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Introduction. The paper is concerned almost entirely with directed sets,

and for those the structure introduced in Part I [3] reduces to the usual

(Tukey [7]) ordering by "power for convergence." Three problems are

central: completeness (least upper bounds), standard sets (basically

Tukey's Av, the set of all subsets of power < Xx of a set of power X„),

spectra (the spectrum of D is the set of all standard sets g D).

On completeness, we answer Tukey's questions: does every set of

directed sets have a least upper bound, or every finite set a greatest lower

bound? The answers are negative. A countable set of directed sets has

either 1 or 2 minimal upper bounds, and every upper bound exceeds a

minimal one. For {A} to have a least upper bound that is not the least

upper bound of a finite subset, one must have Z), }z w0 for some i; con-

versely, if some D, }z w0, the least upper bound exists (see 2.2, 2.3, 2.4).

There are partial results about least upper bounds of uncountable

families, with uncountable standard sets replacing w0 above; but the

necessary conditions and the sufficient conditions are far apart (2.2, 2.12,

4.15).
For standard sets, we usually (and throughout this paragraph) assume

the generalized continuum hypothesis (H). J. Schmidt has characterized

[6] (using (H)) many of Tukey's A^, including all those for which Xx and

X„ are regular. We give a dual (*) of Schmidt's characterization, which

holds for the same Av and others, including all for which X„ is regular.

However, some Av are equivalent to others. The size of this difficulty

matters, because we take steps to reduce it. Ax„ is equivalent to A^+i at

least if XA is singular and n is a limit of < Xx smaller ordinals. Now the

dual characterization (*) determines a directed set A£ almost always;

precisely, when X <n or X = ß with Nx regular. Up to an equivalence,

A£ is the set of all sets of power < XA of ordinal numbers bounded below

ü>„; and the characteristic property is that this is (**) a least directed set

of power X„, the powers of whose bounded subsets are precisely the cardinal

numbers < Xx. (**) is not really (*), but it is similar, and does characterize

a class of directed sets all of which are equivalent to Ax*. (See §4.)
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A systematic attempt is made to free the results on standard sets from

dependence on (H), which succeeds completely for X < a ^ o>0.

The point spectrum Q(D) of a directed set D is the set of all regular

alephs K„ such that D 2; wa. The standard sets Ax* with X < n yield a band

spectrum, on which we have no global results, though the ordering of the

standard sets themselves is determined (if (H)). (A£ exceeds "most" of

the A*ß for which X ̂  a ^ ß ^ m and at most two others.) The necessary

conditions found here for a set Q of cardinals to be a point spectrum are

sufficient if Q has power < N2, if (H). It is not known whether new con-

ditions apply near N^. There is a new condition applying near p-numbers.

(p-numbers [4] are so large that they may not exist. These results are in

§3.)
Additional results, depending on (H). Q(D) determines the smallest

power of a cofinal subset of D. If D has no well-ordered cofinal subset,

Q(D) has more than one element. The set of all integer-valued functions

on a set of N„ elements, for each oi„ not equivalent to <o0, is equivalent to

Ac+i. Without (H): every infinite set, of power m, has ultrafilters equiv-

alent to the standard set A^, where He = 2m.

I am indebted to the referee for fifty constructive suggestions.

1. Preliminaries. This paper is more nearly a sequel to the work of

Tukey [7] and Schmidt [6] than a sequel to Part I [3]. More fully, the

problems arise naturally from [7], the development of methods is begun

in [6], and [3] provides a point of view. Knowledge of any one of those

papers should be sufficient background for reading this paper.

It is convenient to reverse the convention of [3] and speak of sets

directed upward; y is a successor of x if y ^ x. Concerning degenerate

cases we agree that a directed set must be nonempty. Sets having a last ele-

ment are admitted; their cofinal type will be called zero type.

The fundamental relation between directed sets, denoted D ^ E in [7],

is defined equivalently in [6] and [3] in different language. D ^ E, or D

is cofinally finer than E, or E is a quotient of D, provided there exists a

function/: D—>2? of the type called cofinal in [6], convergent in [3] and

here. Three characterizations proved in [6] and two mentioned in [3]

overlap and are stated in 1.1 below. A remarkable phenomenon stressed

by Schmidt [6] (implicit in Tukey [7]): D ^ E if and only if there exists

a function g: E—>D satisfying conditions indicated in 1.1; Schmidt calls

these terminal functions, but we shall call them Tukey functions.

