \text { is a nonsquare in } G F(p)\end{cases}
$$

is an analytic representation for I, where $b(\neq 0,1)$ is any square in $G F(p)$.

Let us consider the permutation $I P^{c}$ in \mathcal{M}, where c is a nonzero square in $G F(p)$. Using Lemma 10 the analytic representation of $I P^{c}$ can be described as follows: (I) $x^{\prime}=(1+c x) / x$ if $x \neq 0$ is a square in $G F(p)$; (II) x^{\prime} $=(b+c x) / x$ if x is a nonsquare in $G F(p)$; (III) $0^{\prime}=c$. Similarly, the analytic representation of $\left(I P^{c}\right)^{2}$ can be described as follows: (IV) x^{\prime} $=\{x+c(1+c x)\} /(1+c x)$ if $x \neq 0$ and $1+c x$ are squares in $G F(p)$, where $1+c x \neq 0$ because c and x are squares in $G F(p)$ and -1 is a nonsquare in $G F(p) ;(\mathrm{V}) x^{\prime}=\{b x+c(1+c x)\} /(1+c x)$ if $x \neq 0$ is a square in $G F(p)$ and if $1+c x$ is a nonsquare in $G F(p)$; (VI) $x^{\prime}=\{x+c(b+c x)\} /(b+c x)$, if x and $b+c x$ are nonsquares in $G F(p)$; (VII) $x^{\prime}=\{b x+c(b+c x)\} /(b+c x)$, if x is a nonsquare in $G F(p)$ and if $b+c x \neq 0$ is a square in $G F(p)$; (VIII) 0^{\prime} $=1 / c$; (IX) $(-b / c)^{\prime}=c$.
4. The case where 2 is a nonsquare in $G F(p)$. Let m be a square in $G F(p)$. Then we denote by $\sqrt{ } m$ the quadratic residual solution, namely, the solution which is a square in $G F(p)$, of the equation $x^{2}=m$.

Since $p \equiv-1(\bmod 3)$, using the quadratic reciprocity law we see that 3 is a square in $G F(p)$.

Lemma 11. We can assume that 13 is a nonsquare in $G F(p)$.
Proof. Let us assume that 13 is a square in $G F(p)$. Take $b=-2$ in Lemma 10 and consider $I P^{3}$ with $c=3$. At first we show that $\alpha\left(I P^{3}\right)=2$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=1+3 x$. Hence we obtain that x $=\frac{1}{2}(3 \pm \sqrt{ } 13)$. Since $\frac{1}{4}(3+\sqrt{ } 13)(3-\sqrt{ } 13)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get x^{2} $=3 x-2$, which implies that $x=2$. Next we show that $\beta\left(I P^{3}\right)=0$. In order to do this we have only to show that any element of $G F(p)$ which is fixed by $\left(I P^{3}\right)^{2}$ is already fixed by $I P^{3}$. Herein we want to notice that the solutions $x^{\prime}=x$ of (IV) and of (VII) are coincident with those of (I) and (II), respectively. In fact, let us assume that $x^{\prime}=x$ in (IV). Then we get $x+c x^{2}=x$ $+c(1+c x)$. Dividing this by c we obtain that $x^{2}=1+c x$. Let us assume that $x^{\prime}=x$ in (VII). Then we get $b x+c x^{2}=b x+c(b+c x)$. Dividing this by c we obtain that $x^{2}=b+c x$. Therefore we need consider only (V) and (VI). Let us assume that $x^{\prime}=x$ in (V). Then we get $x+3 x^{2}=-2 x$ $+3(1+3 x)$, which implies that $(x-1)^{2}=2$. This is a contradiction, because we have assumed that 2 is a nonsquare in $\operatorname{GF}(p)$. The same holds on (VI).

Now from (${ }^{*}$) we obtain that $D C_{1}\left(I P^{3}\right)=-1 / s$, which must be an integer. But since we have assumed that $s>1$, this is a contradiction.

