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1. Introduction. Let Sn denote the symmetric group of degree m

and let H be a subgroup of Sm of order h. Let x be a character of degree 1

on H, i.e., a nontrivial homomorphism of H into the complex numbers.

If A is an m-square complex matrix we define the generalized matrix func-

tion dx by

m

(1.1) dM) = Z x(o-)I7a.-.(.>

In [8] Schur related the function dx(.A) to the determinant function

via inequalities in the case that A is a non-negative hermitian matrix.

For example, one of Schur's results compares detA with the permanent

of A, per A, where

m

per A = £ IIai.(<)-
»GSm i-1

That is, per A is dx(A) with x = 1 and # = Sm.

Our results have to do with inequalities involving dx(A) when A is a

normal matrix. One of our main results is Theorem 3.1 that relates dx(A)

to a function involving the eigenvalues of A. In Theorem 3.4 we also prove

an extension of the known results on the van der Waerden conjecture [9]

for the permanent of a doubly stochastic matrix to the dx functions in the

case x = 1- A matrix with non-negative entries is called doubly stochastic

if every row and column sum is 1, e.g., the matrix Jm each of whose entries

is l/m is clearly doubly stochastic. In Corollary 3.2 we are able to extend

our inequalities to arbitrary A by comparing dx(A) with an appropriate

function of the singular values of A. Recall that the singular values of A

are the non-negative square roots of the eigenvalues of A*A.

2. Preliminary results. Let 1 ^ m g n and let Ym n denote the totality of

nm sequences w = (uu • • •, wm), 1 g w, = n. We define an equivalence rela-

tion in Tm „ relative to H: We say w is equivalent to r, w — r, if and only

if there exists a permutation a £ H such that u' = (co„(lh •••,ü>„(m)) = t. For
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fixed m, n and H we denote by A a system of distinct representatives for

the equivalence classes induced in rmn by this equivalence relation. For

example, if H = Sm then we may take a = Gm„, where Gmn is the set of

all (n+m~1) nondecreasing sequences w, 1 ^ u>i ̂  • • • g wm g n. For 7 £ rm,„

let «(7) denote the number of permutations <r£ H for which 7" = 7. There

is a simple and important combinatorial formula that we will use repeatedly.

Lemma 2.1. Let f: Tm,n—» V be a function on rmn with values in some

vector space V. Then

(2.1) Z fl«)-l4rZM

Proof. Since a is a system of distinct representatives for the equivalence

induced by H it is clear that 7° runs over rm „ as 7 runs over a and <j runs

over H. Let 7 £ a and let w lie in the same equivalence class, 7, as 7. Now

suppose 7* = w, <t> £ i7. Then 7" = 7 if and only if 7°* = w. The correspond-

ence <t0<-><t is one-one and thus there are exactly v(y) permutations <b for

which 7* = to. Thus

Z /(<•>) = ZZ/(«)
-Gfm,n VGA „Gr

= I-tVZ/(A

LetMm(V) be the space of m-multilinear functionals on a unitary space

Vwith inner product (x,y). Let V(m) be the dual space of Mm(V) and for

£,£ V, i = 1, • • -,m, we let xxft •••<?> xm denote, as usual, the decompos-

able tensor satisfying xxft ■ ■ ■ ft xm (f) = f(xu ■ ■ •, xm), for any /£Mm(V).

The formula

m

(2.2) (*i «•••«*«, yi        yJ = n (x<> *)
1=1

defines an inner product in Vim). For a £ Sm we let P(a): Vin> ̂  VM be

the permutation operator which  satisfies    p(o-)       • • • ft xm = xa-im ft

x„-i(m).

We then define a symmetry operator T: V(m) — V(m) by

r= Z xu)pu).

Clearly T* = T and 712 = hT. We call the subspace T(V{m>) = V(m) the

symmetry class of tensors associated with T. We set T(xx ft ■ ■ ■ ft xm)

= Xi* ■ ■ ■ * xm and call this latter expression the star product of xu ■ ■ ■, xm.

for example, if H = Sm, x(°~) = sgn<r, then the star product of xu •••,xm
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becomes the Grossman product xt A • • • A xm. An important formula that

follows immediately from these definitions is

m

(2.3) (xi * ■ ■ ■ * xm,yx * ■ ■ ■ *ym) = h £ xM II (xityc(i)).
«£h 1 = 1

At this point we note the connection between the generalized matrix func-

tion dx defined in §1 and the formula (2.3): if A = ((xitXj)), i,j = 1, ••-,/»,

then

(2.4) (xi *••• »JCm,y1« •■• *ym) = hdx(A).