We must consider cofinal, bounded, and unbounded subsets; noncofinal

sets, which we call thin; and sets whose complements are thin, which are

called perfinal in [6], total in [3] and here.

1.1. For directed sets D, E, a function f: D—>E is convergent if and only

if for every convergent function g from E to a topological space, gf converges



396 J. R. ISBELL [April

to the same limit; or, the inverse image of every total set (in E) is total; or, the

inverse image of every thin set is thin; or, the image of every cofinal set (in D)

iscofinal. Tukey functions g: E—>D are characterized as follows: the inverse

image of every bounded set is bounded; or, the image of every unbounded set

is unbounded.

Some remarks concerning the categorical point of view of [3] and

Schmidt's "duality" between convergent functions and Tukey functions.

Directed sets (not of zero type) and convergent functions form a category

So\. Identifying all mappings that have the same domain and the same

range, we have a quotient category Sf2 of directed cofinal types. No more

structure remains beyond the fact that for directed sets D, E, the number

of mappings from D to E may be 1 (D ^ E) or 0. Again, directed sets and

Tukey functions form a category if3. Collapsing 9f3 like Sfx, we have a

quotient category^. Note that allhave the same objects. The duality

is that the identity function between the objects of 9f2 and Sf4 induces a

categorical anti-isomorphism or duality.

Another relation between Sf2 and 9ft is of some interest (though of no

use, up to the present time). Let us define a category Sfs as follows. An

object of 9f5 consists of a set X and an ideal I of subsets of X; a mapping

/ from (Xu Ii) to (X2,12) is a function from Xi to X2 such that inverse

images of members of I2 are members of ij. Then both 5fx and if3 can be

embedded ix\Sab. Foriflt associate to D the pair(2) (D,I), where I is the

ideal of thin sets; for Sf3, use the ideal of bounded sets. If ^5 is collapsed

as before, we have a category Sf6 containing copies of Sf 2 and Sf6 has

some attractive properties, such as completeness [4] (this is virtually the

same as being a complete lattice, if the notion D ^ E is suitably extended).

From [6], it is easy to identify the intersection of yf2 and Sf4 in 5fe as the

set of minimal elements of 5f2, corresponding to well-ordered sets.

Schmidt shows that every directed set D is equivalent (D}z E S: D)

to a directed set E that is complete, i.e. every bounded subset of E has a

least upper bound. Equivalently, every nonempty subset has a greatest

lower bound. A companion result:

1.2. Every isotone function from a directed set D onto a cofinal subset of a

directed set E is convergent. If E is complete and D ^ E, then there exists an

isotone convergent function f: D—>E.

Proof. If/: D—>E is isotone and S is cofinal in D, then f(S) is cofinal in

/(D), hence also in E when f(D) is cofinal in E. Supposing that,?: D-+E

is convergent and E is complete, define /: D—>E as follows: f(x) is the

greatest lower bound of the set of values of g on successors of x. Evidently

/ is isotone. For each y in E, consider the thin set T of nonsuccessors of y.

2
( ) This construction gives an embedding in the standard sense for functors, not required to

be one-to-one on objects; an artificial modification would give a one-to-one embedding.
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g~x(T) is thin; so for some x in D, no successor of x is in g~l(T), and /(x)

^ y. Thus f(D) is cofinal, and the proof is complete.

We conclude the preliminaries with some remarks on cardinal properties,

cardinal sets, and cardinal quotients. Schmidt defines [6] two numbers

which we shall call the lower character and upper character of a directed

set D. The lower character 1(D) is the smallest cardinal belonging to an

unbounded subset of D; the upper character u(D) is the smallest cardinal

of a cofinal subset. This leaves 1(D) undefined if D has zero type. Schmidt

suggests leaving it undefined; no extension of the definition permits ex-

tension of the following basic result.

1.3 (Schmidt). // E is a nonzero quotient of D, then 1(D) ̂  1(E) ^ u(E)

^u(D). In particular, u(E)^l(E), and the characters are invariants of

cofinal type.