Lemma 12. We can assume that 5 is a nonsquare and 7 is a square in $G F(p)$.
Proof. At first let us assume that 5 is a square and 7 is a nonsquare in $G F(p)$. Take $b=-2$ in Lemma 10 and consider $I P$ with $c=1$. Likewise,
in Lemma 11 we can show that $\alpha(I P)=2$ and $\beta(I P)=0$. In fact let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=1+x$. Hence we obtain that $x=\frac{1}{2}(1 \pm \sqrt{ } 5)$. Since $\frac{1}{9}(1+\sqrt{ } 5)(1-\sqrt{ } 5)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=-2$ $+x$. Hence we obtain that $x=\frac{1}{2}(1 \pm \sqrt{ }(-7))$. Since $\frac{1}{1}(1+\sqrt{ }(-7)$ $(1-\sqrt{ }(-7))=2$, just one of the solutions is a nonsquare in $G F(p)$. Now let us assume that $x^{\prime}=x$ in (V). Then we get $x+x^{2}=-2 x+1+x$, which implies that $(x+1)^{2}=2$. This is a contradiction. The same holds on (VI). Therefore using (*) we obtain the same contradiction as in Lemma 11.

Next let us assume that both 5 and 7 are squares or nonsquares in $G F(p)$. Then we get $\alpha(I P)=1$ and $\beta(I P)=0$. In order to get a contradiction from $\left(^{*}\right)$ we only have to know that $I P$ is q-regular. Now $I P$ is really q-regular, because the cycle structure of $I P$ contains a 3 -cycle ($0,1,2$).

Lemma 13. If 13 is a nonsquare and if 7 is a square in $G F(p)$, then there exists a permutation in G contradicting (${ }^{*}$).

Proof. Take $b=4$ in Lemma 10 and consider $I P^{c}$ with $c^{2}=12$ in $G F(p)$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. In fact, let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=-1+c x$. Hence we obtain that $x=\frac{1}{2} c \pm 2$. Since $\left(\frac{1}{2} c+2\right)\left(\frac{1}{2} c-2\right)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=4+c x$. Hence we obtain that $x=\frac{1}{2} c \pm \sqrt{ } 7$. Since $\left(\frac{1}{2} c+\sqrt{ } 7\right)\left(\frac{1}{2} c-\sqrt{ } 7\right)=-4$, just one of the solutions is a nonsquare in $G F(p)$. Now let us assume that $x^{\prime}=x$ in (V). Then we get $x+c x^{2}=4 x+c+12 x$, which implies that $\{x-(5 c / 8)\}^{2}=91 / 16=7.13 / 16$. By assumption this is a contradiction. The same holds on (VI).
5. The case where 2 is a square in $G F(p)$. The idea of the proof in this case is almost the same as in §4. The elements 2 and 3 are squares in $\operatorname{GF}(p)$. At first we show that the elements $5,7,11,13$ and 17 can be assumed as squares in $G F(p)$. Then the key lemma (Lemma 19), which is also quite elementary, shows that under these circumstances we can assume that all the elements in $G F(p)$ are squares in $G F(p)$, which is obviously an absurdity.

Lemma 14. We can assume that 17 is a square in $G F(p)$.
Proof. Let us assume that 17 is a nonsquare in $G F(p)$. Take $b=4$ in Lemma 10 and consider $I P^{c}$ with $c^{2}=8$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=c x+1$. Hence we obtain that $x=\frac{1}{2} c \pm \sqrt{ } 3$. Since $\left(\frac{1}{2} c+\sqrt{ } 3\right)\left(\frac{1}{2} c-\sqrt{ } 3\right)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=c x+4$. Hence we obtain that $x=\frac{1}{2} c \pm \sqrt{ } 6$. Since $\left(\frac{1}{2} c+\sqrt{ } 6\right)\left(\frac{1}{2} c-\sqrt{ } 6\right)=-4$, just one of the solutions is a nonsquare in $G F(p)$. Let us assume that $x^{\prime}=x$ in (V). Then we get $c x^{2}-3 x=c+8 x$,
which implies that $\{x-(11 c / 16)\}^{2}=153 / 32=9.17 / 32$. This is a contradiction. The same holds on (VI).

