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Introduction. The first part of this paper (Theorems 1-3) gives a short,

unified treatment of (Mealy type [12]) automata (sequential machines).

By associating with every input two binary relations ("next-state" and

"output" relations) we obtain an easy and concise algebraic method for

the description and study of complete or partial, finite or infinite automata.

In the second part (Theorems 4-7) we develop further the algebraic de-

composition theory of automata, continuing previous work by J. Hartmanis

[7]-[9] and M. Yoeli [16]-[18]. To make the exposition self-contained,

we repeat some of the material contained in [18]. For other approaches

to automata decompositions the reader is referred to [l], [3], [5], [10], [11].

In [18] the concept of semi-automaton (see Section I) was introduced

and methods for its decomposition by means of overlapping partitions were

derived. In the present paper these investigations are extended to (Mealy

type) automata and the problems of covering specified automata by direct

and cascade products are studied.

This approach leads to an interesting new algebraic concept, namely

that of a weak (i.e., generalized) homomorphism denned by overlapping

partitions. Recently this concept and its applicability to partial algebras

has been further investigated [19] and generalizations of well-known re-

sults on homomorphisms and subdirect products of partial algebras have

been obtained.

We hope that this mutual enrichment of pure algebra and automata

theory will be of interest to both the applied as well as the pure algebraist.

The newcomer to automata theory is referred to the introductory texts

[2], [4]-[6] and the collection of papers [13], [14]. [13] also contains a very

extensive bibliography on sequential machines.

The contribution of the second author was supported by the U. S. Office

of Naval Research, Information Systems Branch, under Contract No.

N 62558-3510. The present paper is a revised version of Technical Report

No. 15, Hebrew University, Jerusalem, Israel (July, 1963), DDC-

Document AD-417 380.

I. Preliminaries. We first recall some basic concepts on binary relations

to be used in the sequel.
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Let R be a relation between the sets M and N, i.e., RQ M X N. Fol-

lowing [15] we denote

\R= \-m\3n: (m,n) £i?j and R\ = \ n\ 3m: (m,n) £Ä|.

For M' CM, M'Ä= {n| 3m£M': (m,n)efi|.

The following is evident:

^Cfl^ ßjfi C R2R, RRX C ßß2, fif1 C Ä2 1,

|Ä = M==> RR~1^IM= {(m,m)\mEM\.

Next we list the following basic definitions concerning automata.

We define a semi-automaton A as a system (SA, XA, AA) where is a

nonempty set (of states), XA is a nonempty set (of inputs) and AA (the

next-state function) a mapping from a subset of S4 X XA into S^.

With every x £ X4 we associate a binary relation x"4 over SA defined by:

(s/f) E~xA <=> AA(s,x) = t.

Clearly the semi-automaton A can alternatively be defined as a triple

(SA,XA, \xA\xE XA }) where the xA are mappings from SA into S^.

The following definitions are taken over from [18]. A decomposition ir

of a given set S is a family of nonempty subsets of S whose set union is S.

Let A = (SA,XA,AA) be a semi-automaton and ■* a decomposition of

SA. 7T is admissible by A, if for every HE* and every xEXA there exists

a X£ir such that HxA C K. The semi-automaton B = (SB,XB,AB) is a

■n-factor of A if (i) SB = *■, (ii) XA = XB, (iii) for every H £ ir and every

x£XA, HxA = 0 implies HxB = 0 and (iv) for every r7£ir and every

x£X„, HxAQHxB.

Clearly, if A = (S^.X^.A'4) is a semi-automaton and 7r a partition of

SA admissible by A, there exists exactly one n-factor B of A (notation:

B = A/x).
The direct product A X ß of the semi-automata A = (S^.X.A'4) and

ß = (SB, X, Aß) is the semi-automaton C = (Sc, X, Ac) where Sc= SA X SB

and (s,4, sB)xc = sAxA X SbXb.

knautomaton A = (S^, X^, Z^, AA, AA) is a semi-automaton A = (S^, X4, AA)

together with a nonempty set (of outputs) ZA and a mapping \A (the output

function) from a subset of Sa X XA into ZA.

As previously, we associate with each input x £ XA a binary relation

x* Q SA X Z4 defined by:

(s.z) £ xi <^> \A(s,x) = z.