For every ordinal number «, let W(a) denote the set of ordinals less

than a, directed in the usual way (by inclusion). (Note also that W(a)

is logically identical with a; but the different notations for the individual

a and the set W(a) will be convenient.) K(a) denotes the cofinal type of

W(a). There is of course a smallest W(ß) in K(a); ß = ch(o) is called the

character of a, and is a regular cardinal. A cardinal set will mean a set

order-isomorphic with some W(ß), where ß is a regular aleph; their cofinal

types are the cardinal types. A cardinal quotient of a directed set D is

defined as a regular aleph that is a quotient of D.

Sets of cardinal type are characterized [6] by 1(D) = u(D). More fully,

the following conditions on a directed set D, not of zero type, are equiva-

lent:

(a) D has cardinal type.

(b) D is a quotient of a well-ordered set.

(c) D has the same upper and lower character.

(d) D has a well-ordered cofinal subset.

Proof. See [6], or argue as follows. Trivially (a) ==> (b) and (d) ==> (a);

by 1.3, (b) => (c). From (c), one has a cofinal subset of power m, and

every smaller set is bounded; so (d) follows easily.

The cardinal sets show that every regular aleph is both the upper char-

acter and the lower character of some directed set. Conversely, every

lower character 1(D) is regular [6]. However, every infinite cardinal m

is the upper character of the stack [ 7] of all finite subsets of a set of power m.

The relation 1(D) ^ u(D) can be improved to

1.4.1(D) ^ ch(u(D)).

This will follow from 1.6 and 1.7. Assuming the generalized continuum

hypothesis, Schmidt's examples [6] demonstrate the converse: if / = ch(Z)

^ ch(m) then / and m are the characters of some directed set.

1.5. Let D be a directed set and m an infinite cardinal. For D 2: W(m),

a sufficient condition is that D contains m thin sets whose union is cofinal
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but such that no union of fewer than m of them is cofinal. This condition is

necessary if m is regular. In that case an equivalent condition is that D has

m elements no m of which are bounded.

Proof. Given the indicated thin sets Sa, indexed by elements a of W(m),

and whose union E is cofinal in D, define f: E—> W(m) to take each x££

to the first a such that x £ Sa. The inverse image of any initial segment,

thus of any thin set, is thin. Hence E ^ W(m), and D is equivalent to E.

Conversely, if m is regular and /: D—>W(m) convergent, the sets f~l(a)

form such a family of thin sets. The last assertion is obvious from the

properties of Tukey functions.

The second condition in 1.5 is necessary for singular m also, if repetition

of elements is allowed. However, the first condition is not necessary

(üjo^W(KJ), and from Schmidt's examples [6], the second condition

is not sufficient.

1.6. The lower character of a directed set D not of zero type is the smallest

cardinal quotient of D.

Proof. If S is an unbounded subset of minimum power and S admits

a one-to-one correspondence with W(m), then one can associate bounds

to the initial segements to get m elements no m of which are bounded.

Since lower characters are regular, m is a cardinal quotient of D. No

smaller set W(n) admits a Tukey function to D, for the image cannot be

unbounded.

1.7. A directed set D of upper character m admits a mapping to W(m);

ch(m) is a cardinal quotient.

Proof. Let S be a cofinal set of minimum power m. The sets P(s) of

predecessors of s £ S are thin, and so are unions of fewer than m of them,

but not the union of all of them. Hence 1.7, and 1.4.

2. Products. Tukey showed [7] that the Cartesian product of two

directed sets, ordered coordinatewise, is their least upper bound, or in

categorical terminology, their direct product. We shall mention free sums

also, i.e. greatest lower bounds. Note that the directed free sum (which

need not exist) is quite different from the free sum in the category [3] of

all cofinal types (a disjoint union).

The Cartesian product X Da of a family of directed sets Da, ordered

coordinatewise, will be called their strong product. It need not represent a

categorical product of the types of the Da, but it is an invariant of cofinal

type. More generally, Da ^ Ea for all a implies X Da ^ X Ea; this is

proved in [6]. Apropos of some cases in later proofs, the family of factors

can be empty.

A weak product W of a family of directed sets Da, none of zero type, is a

subset of the strong product constructed as follows. Choose any base

points ba £ Da, and define W as the set of all x in X Da such that xa ^ ba
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for all a and xa = ba for all but finitely many a. The type of W depends

only on the types of the Da\ indeed.

2.1. //, for all a in A, Ea is a nonzero quotient of Da, then any weak product

of \Ea: a    A\ is a quotient of any weak product of j Da: a (E A j.