Lemma 15. We can assume that 13 is a square in $G F(p)$.
Proof. Let us assume that 13 is a nonsquare in $G F(p)$. Take $b=3$ in Lemma 10 and consider $I P^{2}$ with $c=2$. We show that $\alpha\left(I P^{2}\right)=2$ and $\beta\left(I P^{2}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=1+2 x$. Hence we obtain that $x=1 \pm \sqrt{ } 2)$. Since $(1+\sqrt{ } 2)(1-\sqrt{ } 2)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=3+2 x$. Hence we obtain that $x=-1$. Let us assume that $x^{\prime}=x$ in (V). Then we get $2 x^{2}+x=3 x+2(1+2 x)$, which implies that $\{x-(3 / 2)\}^{2}=13 / 4$. This is a contradiction. The same holds on (VI).

Lemma 16. We can assume that 5 is a square in $G F(p)$.
Proof. Using Lemma 15 , let 13 be a square in $G F(p)$. Let us assume that 5 is a nonsquare in $G F(p)$. Take $b=4$ in Lemma 10 and consider $I P^{3}$ with $c=3$. We show that $\alpha\left(I P^{3}\right)=2$ and $\beta\left(I P^{3}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=3 x+1$. Hence we obtain that $x=\frac{1}{2}(3 \pm \sqrt{ } 13)$. Since $\frac{1}{4}(3+\sqrt{ } 13)(3-\sqrt{ } 13)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=3 x+4$. Hence we obtain that $x=-1$. Let us assume that $x^{\prime}=x$ in (V). Then we get $3 x^{2}$ $+x=4 x+3(1+3 x)$, which implies that $(x-2)^{2}=5$. This is a contradiction. The same holds on (VI).

Lemma 17. We can assume that 11 is a square in $G F(p)$.
Proof. Using Lemma 16 let 5 be a square in $G F(p)$. Let us assume that 11 is a nonsquare in $G F(p)$. Take $b=3$ in Lemma 10 and consider $I P^{c}$ with $c^{2}=6$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=1+c x$. Hence we obtain that $x=\frac{1}{2}(c \pm \sqrt{ } 10)$. Since $\frac{1}{4}(c+\sqrt{ } 10)(c-\sqrt{ } 10)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=3+c x$. Hence we obtain that $x=\frac{1}{2}(c \pm 3 \sqrt{ } 2)$. Since $\frac{1}{4}(c+3 \sqrt{ } 2)(c-3 \sqrt{ } 2)=-3$, just one of the solutions is a nonsquare in $G F(p)$. Let us assume that $x^{\prime}=x$ in (V). Then we get $c x^{2}+x=3 x+c(1+c x)$, which implies that $\{x-(2 c / 3)\}^{2}$ $=11 / 3$. This is a contradiction. The same holds on (VI).

Lemma 18. We can assume that 7 is a square in $G F(p)$.
Proof. Using Lemmas 15 and 16 let 5 and 13 be squares in $G F(p)$. Take $b=2$ in Lemma 10 and consider $I P^{c}$ with $c^{2}=5$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=1+c x$. Hence we obtain that $x=\frac{1}{2}(c \pm 3)$. Since $\frac{1}{4}(c+3)(c-3)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=2+c x$. Hence we obtain that $x=\frac{1}{2}(c \pm \sqrt{ } 13)$. Since
$\frac{1}{4}(c+\sqrt{ } 13)(c-\sqrt{ } 13)=-2$, just one of the solutions is a nonsquare in $G F(p)$. Let us assume that $x^{\prime}=x$ in (V). Then we get

$$
x+c x^{2}=2 x+c(1+c x)
$$

which implies that $\{x-(3 c / 5)\}^{2}=14 / 5$. This is a contradiction. The same holds on (VI).