The semi-automaton A of the automaton Ä is complete if AA is com-

pletely defined, i.e., for every sESA and every xEXA. The automaton

Ä is complete if     is complete and A"4 is also completely defined.
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As usual, we extend our considerations to input tapes { = xxXi • •

*iGXA. To each such tape £ there correspond the following binary

relations:

JA = xAxA • • •

t A _      vA^A       v A vA
«* — xl *2 • • • *Jf-l*K* •

The right-hand sides of the above formulas are the relational products

of the corresponding relations. £A gives the state transformation due to the

tape £, and £A indicates the last output due to £, both for any initial state.

For a partial automaton Ä and a certain tape £, JA or can be the

empty relation 0.

II. Homomorphisms of automata.

Definition 1. Given two automata

Ä = (SA,XA,ZA,AA,AA)

and

B = (SB,XB,ZB,AB,AB)

with XA = XB and ZA = ZB, the mapping <j> of SA onto SB is a homomor-

phism of Ä onto 5 if for every x£ XA = XB

(i) ?dC^fi,

(ll) *2C0Jc£.

Note, x'V denotes the relational product of xA and 0 (CS^X <SB), etc.

Definition 2. Given two automata Ä and 5 as in Definition 1, and a

binary relation ^ with |^ = SA and i/<| = SB, the relation ^ is a weafc Aomo-

morphism of Ä onto 5, if for every x £ XA = Xj

(i) f'Pci'f1,
(2) ~   W '

(ii) r^Cjcf.

If ^ in Definition 2 is a mapping of S,, onto SB then the conditions (1)

and (2) are equivalent. Indeed, the assumptions \ i = SA and ^| = SB imply

H>~l^hA and fVa^.
The further assumption that ^ is a mapping leads to        = /Sß. Now,

and

xAQixl => i^'x^C^-Vxf = xf.

Conversely,
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and

However, if ^ is not a mapping, conditions (1) and (2) are not equivalent,

as shown by the following

Example.

SA = I a,, a2, a;), a4 (, SB= { bu b2, b.h b4 \,

XA = XB=\x\,

xA = {(aua4),(a>,a3)\, xB = {(&,,bt), (b2,b3) },

^ = j (at,6,), (a2,bx),(a2,b2), (a3,b3), (a4,64) (.

In this case condition (1) is satisfied, but condition (2) is not.

Let ^ be a weak homomorphism of A onto ß. Then for every input

tape £ we have:

(i) iT'pcfV1,

(ii) f'i^^.

Indeed, let £ = x,... x^; then

<A    £   = ¥■    X,  • • • XK C_ X, ^    x2 • • • XK C= Xj • • • XKt     = i, Y

and

)/• l£* = $ xX\---xk \xk* Q xf • • • XB x\p 1Xk*Q xB ■ ■ ■ Xk \Xk*= £*.

Again, let ^ be a weak homomorphism of Ä onto B. The relation i/<

induces a decomposition w of SA, namely w = j Hs = 'IsGSß). This

decomposition 7r is admissible by the semi-automaton A of A, i.e., for

every HsEt and every there exists an H,Gt such that HsxA

C H(. Indeed,

ft? = sf'PCsPf '1.

If sxB = t, we have HsxA C(f ' = ff,£i,

If sxB = 0, then also #s~xA = 0 and the admissibility condition is

trivially satisfied.
Furthermore, ;r is an output-consistent decomposition of A, i.e., for every

ft£i and every tape £,//S£A contains at most one element. Indeed,

and      is either the empty set or a single element of ZH = ZA.

Conversely, let A = (SA,XA<ZA, 1A, \A) be an automaton and w an ad-
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missible decomposition of A, which is output-consistent in A.

Clearly an automaton B = (it, XA, ZA, AB, AB) can be defined such that

the relation \p defined by (s, H) £ \p s £ H £ ir is a weak homomorphism

of Ä onto B.

The semi-automaton B of B is a 7r-factor of A.

Summarizing we have the following:

Theorem 1. A weak homomorphism ^ of Ä onto B defines naturally an

admissible, output-consistent decomposition in Ä and, conversely, every such

decomposition in Ä determines at least one corresponding weakly homomor-

phic image of Ä.