We need not prove 2.1 separately, for it follows from the identification

(2.2) of W as a direct product (not generally of the apparent factors). Let

Ao(A) denote the stack of all finite subsets of A.

2.2. A weak product of \Da:a£.A} is a categorical direct product of

\Da:a G A \ and Ao(A). Thus it is a direct product of \Da) if some Da has

Ao(A) as a quotient.

Proof. First, a weak product W with base points ba admits an isotone

mapping onto A(A), each x going to the set of all a for which xa ^ ba. Evi-

dently W also has convergent coordinate projections to the factors Da.

Suppose C is a partially ordered set having convergent functions /„:

C—>Da and /0: C —»Ao(A). Define /: C—> W as follows. The ath coordinate

of f(c) is /„(c) provided a £ f0(c) and fa{c) ^ ba, but otherwise it is ba.

For any total set T in W, T contains the set of all successors of some

xE:W. Sufficient conditions for /(c) ^ x are that /0(c) contains the set

of indices a such that x„ ^ ba and, for these indices, fa(c) ^ xa. This finite

set of conditions is all satisfied on a total set; so / is convergent.

2.3. Theorem. If a countable set of directed sets D, has a direct product

P, then P is equivalent either to the product of a finite set of factors Z), or to

the weak product of all D,.

Proof. If P is a quotient of some finite partial product Q, then (by

directness) P is equivalent to Q. Suppose this is not the case. Replace

P by an equivalent complete directed set R. A weak product W of all A

(l = 1,2, • • •) is a union of subsets Q„ which are directed sets each equivalent

to the product of DU---,D„. (Define Q„ by setting each coordinate at

i> n equal to 6,.) R, as a direct product, must be a quotient of W. By

1.2 there is a convergent isotone function /: W—>R. Since R is not a

quotient of Qn, f(Qn) is thin for each n; but the union of all /(Q„) is cofinal

in R. By 1.5, R ^ w0. By 2.2, then, R ^ W; P is equivalent to W.

Tukey asked [7] whether every set of directed sets has a least upper

bound (direct product). To see that the answer is negative one need only

find a countable family for which finite products and the weak product

fail to be a direct product. The family of all un (1 ±= n < w0) will do; clearly

the finite products are too small, and since the strong product has lower

character Hi it admits no convergent function to the weak product.

The same example can be treated differently, so as to answer also

Tukey's question whether two directed sets must have a free sum. For

the set of all wn, the strong product has lower character Hx and the weak
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product has upper character N„. A directed set D "in between," i.e. a

quotient of both products which has all wn as quotients, would have these

numbers as its characters, contrary to 1.4. No such set exists, no such

product, no such sum. In Schmidt's language, the upper semilattice of

directed types is not a lattice.

2.4. Theorem. For any countable set of directed sets D„ each directed set

having all D, as quotients has either their strong product or their weak product

as a quotient.

Proof. Consider any such directed set C. By 2.2 and 1.6, C has the weak

product of all D, as a quotient unless Z(C) > X0. In that case, consider

Tukey functions g,: D, —> C. For each x = (x;) in the strong product, define

g(x) to be some upper bound for the countable set \gj(xj) \. An unbounded

set S in the strong product has unbounded jth coordinates for some j, so

that g(S) is unbounded and g is a Tukey function.

For uncountably many factors our results (2.5, 2.12, 4.15) are much

weaker. There are obvious modifications of the strong and weak products.

For any ordinal X and any set of (at least Xx) factors Da, none of zero type,

we define a \-product of {Da} by choosing base points ba £ Da and taking

all x in X A, such that x„ Si ba and x„ = b„ with fewer than Nx exceptions.

Thus a 0-product is a weak product.

2.1 generalizes to X-products; one can prove this by treating Tukey

functions coordinatewise, first modifying them to preserve base points.

There is only one application of X-products (X > 0) in this paper, 1-

products occurring in the proof of 3.11. But it requires a lemma (2.11),

and we need to mention here the associated directed sets AX(A) of all sub-

sets of power < Nx of a set A. For any X-product of factors Da («£ A),

with base points ba, there is a projection to AX(A), taking each x to the set

of all a for which xa ^ ba. Further, if A has power m, the upper character

of Ax+i(A) is at most mN\

In general we define a subdirect product of a family of directed sets Da

of nonzero types as a directed subset C of the strong product X Da which

projects upon a cofinal subset of each factor Da. As the coordinate pro-

jections are isotone, C Si Da for all a.