If eu ••■,en is a basis for V then it is easy to prove that the tensors

e = e * ■ • • * ey , y £ A,  span Vim).  Let  7 £ A  and  consider the sum
1 m

Zy"=yxM where the summation extends over all <r£.rY for which 7' = 7.

Clearly this set is a subgroup of H, call it Hy, and hence Zt"-txU) is 0

or the order of Hy. But ^(7) is by definition the order of Hy. We let A

be the subset of A consisting of those 7£ A for which Zy'=yxM = "(7).

Lemma 2.2. The star products ey/y/(hi>{y))1/2, 7 £ A, comprise an ortho-

normal basis for Vtm) when ex,---,en is an orthonormal basis of V.

Proof. Let 7 and t be in A. Compute from (2.3) that

m

(ey,eT) = ft Y, x(°) II *».«»)
.eif i-i

= h Z x(°)oy,T(r.
«6«

Since both 7 and t are members of a system of distinct representatives it

follows that t" = 7 if and only if t = 7. Thus

(ey,er) = hby,r Z x(°-)oy,yo- = h&y_T £ XM-

Now ^,.,,)(W is 0 or «(7) according as 7 £ A or 7 £ A. Thus ey = 0 if

7 £ A and || ey\2 = hv(y) if 7 £ A, completing the proof.

If A is n-square and w, t £ rm„ then A [a>| t] denotes the m-square sub-

matrix whose (i,j) entry is oai,,;.

Lemma 2.3 (Generalized Cauchy-Binet Theorem). // A is mXn

and B is nX m then

(2.5) d,(AB) = £ -}-dx(A[l,...,m\y})dx(B[y\l,...,m}).

Proof. Let Ci, ■•■,en be an orthonormal basis of V and let
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n n

Xi = Z°i>e»   yj = Hb~tjet> i,j=l,---,m.
s-1 1=1

Then

(*i,yj) = Za*bkj = (AB)ijt
*=i

(xt,ev) = ahj,(en,yj) = bw,

and hence

((xher.)) = A[l,---,m\y]

and

((e^y,)) = B[y\l, ...,m].

By Parseval's equality applied in Vim) to the orthonormal basis of star

products eT/(/i<v(7))1/2, 7 G A, we compute

dx(AB) =-Oi*... *xm,y!*-.- *ym)

= £ ?.^)K(A[l,---,m|T])H(J3[T|l, ■",»»])

= Z ^dx(A[h---,m\y})dx(B[y\l,...,m}).

We remark that since eT = 0 for 7 A, we can replace A by A in (2.5).

This trivial observation, when translated into matrix language, has a rather

startling corollary: if 7G rm>„ is such that Zy'-y.'EHxM = 0 then for any

m X n matrix A we have

dx(A[h---,m\y]) = 0.

We apply Lemma 2.3 to obtain an important result involving values of

dx on normal matrices. Let m,(y) denote the number of occurrences of t in

the sequence 76 rmn, e.g., m4((l,2,2,4,4)) = 2.

Theorem 2.1. If A = U*DU, where U is m-square unitary and D

= diag(r,, • ••,rj, then

1 m

(2.6) dx(A) = Z T\ K(U[y\l,.-.,m])\iUrT'M.
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Proof. From Lemma 2.3 we compute that

dM) = Z -jTdx(U*[l,...,m\y})dx((DU)[y\h---,m}).

Moreover,

dx(U*[h--',m\y})= ZxU)IT«Ml)i

= z xU)nx(i),
.£H i-1

= Z x(e>) IT "t.-.*<0

= dx(L7[T|l,...,m]).

Also

m

dx((DU) [y 11, • •   m]) = II rfMdx( U[y 11, • • •, m))
t=\

and (2.6) follows.

We can use Theorem 2.1 to derive special relations that must obtain

among the values of dx on certain matrices constructed from the rows of

a unitary matrix. This will be used subsequently to yield an upper bound

for I dx (A) I when A is normal.

Theorem 2.2. // U is m-square unitary and H p g m, then

(2.7) Z ^K(L/[7|l,..,m])|2=l.