Note. In the special case, where ^ is a homomorphism (Definition 1),

the decomposition w becomes a partition. On the other hand we have the

following known

Corollary. An admissible, output-consistent partition of a complete autom-

aton Ä defines naturally a unique homomorphic image of Ä.

III. Covering of automata.

Definition 3. The automaton B = (SB, X, Z, AB, AB) is said to cover the

automaton Ä = (SA, X, Z, AA, A4) (notation: B ^ Ä) if there exists a map-

ping x of SA into Sß such that for every input tape £:

Using the relational techniques introduced we now provide a simple

proof of the following theorem, which is in fact a modified version of a

known result on partial automata [4].

Theorem 2. Let \p be a weak homomorphism of Ä onto B. Then B ^ Ä.

Proof. Clearly there exists at least one mapping x of SA into SB, such

that x^^. Using (3) we obtain for every input tape £:

But|x = SA; hence xx 1 includes the identity relation ISa. Thus we obtain

In [18] the concept of covering of semi-automata was introduced. Using

the notations of this paper we have accordingly:

Definition 4. The semi-automaton B = {SB, X, AB) covers the semi-

automaton A = (SA,X,AA) (notation: B s: A) if there exists a mapping

?i of a subset of SB onto SA such that for every x £ X

(4) i)X   C_ X rf.



258 abraham ginzburg and michael yoeli (April

Theorem 3. Let A = (SA,X, Z, AA, AA) be an automaton, and B = (SB, X, AB)

a semi-automaton covering the semi-automaton A of Ä. Then there exists an

automaton ß with B as its semi-automaton, such that ß ^ A.

Proof. B 2: A implies the existence of a mapping v with | ij C SB and

i)| = SA, satisfying (4). Now, let ß = (SB, X, Z, AB, AB) where AB is defined by:

x* = riXA   for every x £ X.

In other words Afl(s, x) = AA(sy, x) if s£|?j and A/1(s>j,x) is denned.

Otherwise As(s, x) is not defined.

The automaton B covers A. Indeed, evidently, there exists a mapping

x of SA into SB such that x Q v~l- Now, for any input tape £ = x,x2 • • • xK

~~ltA (— ~tA — „TA        vA     yA     <— „rA   — Vfl yB   — tBX   S* 5= VK* — Vx\ • ■ ■ XK  ixK* 5=  xl       xK-lVxK* — X] • • • Xa:_iX/(* — £*.

Hence

Theorem 3 is immediately applicable to the direct product of automata,

which is defined as follows:

Definition 5. The direct product A X ß  of the automata Ä =

(SA,X,ZA,AA,AA) and B = {SB,X,ZB, AB, AB) is the automaton C =

(SC,X,ZC,AC,AC) where

Sc = SA X SB, Zc = ZA X ZB

and

(Si4>s«)*' = sAxA X sBxB,

(sA, sB) x* = sA xA X sBxB.

Definition 5 implies that C = Ax B.

In order to apply Theorem 3 to direct products of automata we shall

need the following extension of the covering concept.

Definition 6. The automaton B = (SB, X, ZB, AB, AB) is said to cover

widely the automaton A = (SA,X,ZA,AA,AA) (notation: B ^ A), if there

exists a mapping x of SA into SB and a mapping r of a subset of ZB into

ZM, such that for every input tape £

We now have the following

Theorem 4. Let C be the semi-automaton of C = (Sc, X, Zc, A^, Ac) and

A, B semi-automata such that AxB^C. Then there exist automata Ä, B

with A and B as semi-automata, respectively, such that

Ä xB
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Proof. By Theorem 3 there exists an automaton Ö such that D = A X B

We define ZA = SA X X and ZB = SBX X. Next, we define AA. If for a

given state sA £ SA and a given input x £ X, there exists an sB £ Sß, such

that (sA,sB) x* 5^ 0, let sAxi = (sA,x). Otherwise sAxA! = 0.

Afi is defined in an analogous way.

Introducing the map t by

(sA,sB)x%9*0 =#> ((s/4,x),(sb,x))t= (s4,sb)x£,

we obtain

tD

where

ß = Ä Xß.

Let x be the mapping corresponding to the covering D ^ C; then

Ü*Cx£?=x^r, i.e., £ = i X^lC.

Evidently the above discussion of direct products of two automata can

be extended to any finite number of automata.