The notion of subdirect product is not an invariant of cofinal type.

Proof. Let \Da\ be any infinite family of directed sets, none of zero

type. Let n be a very large regular cardinal. Let Ea be a disjoint union

of Da and W(n), ordered so that all of W(n) precedes all of Da. Then Da

is a cofinal subset of Ea, and the types are the same. In more X Ea, con-

sider the set of all elements all but finitely many of whose coordinates are

in W(n). Evidently this is a subdirect product, and its upper character is

not less than n. But one can choose n so large that no subdirect product

of {Da j has this upper character.
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Despite this drawback, subdirect products are essential for much of

what follows. The reason:

2.5. Let {Da\ be a family of complete directed sets of nonzero types. Any

directed set C which has all Da as quotients has some subdirect product of

\Da) as a quotient. Hence jDa} has a direct product if and only if the sub-

direct products of \Da \ have a free sum, and if there is a direct product, some

subdirect product is direct.

Proof. If C has all Da as quotients, there are isotone convergent func-

tions fa: C-+Da Define /: C->X A, by /(*) = (/„(x)). This is an isotone

function; therefore the image /(C) is directed. It projects upon a cofinal

set in each factor Da since /„ is convergent. Thus /(C) is a subdirect product

of \Da}. f: C-»/(0 is convergent by 1.2, C^/(C).

If C is a direct product, the relations /(C) ^ Da imply /(C) ^ C; thus

/(C) has the same type as C and is also a direct product. Then (by the

same argument) E 1% /(C) for every subdirect product E of {Da\, so /(C)

is a free sum of all the subdirect products. Conversely, if there exists a

free sum F of all subdirect products E, then F has all Da as quotients, and

by the preceding paragraph, F is a quotient of every directed set that has

all D„ as quotients. This completes the proof.

As for negative results, it seems instructive to begin with simple modifi-

cations of 2.3. They will not take us far, and we omit details. (1) Suppose

P is a direct product of m directed sets, and W(m) is not a quotient of P.

Then P is a quotient of the weak product of a subfamily of n directed sets,

n < m. (2) If the smallest such n is infinite, W(n) is a quotient of P. Hence

(3) if all the factors have lower characters > m, P must be a finite partial

product. Also (4) in case m = Ni, if i»i is not a quotient, then (1) and (2)

show that P is a direct product of a countable subfamily. To summarize,

if P is expressed, not wastefully, as a direct product of m gs K0 directed

sets, P must have at least one quotient W(n), where n is an infinite cardi-

nal g m. Only for m < N2 have we shown that W(m) must be a quotient.

We now set about showing that having all of W(N0), • • •, W(m) as factors

is not a sufficient condition for the existence of a direct product.

The bursting number of a directed set D is the smallest cardinal exceeding

the power of every bounded subset of D. It is obviously not an invariant

of cofinal type. Every set Aq(A) has bursting number N0; for each of its

members (being a finite subset of A) bounds only a finite set. The bursting

number of a cardinal set W(m) is m.

2.6. If D is a quotient of a product Bx C, and the lower character of B

is greater than the bursting number of D, then D is a quotient of C.

Proof. Let g: D —>B X C be a Tukey function. Then the second coordi-

nate g2'- D —> C must be a Tukey function, i.e. every unbounded set S in D

has unbounded image in C. If this were false, S would have unbounded
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image in B; this implies that the power of S is greater than the bursting

number m of D, and S contains an unbounded set T of power m. But then

T has bounded image in B and also in C, hence in B X C, a contradiction.

2.7. If A is,an uncountable set, then Aq(A) is not a quotient of any strong

product of pairwise nonisomorphic cardinal sets.

Proof. Such a strong product either has uncountable lower character

or has the form D X W(K0), where D has uncountable lower character.

As Ao(A) is obviously not a quotient of W(N0), the result follows from 2.6.

The reducing number of a directed set D, not of zero type, is the smallest

cardinal m such that D is a union of m directed subsets none of which has

D as a quotient. W(m) is a quotient of D, by 1.5. (In effect, we used this

in 2.3.) It is not known whether the reducing number must be regular;
it is easy to verify that it is no greater than ch(u(D)). It is not known

whether it is an invariant of cofinal type, but it is invariant for complete

sets.