Proof. In formula (2.6) we regard ru ■•■,rm as variables and U as a

fixed matrix. We then differentiate both sides of (2.6) with respect to rp

and evaluate both sides of the resulting equation at (ru ■ ■ ■ ,rm) = (1, • • •, 1)

= e. First observe that

m

dx(A) = as( Z xM IT Omo+Z'.
o-(s) =r i — X,i
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where the first summation extends over all a £ H for which a(s) = t (if

any) and Z' does not involve a^. Thus

(2.8)
ddx(A)

da*
=   Z  x(')    IT °«»0>

»(s)=f i = l,i^s

Since dx(A) can be regarded as a composite function of ru •••,rm we have

(2.9)
ddx(A) _ £ ddx(A) Baa

drp       s,,.!   dag, drp

We evaluate (2.8) at e = (1, 1). Since A collapses to Im for ^ = • • ■ = r„

= 1, au[i) = oud), i = 1, • • -,m, and hence

ddx(A)

da.
0

if s 5* t. U s = t then

ddx(A)

da«
= Z xM FI

e      o(s)=s i = \,i^s

= 1.

Thus we compute from (2.9) that

ddx(A) = z da.

= - (tr(A))
dr„

i (la«)

= — /zM
c       drp \s=l /

If we differentiate the right side of (2.6) with respect to rp we obtain

= Z ^\dAU[y\l,...,m])\*mp(y)r^-1 f[ r^K
yEivyy) (=u^p

Thus

ddx(A)

drn
= ZTr^Y\dx(U[y\l,...,rn})[\

e   ye* »(y)

completing the proof.

Our last preliminary topic concerns the analysis of equality between

star products. This investigation is important in order to decide the cases

of equality in certain inequalities in §3.
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It is proved in [6] that for H = Sm and x = 1. *i * • • ■ *xm = 0 if and

only if some x, = 0. Also xx * • • • *xm = yY * ■ ■ ■ *ym ̂  0 if and only ifx,

= d,-yl(i), i = 1, ■ • ■ ,m, for some <r£:Sm and scalars d,, I7r=id; = 1.

Lemma 2.4. // x, and y, are in V, i — 1, ■ ■ • ,m, H is any subgroup, and

x = 1, then

(i) Xi * • • • * xm = 0 if and only if some x; = 0;

(ii) if Xi* ••• * xm — yx * ■ ■ ■ *ym ^ 0 then there exists a a £ Smand constants

di^O, i = 1, • • •, m, such that x, = diyc{i), i = 1, • • •, m. Moreover, Yi?=idi = 1-

Proof. Let R = £.esmP(«r). Observe that if T = Z-eHPM then

Thus if Xj * • • • *xm = 0 then Tta® • • • ® xj = 0 and hence RT(xxft •■■ft xm)

= 0. From (2.3) we see that

0 = |/cTxj® ...® xm||2 = A^lÄi!® ...® xm||2

= A2m! per((x;,xy)).

It is proved in [l] that

Hence nr-ill^ill2 = 0 and thus some x, = 0. This proves (i). Similarly, if

T(xj® • ■ ■ ® xm) = Tiyxft ■ ■ ■ ft yj then ß(x,® • • • ® xJ = fi(y,® ... ® ym)

and clearly if some x; or y,- were 0 then x, * • • • * xm = yx * ■ ■ ■ *ym = 0. Hence

no x, or y, is 0 and we can use [6, Theorem 3] to conclude (ii). We remark

that it is an open question at present whether or not the permutation a

in (ii) above can be chosen to be in the subgroup H.

3. Main results. We first state and prove an inequality for the values of

the dx function on normal matrices.

Theorem 3.1. If A is m-square normal with eigenvalues ru---,rm then

TR = RT = hR.

m m

per((x,,x,)) ̂ lite.xd =11 II*.II2-
i = l i=l

(3.1) \dM)\ =-

Proof. For 7 £ A let

c7= \dx(U[y\l,...,m})\2,

where

A = f/*diag(r1,...,rm)L/

and U is m-square unitary. Then, from (2.6),
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K(A)| ■
"(7) (=1

-Z-fe (ift€i"W \m »-1 /

rGi "(7) TO (=i

= - 2- lr'l 2- —ri-
TO ,.j >gr 1/(7)

1

m 2>«r

The last equality follows from Theorem 2.2.

Applying the Cauchy-Schwarz inequality to (2.4) yields

Theorem 3.2. If A is m X n and B is n X to iften

(3.2) K(AB)|2gd,(AA*)dx(fi*B).

/n case x = 1, equality holds in (3.2) on/y if (i) A Aas a zero row, or (ii) ß

has zero column or (iii) A = DPB*, where D is a diagonal matrix, and P

is a permutation matrix.