IV. Cascade products of automata. The following definition generalizes

the concept of cascade connection in [16].

Definition 7. Let Ä = (SA,XA,ZA,AA,AA) and ß = (SB,XB,ZB,AB,AB)

be automata with ZAClXB. The cascade product C=Äoß is defined as

the automaton C = (Sc, Xc, Zc, Ac, Ac) where Sc = SA X SB, Xc = XA, Zc

= ZB and for every x £ Xc

(sA,sB)xc= sAxA X sByB,

(sA,sB)x%= sByB,

where

ZA3 y = sAxt

(If y = 0, then y and y* is to be understood as 0.)

Definition 7 is naturally modified to the case A oB, where B is a semi-

automaton. We thus obtain

C = Äoß ==>C = Aoß.

With any semi-automaton A = (SA,XA,AA) one may associate the auto-

maton A* = (SA,XA,ZA, AA, AA) where ZA = SA X XA and sAx* = (sA< x) for

every sA £ SA and every xEXA. If B = (SB,XB,AB) is a semi-automaton,

such that XB3SAXXA, we define (following [18]):

AoB = A*oB.
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We now prove

Theorem 5. Let A and C be automata and B a semi-automaton such that

ÄoB^ C. Then there exist automata D and P such that ÖoP ^ C, where

Z)= A, D^Ä, SE=SB.

Proof. By Theorem 3 there exists an automaton P such that F = A o B

and P ^ C. We now define Ö as follows:

D = A, ZD = SnxXn, and for every Sd£Sd and every x £ XD, sDx%

= (sD,x).

Introducing the map r of ZD into ZA determined by (sD, x) t = sDxi

we clearly obtain:

D £ A.

Next, we define P as follows:

SE — SB, Xg = Zp, Ze = Zp;

for every (sn, x) £ XE and every sE £ SE

(s,hx)E = {sD,x) rB,

Se(sd,x)5= (sD,sE) xl.

Denoting G = DoP, we proceed to show that P = G. Indeed:

Sp = SAX SE — So X Se = Sg,

Xp = XA = Xp = Xq, Zp = Ze — Zc,

and

snxG = (Sü, sE)xg = s0xD X sEwE,

where

w = sDx% = (sD,x).

Now

wE = (s~dTx)e= (sd, x) tb = yB,

where

y = (sd,x)t = s0x£.

Hence sGxG = ,s'nxZ) X s£ü)£ = sßx4 x scy" = (sD,sE) xF = sGxf.

Furthermore,

s(;X(i = (sf;,s£) x* = sEwE = sE(sD,x)'i = (sD,s£)x^ = %xt.

Thus Öo£ = G = P ^ C.
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Referring to the definition of cascade-product of semi-automata, we

obtain the following:

Corollary. Given an automaton C and two semi-automata A, B such

that A o B ^ C then there exist automata Ä, B such that Ä o B ^ C, where

A, B are the semi-automata of Ä, ß, respectively.

In particular cases the automaton Ö required in Theorem 5 can be con-

structed with a reduced output set (cf. [17]).

We now restrict our considerations to complete, finite automata. For

such an automaton Ä we denote by # A the number of its states. If tt

is a decomposition of the finite set S, \ -k | will denote the number of ele-

ments in the largest class of w.

The following result was obtained in [18]:

Theorem 6. Let A — (SA, XA, AA) be a complete, finite semi-automaton,

t an admissible decomposition of A, and B a n-factor of A. Then there exist

semi-automata C and D, such that C is isomorphic to B, #£) = |*-|, and

CoD^A.

We now prove

Theorem 7. Let Ä, B, C be complete, finite automata, such that there

exists a homomorphism 4> from Ä o ß onto C. Then there exist complete, finite

automata fi, £ and an admissible decomposition ß of C such that D is iso-

morphic to a ß-factor of C and

Doß^C ,#D^#A, #E^#B.

Proof. Denote Ä o ß = F, and let p be the admissible partition of F

determined by

(sA,sB) = (s'A,s'B)(P) <##> sA = s'A.

Then the unique p-factor F/p is isomorphic to A(F/p A).

Let 7t be the natural partition of F determined by <j>. Then F/tt ^ C.