2.8. Two complete directed sets of the same nonzero cofinal type have the

same reducing number, and no other equivalent set has a smaller reducing

number.

Proof. Given equivalent sets D and E, E being complete, there is an

isotone convergent function /: D—>E. Let D be a union of m directed sets

Da none of which has D as a quotient. The sets f(Da) are directed, and

each is cofinal in the set Ea of all predecessors of elements of f(Da). Thus

no Ea has D as a quotient; and no Ea has E as a quotient. Since f(D) is

cofinal in E, E is the union of the sets Ea. Thus the reducing number of

E is no greater than that of D.

2.9. If D is a complete quotient of a product BX C, and the upper char-

acter of B is less than the reducing number of D, then D is a quotient of C.

Proof. Let /: B X C —»D be an isotone convergent function, and B0 a

cofinal subset of B of power less than the reducing number of D. The sets

{b } X C, b in B0, are directed; so is the set Db of all predecessors of ele-

ments f(b, c) in D. The union of the Db is all of D, so one of them has D

as a quotient; but all of them are quotients of C.

2.10. The cardinal quotients of a weak product of cardinal sets W(ma)

(a G A) are just the ma and the regular cardinals not greater then the power

of A.
Proof. In view of 2.2, the weak product W has at least these cardinal

quotients. Suppose n is another regular cardinal, greater than the power

of A and different from all ma. Partition A into the set A0 of those a such

that ma<n and the remainder R = Ax. Then W = W0X Wh where W,

is a weak product of ) W(mJ: «G A,} formed on the same base points ba

as is W. Let h: W,—>A0(fi) be the projection (h{x) = ja: xa^6aj). Now

the upper character of Wo is a sum of fewer than n cardinals less than n;
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so by 2.9, W(n) is not a quotient of W unless it is a quotient of Wx. Suppose

then that g: W(n) —* Wx is a Tukey function. Its image must be (cf. 1.5)

a set of n elements of Wx having no bounded ra-element subset. Any n

elements of X W(mJ («G Ai) are coordinatewise bounded; so hg must be

a Tukey function. That is, W(n) is a quotient of A0(R), which is absurd.

2.11. A (X + l)-product of n cardinal sets W(ma) (a E A) has no cardinal

quotient r such that n** < r < m for all a.

Proof. Let D be the (X + 1)-product formed with base points 6„. Let

h: D—»Ax+i(A) be the projection. Suppose that g: W{r)—>D is a Tukey

function. Just as in 2.10, hg is a Tukey function. But r exceeds the upper

character of AX+1(A), a contradiction.

2.12. Theorem. No uncountable set of pairwise nonisomorphic cardinal sets

has a direct product.

Proof. For an uncountable set of cardinal sets W(ma) the strong

product does not have A0(A) as a quotient (2.7). Moreover, if B is any

uncountable subset of A, A0(B) is not a quotient of the strong product,

hence not a quotient of the supposed direct product.

A subdirect product C of {Da: aE B\ will be said to be decapitated,

by uE X Da, if for each x in C the set F(x) of indices a such that xa is a

successor of ua is finite. This F is an isotone convergent function from C

to A0(5).

Supposing the cardinal sets Da = W(Ra) (a E A) have a direct product

P, we may assume that P is a subdirect product, by 2.5. Partition the

index set A into the set B = A0 of all indices having only countably many

predecessors in A and the possibly empty remainder Ax. Split the strong

product X Da accordingly as X0 X Xb X, X \Da;aE A, ). The projections

Pi of P in X; are subdirect products, and (in particular) P0 is a quotient

of P.
We may assume P0 is complete, by adjoining predecessors in X0 if

necessary. Let Y be a weak product of \Da:aE B\, with base points ba.

Then YxXi admits convergent mappings to all Da, hence to P and to

P0; there is even an isotone convergent function h: YxXx—>P0.