Lemma 19. We can assume that every element in $G F(p)$ is a square in $G F(p)$.
Proof. Let l be the least prime number which is a quadratic nonresidue modulo p. Then by Lemmas $14-18, l$ is greater than 17 . Let us assume that $l \equiv 1(\bmod 3)$. Then take $b=9$ in Lemma 10 and consider $I P^{c}$ with c^{2} $=l-16$, where, by assumption, $l-16$ is a square in $G F(p)$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=c x+1$. Since, by assumption, $c^{2}+4=l-12$ is a square in $G F(p)$, we obtain that $x=\frac{1}{2}\left(c \pm(l-12)^{1 / 2}\right)$. Since $\frac{1}{4}\left(c+(l-12)^{1 / 2}\right)\left(c-(l-12)^{1 / 2}\right)$ $=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=c x+9$. Since we have assumed that $l \equiv 1(\bmod 3), l+20$ is divisible by 3 . If $(l+20) / 3>l$, then $l<10$. Thus $(l+20) / 3$ is less than l and therefore it is a square in $G F(p)$. Hence we obtain that $x=\frac{1}{2}\left(c \pm(l+20)^{1 / 2}\right)$. Since $\frac{1}{4}\left(c+(l+20)^{1 / 2}\right)\left(c-(l+20)^{1 / 2}\right)$ $=-9$, just one of the solutions is a nonsquare in $G F(p)$. Let us assume that $x^{\prime}=x$ in (V). Then we get $x+c x^{2}=9 x+c(1+c x)$, which implies that $x-\{(l-8) c / 2(l-16)\}^{2}=l(l-12) / 4(l-16)$. This is a contradiction. The same holds on (VI).

Now let us assume $l \equiv 2(\bmod 3)$. Then take $b=4$ in Lemma 10 and consider $I P^{c}$ with $c^{2}=l-9$, where, by assumption, $l-9$ is a square in $G F(p)$. We show that $\alpha\left(I P^{c}\right)=2$ and $\beta\left(I P^{c}\right)=0$. Let us assume that $x^{\prime}=x$ in (I). Then we get $x^{2}=c x+1$. Since, by assumption, $c^{2}+4=l-5$ is a square in $G F(p)$, we obtain that $x=\frac{1}{2}\left(c \pm(l-5)^{1 / 2}\right)$. Since $\frac{1}{4}\left(c+(l-5)^{1 / 2}\right)$ $\cdot\left(c-(l-5)^{1 / 2}\right)=-1$, just one of the solutions is a square in $G F(p)$. Let us assume that $x^{\prime}=x$ in (II). Then we get $x^{2}=4+c x$. Since we have assumed that $l \equiv 2(\bmod 3), l+7$ is divisible by 3 . If $(l+7) / 3>l$, then $l<3$. Thus $(l+7) / 3$ is less than l and therefore it is a square in $G F(p)$. Hence we obtain that $x=\frac{1}{2}\left(c \pm(l+7)^{1 / 2}\right)$. Since $\frac{1}{4}\left(c+(l+7)^{1 / 2}\right)\left(c-(l+7)^{1 / 2}\right)=-4$, just one of the solutions is a nonsquare in $G F(p)$. Let us assume that $x^{\prime}=x$ in (V). Then we get $x+c x^{2}=4 x+c(1+c x)$, which implies that $\{x-(l-6) c / 2(l-9)\}^{2}=l(l-8) / 4(l-9)$. This is a contradiction. The same holds on (VI).

References

1. R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44(1943), 57-79.
2. W. Burnside, Theory of groups of finite order, Cambridge Univ. Press, Cambridge, 1911.
3. K. D. Fryer, A class of permutation groups of prime degree, Canad. J. Math. 7(1955), 2434.
4. N. Ito, A note on transitive groups of degree p, Osaka Math. J. 14(1962), 213-218.
5. \qquad , Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers. I, Bull. Amer. Math. Soc. 69(1963), 165-192.
6.

, Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers. II, Trans. Amer. Math. Soc. 113(1964), 454-487.
7. E. T. Parker and P. J. Nikolai, A search for analogues of the Mathieu groups, Math. Comp. 12(1958), 38-43.
8. H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.

Nagoya University,

Nagoya, Japan

[^0]: Received by the editors March 23, 1964.