We now consider the decomposition a of i defined by:

a= {«„= \r(s)\seH\\HEp\

where w(s) denotes the class of w containing s.

a is admissible by the semi-automaton F/x. Indeed, let at £ a, i.e., there

exists an H £ p, such that ax = {ir(s) \ s £ H \.

For any input x of F we have

aixF" ={t(s)\s £ H\1F- = j w(sxF)\s£ H} C {t £ HxF/p £p } £ «.

Furthermore, # a ^ #p = # A.

For every H£p, #aH ^ #H ^ |p|.
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Hence |«| ^ \ p\ = # B.

The isomorphism C 2£ F/k implies the existence of an admissible de-

composition ß of C corresponding to the decomposition a of F/w.

We thus have

#ß^#A,   \ß\ ^ #£.

Now we apply Theorem 6 to obtain semi-automata D, E such that

Do£ä C, where D is isomorphic to a ß- factor of C, and # E = \ß\ ^ # B.

D being isomorphic to a 0-factor of C, satisfies # D = # ß ^ # A.

As final step of this proof we apply the Corollary to Theorem 5 and

obtain automata D and E such that DoE ^ C with D, E as semi-

automata of D, E respectively.

J. Hartmanis and R. E. Stearns have pointed out in [9] that state re-

duction may destroy possibilities of cascade decompositions. Our Theorem

7 shows that even after state reduction of a complete automaton, i.e., its

replacement by a homomorphic image, the original possibilities for cascade

decompositions may be reconstructed in a certain sense.

We shall illustrate this point by using the example in [9j.

Let Ä, B, C be the automata given by Tables I, II, III respectively:

Table I

input

state

ai/yi ao/y-2

ai/y4

next state/output

Table II - B

state

b.

yi

b,

input

y-2 y3

b2

6.

bo

b.

y4

b<

b3

b<

b3

output

1

0

next state
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Table III — C

input

0 1 output

state c4

c6

c-

c3

Ci

c2

C]

c3

c6

c7

c5

c4

c3

c4

c3

next state

The automaton F = Ä o ß is given in Table IV.

Table IV — F

input

0 1 output

state

(ax, b2) = f2

(au b3) = f3

(au b4) = f4

(a2,60 = /5

(a2,62) = /6

(a2, b3) = /7

(a2, W = h

h

U

fx

next state
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The automata P and C are identical with machines B* and B of Figure

4 in [9].

The mapping

4> =
fx h h U h h fi fi
c, c2 c3 c4 c4 c5 c6 c:)

is a homomorphism of P onto C.

Indeed,

n-f      /A h h fi fi h U ft
C;) C4 C[ C'2 C2 Cj  C4 C;)) = <^',

0,= ihhhhhhUh\ _ s
uooi 1001/

and similarly for the input 1.

The partitions p and * of F become:

*= |*1= I /l }, *2 = { A }, *3 = I /a I,

*4 = ( fi.fb\, n = I /e |i ire = | /" )• *i = t /u ( |-

The decomposition a of w becomes:

a =  { <*J =  { 7T|, 7T2, 7T3, 7T4 }, tt2 =  { 7T4, 1T6, TT6, 7T7 | | .

The decomposition ß of C is therefore

0 = | /»i = I c,, c2, c3, c4 j, ft = j c4, cr„ Ce, C; I j.

Let D be the ß-factor of C given in Table V.

Table V — D

state

02

next state

The application of Theorem 6 leads to a semi-automaton E isomorphic

to B.
Using the construction of Theorem 5 we obtain automata D and P iso-
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morphic with Ä and B respectively and fi o £ ^ C.

On the other hand, as shown in [9], the usual methods of cascade-

decomposition applied to C do not lead to the discovery of the above

cascade-decomposition of C.

Conclusion. This paper shows the convenience of the relational techniques

introduced for the study of automata.

Furthermore, a generalized approach to the problem of automata de-

composition has been developed. Namely, in order to synthesize A, it is

frequently convenient to construct a cover of Ä which is a direct or cascade

product of simpler automata. (The previous approach was restricted to

equality or inclusion instead of covering.)

It appears that the results obtained in this paper will have actual

engineering applications to the synthesis of sequential machines.

However, in order to extend this applicability, the development of an

efficient technique for obtaining suitable admissible decompositions of

automata is required.
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