If 0 and 1 occur among the indices a, we treat them exceptionally;

define u0 and ux are arbitrarily chosen elements of D0, Du For every other

aEB, consider the set of all (y,x) EYx Xx such that ya = ba. This is

a directed set and a product of three factors Zx X Z2 X Xx, where Zx (re-

spectively Z2) is a weak product of fewer than Ka cardinal sets smaller

(respectively larger) than Da. ha maps it isotonically into Da. The image

cannot (2.6 and 2.9) be cofinal unless Da is a quotient of Z2. By 2.10, D„

is not a quotient of Z2\ thus some element ua of Da is greater than all these

values of ha. The function u now decapitates P0; for /^(YxX^ is cofinal
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in P0, and h(y, x) can have ath coordinate as large as ua only for those a

for which ya ^ ba and perhaps for a = 0,1. Then Ao(ß) is a quotient of P,

a contradiction.

Remark. This proof uses only two special subdirect products. It seems

odd, offhand, that they are not the strong and the weak product. One

may verify that those two can be used at least in case the number of

cardinals smaller than the number of factors, m, is less than m.

3. Point spectrum. The set Q(D) of cardinal quotients of a directed set

D will be called the point spectrum of D. The point spectrum determines

the lower character, which is its smallest element (1.6). To prove that

Q(D) determines the upper character, we shall have to assume part of the

generalized continuum hypothesis.

If E is a subset of D, the directed set of all bounded (in D) subsets of

E is a quotient of D which we may call the restricted quotient D \ E. (For

a Tukey function from D\E to D, take each bounded set to one of its

bounds.)

3.1. Theorem. Assume 2K" < Ka+„ for all a. Then the upper character of

any directed set of nonzero type is the least upper bound of its point spectrum.

Proof. Suppose there is a counterexample, and choose a counterexample

D whose upper character m is as small as possible. In view of 1.3 and 1.7,

m is singular. Let E be a cofinal subset of power m, represented as a union

of fewer than m sets Ea each smaller than m. The upper characters of the

quotients D\Ea are not bounded by any cardinal n < m, for then each Ea

would be a union of n bounded sets and D would have a smaller cofinal

subset. On the other hand, from the assumption about cardinals, each

Dl-E.has upper character less than m. By the choice of m as a minimum,

the directed sets D\Ea, and therefore also D, have cardinal quotients

arbitrarily near m.

3.2. Corollary. On the hypothesis 2N»<N0+U,, every directed set of non-

zero noncardinal type has two or more different cardinal quotients.

Proof. The lower and upper character must differ.

3.3. Theorem. If D is a directed set and m a cardinal number which is a

limit of cardinal quotients of D, then for some cardinal n satisfying m ^ n

^2m, ch(n)eQ(D).

Proof. By 2.5, D has a quotient E which is subdirect product of sets

(j}„ where N„ converges to m. The upper character n of E must be at least

m, and the power of E is at most mm = 2m. By 1.7, ch(ra) G Q(D).

This is the first of several theorems which we can state and prove with-

out any continuum hypothesis but cannot well use without some such
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hypothesis. 3.3 can be sharpened in case m is an u-limit (i.e. ch(m) = N0);

from 2.4, Q(D) must include either N0 or ch(u(S)), where S is the strong

product of the sets w„. We do not know what ch(u(S)) is, nor whether it

is determined by m. We can choose S as the strong product of a simple

sequence of factors wa—>m; and then ch(u(S)) > m, as follows. There are

factorizations S = /„ X J„, where u(I„) < m and l(JJ is arbitrarily near

m. Then u(S) = u(J„), so ch(u(S)) is not less than m (by 1.4); and it is

not equal to m, since m is singular.

A natural digression: what is the upper character of a strong product

in general?

3.4. The upper character of a strong product of directed sets D„ is greater

than any sum        of cardinals k„ each less than u(Da).

Proof. Let S be a set of X! k« elements of X expressed as a union of

sets S„ of k„ elements. No Sa has cofinal coordinate projections in Da; thus

some x„ is not succeeded by the ath coordinate of any element of Sa; this

gives us an element x of the strong product which has no successor in S.

This proposition gives the complete answer if the generalized continuum

hypothesis is assumed, for on that hypothesis, König's theorem is sharp;

every product of infinite cardinals m„ is the smallest number greater than

all ^ka (ka<m„). This result, one must suppose, is known, though I

have not found a reference. At any rate (with the hypothesis), one can

write out explicit rules determining all products, and check the present

assertion by cases. The referee points out that the converse holds also;

the statement that König's theorem is sharp is equivalent to the general-

ized continuum hypothesis.  We have:

3.5. Assuming the generalized continuum hypothesis, the upper character

of a strong product is the product of the upper characters of the factors.