The cases of equality follow from Lemma 2.4.

Theorems 3.1 and 3.2 yield the following corollaries.

Corollary 3.1. If N is m-square normal with eigenvalues ru---,rm then

1 m

(3.3) IperiVI g - £ |r,|".
TO

7/ in addition N is doubly stochastic then

p(N)
(3.4) I per N | g

where p(N) denotes the rank of N. The inequality (3.4) is strict unless either

N is a permutation matrix or m = 2 and N = J2.

Proof. The inequality (3.3) follows immediately from Theorem 3.1. The

inequality (3.4) including the discussion of equality is found in [4].
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Corollary 3.2. If A is an arbitrary complex matrix with singular values

«i» • • ■, <*m then

1 m

(3.5) \dM)\2*~
m j_j

Equality holds for x = 1 in (3.5) i/ and only if A = adiagfe"1, • • •, e^"1) P,

öftere P is a permutation matrix corresponding to some permutation a in

the group H.

Proof. We use Theorem 3.2 and Theorem 3.1 applied to the hermitian

matrix A A* to conclude

(3.6) \dx(A)\2£dx(AA*) -S- Zaf.
™ i-i

If equality holds for x = 1 in (3.6) then (i) A has a zero row or column

or (ii) A has no zero row or column and A = DP, where D is a diagonal

matrix and P is a permutation matrix. Suppose (i); then dx(A) = 0

= (l/m)Z?=i*tn and hence «r = ••• = «m = 0. It follows that A = 0.

If (ii), then D = diag(dlt • • -,dm) has no zero main diagonal elements.

Thus

dx(AA*) = dx(DD*) =f[\di\2

-|    m -| m

- Z«f=- Z|d,|
.-i        m i-i

Hence

Set d; = ae"> and then

|di| = ••• = \dm\=a.

A = a diag(e"'1, • • •, el>m) P.

Now,

fx(")«V'    if «rGif,

if «T $ /Y.

If a ({E/7 then 0 = dx{A) and once again we would conclude A = 0.

Corollary 3.3. 7/ A is an arbitrary m-square doubly stochastic matrix then
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Equality holds in (3.7) if and only if p(A) = m and A is a permutation matrix.

Proof. By Theorem 3.2 and Corollary 3.1 applied to the permanent func-

tion we have

(per Ar = per A A* ^-= -
m m

and (3.7) follows. If equality holds then either A A* is a permutation matrix

or m = 2 and A A* = J2. If A A* = J2 then p(A) = 1 and since A is doubly

stochastic, A would be J2. But (perJ2)2 = 1/4 while p(A)/2 = 1/2. If

AA* = P, where P is a permutation matrix then both A and A'1 have

non-negative entries and thus A is a permutation matrix.

We next obtain an inequality relating the eigenvalues of an n-square

matrix A with the values of dx on a principal submatrix of A.

Theorem 3.3. If A is an n-square positive semi-definite hermitian matrix

with eigenvalues rx ^ • • • ^ rn and B is an m-square principal submatrix of

A, 1 ^ m ii n, then

m I m

(3.8) rK-/+i = <*x(ß)=- I>f.

Proof. Let (x,y) denote the usual inner product in the space of re-tuples.

Since B is a principal submatrix of A there exists an orthonormal set of

vectors eu ■■■,em such that 6i; = {Aehe^. Then by [4, Corollary l]

dx(B) ^ detB

= det((Ae;,e1))

= det((Aeitej))

= (Cm(A)ei A ••• A««,eiA ••• AeJ

m

The latter inequality is found in [3] where the general extremal problem

for Grassmann compounds Cm(A) is analyzed.

To prove the other inequality in (3.8) we use Theorem 3.1 to obtain

1 m

dx(B)g- 2>r,
to ,=i

where s{ ̂  • • • 2: sm are the eigenvalues of B. By the Cauchy inequalities

(see [5, Chapter II, 4.4.7]), s, ^ r„ i = 1, •••,m, and the result follows.

In [6] it was proved that per A ^ m\/mm when A is an rei-square positive
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semi-definite hermitian doubly stochastic matrix. Later in [7] this result

was extended to a slightly larger class of matrices. We now extend the

result to a more general class of matrices and to the generalized matrix

functions.

Theorem 3.4. Let A be an m-square non-negative hermitian matrix whose

ith row sum is s;, i = 1, • • • ,m. Assume that Z?-is' = s ^0. If x = \

Equality holds in (3.9) if and only if either (i) a row of A is zero or (ii) p(A) = 1.

Proof. Since A is positive semi-definite hermitian it is a Gram matrix

based on some set of vectors xu---,xm, i.e., Oy = (Xi.xf). From (2.4) we

have

Let u = xx + • • • + xm and then compute immediately that || u ||2 = s. We

assumed s ^ 0 and hence it follows that s > 0 and u ^ 0. Let v = u * • • • *u

and from Lemma 2.4 observe that v j£ 0. Thus from (3.10), and the Cauchy-

Schwarz inequality

(3.9)
h m

^u) = ̂ ni«.i2-

(3.10) xm\\2 = hdx(A)-

*xm,u * ■ ■■ *u)12

Note that (x„ u) = s, and thus

hd*iA)=w hUSi 2

(3.11)

i=i

m

Now,

M|2=||u*...*u

(3.12)
= hdx((u,u))

= hdx((s))

= h2sm.

Combining (3.11) and (3.12) we have the inequality (3.9).
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For equality to hold in (3.9) it is clear from the cases of equality in

the Cauchy-Schwarz inequality that xx* •■• *xm and u * •■• *u must be

linearly dependent. Since u ^ 0 we have, by Lemma 2.4, either (i) Xi = 0

for some i, or (ii) xt = dtu, d, ^ 0, i = 1, • • •, m, i.e., p(A) = 1. If (i), then

clearly A has a zero row. Conversely, if A has a zero row then obviously

both sides of (3.9) are 0. If p(A) = 1 so that

then

aij = dldJ,     i,>= l,...,m,

dx(A) = /if! |d,|2,

whereas,

Then

and

Hence

Si = d^dj-

nis.i2=riKi2 zd,
i-l i=l j-\

.  IB       . ffl ,   TJX m        . ffl ttl- (£*) -       - W

3lH«l,-*III*l*-^M>.
*    i-l i-l

completing the proof.

Corollary 3.4. If A is an m-square doubly stochastic positive semi-

definite hermitian matrix, then

per A ^
m\

m

We re-examine Theorem 2.1 in anticipation of applying it to special

choices of H. First observe that each 7(0 = (t,---,t), t= 1, •■•,/«, is in

A because it is the sole member of an equivalence class induced in rm,„ by

H. We assume here that x = 1 so that

Z     xU) = »(y(t)) = h,   i.e., 7W GÄ, f= 1, ...,m.
«Gff.Y'W-v»)
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If the eigenvalues ru •••,rm of A are non-negative, then from (2.6) we

can conclude that if 9 is any subset of A then

(3.13) dM) \dx(U[y\l,...,m])\2f[rr'M.

If 9 is chosen to be the set of y(t), t= 1, •••,m, we obtain

dx(A)^Zi\dx(U[t,...,t\l,...,m))\2rr
1=1 n

1

n (=1 ;=1

2 _m
'f

m m

*z n(=i j=i
2 _m

The eigenvector of A corresponding to r, is just (ua, ■••,Utm).

Theorem 3.5. If x = 1 and A is positive semi-definite hermitian and £,

is the product of the squares of the absolute values of the coordinates of the

unit eigenvector corresponding to r, then

(3.14) dx(A) ZhZSirr.

For example, if (l/(m)1/2, • • •, l/(m)1/2) is an eigenvector of A corre-

sponding to r then

(3.15)
■ , 4 > hrm

dx(A) gt —
m

We remark that in case A is doubly stochastic and H = Sm we have from

(3.15)

, ™!
per A Z —,

m

which is once again the Corollary 3.4.

Let A be an m-square circulant based on the first row (cq, cm_i, ■ • •, C\).

If \p(\) is the polynomial Z^CiX' and t = <?i2"/m then the eigenvalues of

A are rp = \p(tp) with corresponding eigenvectors

Vn =
m-p 2{m-p) m{m-p)

The values of £p are thus l/mm, p = 1, •■■,m.

P = 1, , m.
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If in (3.13) we allow 9 to be the set 7(0, t = \,---,m, together with

the sequence (1,2, •■■,m) we conclude immediately that

h   m 1

dM)^^Zr? + -m-\dx(R)\2detA,

where R is the m-square matrix whose (s, t) entry is tst.

Thus we have

Corollary 3.5. // A is a positive semi-definite m-square hermitian circu-

lant, x = 1 and t = ei2Tlm, then

dx(A) ^ ^ [h. tr(Am) +detA
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