The following restatement of 3.3 will be convenient. Call a set S of

cardinal numbers low at a cardinal m if m is a limit point of S and S does

not include ch(n) for any n in (m, 2m]. Then (3.3) if Q(D) is low at m,

ch(m) 6 Q(D).
We call a set S of ordinals heavy at an ordinal a if, with respect to the

order topology in W(a), S f) W(a) cannot be represented as a topological

sum of bounded subsets. The results on heaviness call for some preliminary

remarks. We have theorems to the effect that ch(m) £ Q(D) if (1) Q(D) is

heavy at m, or (2) the set of cardinals at which Q(D) is low is heavy at m.

However, (2) is marred by an extra hypothesis: m is not (weakly) inac-

cessible (i.e. not a regular limit cardinal). On the other hand, (1) is simple,

flawless, and almost vacuous; we shall show that it cannot apply except

to certain highly inaccessible numbers.

3.6. A set S of infinite cardinals is heavy at a cardinal m if and only if S

meets every closed unbounded subset of W(m).
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Proof. If S n W(m) is contained in the relative complement of an un-

bounded closed set K, it is the sum of its intersections with the (bounded)

maximal open intervals disjoint from K. Conversely, suppose S pi W(m)

is a sum of bounded sets Sa. For each a, some of the upper bounds of Sa

are not in S, since some of them are noncardinal. Let ba be the smallest

such bound. The set J of all ba is then disjoint from S, and so is its closure

K, since S C\ W(m) is the topological sum of the Sa. If K is unbounded,

we are done. If K is bounded, so is Sn W(m), and we are done (since

W(m) has no greatest element).

3.7. // some set of infinite cardinals is heavy at m then m is a limit cardinal

and ch(m) > N0.

This is obvious. It follows that W(m) is countably compact; every two

unbounded closed sets K, L have unbounded intersection; and thus if S

is heavy at m, so is S n X.

A p-number [4] is a cardinal at which the set of all smaller inaccessible

cardinals is heavy. It is known [4] (and not hard to prove) that p-numbers

themselves are inaccessible.

3.8. // some set S of regular alephs is heavy at m then m is a p-number.

Proof. By 3.7, the limit cardinals in W(m) form a closed unbounded set

K. S Pi K is a set of inaccessible predecessors of m, heavy at m.

3.9. Theorem. // Q(D) is heavy at m, then m£Q(.D).

Proof. By 2.5, D must have a quotient P that is a subdirect product of

I W(n): n£S}, where S is a set of cardinals in W{m) that is heavy at m.

For any x in P, we shall show that there is s £ W(m) such that for arbi-

trarily large n in S, x„ ^ s. If this were not true, then for every t in W(m)

there would be a least u(t) £ W(m) such that for n ^ u(t) in S, x„ Si t.

This u is a continuous function. Hence the set T of all t such that u(t) g t

is closed. T is also unbounded; for if u(t) > t, and iteration yields, for all

n, un+l(t) > u"(t), then the values u"(t) converge to a limit v which must

belong to T. It follows that S and T have a common element n, where

u(n) ^ n and x„ Si n, an absurdity.

Define/(x) to be the smallest such s. Then /: P—> W(m) is isotone and

convergent. Since m is regular, the theorem is proved.

A more frequently applicable relation between Q(D) and m is that the

set of cardinals at which Q(D) is low is heavy at m; we say Q(D) drags at m.

3.10. Theorem. // Q(D) drags at a singular cardinal m, then ch(m)

GQ(D).

Proof. We have ch(m) — I < m. There is an ascending sequence of

cardinals cofinal in W(m) that is order-isomorphic with W(l). Its closure

(in W(m)) is still order-isomorphic with W(l). Since (by 3.7) / > N0, the
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nonisolated members of this set still form a closed unbounded subset L

of W{m); and each element n of L has ch(ra) < /.

Let J be the set of members of L at which Q(D) is low. (J is heavy at

m.) For each j £ J, take a subset of Q(D) of power less than / having / as

a limit. Uniting these sets, we get a subset I of Q(D), order-isomorphic

with W(l), which is low at every element of J. By 2.5, D has a quotient

P that is a subdirect product of { W(i): i£ /}. For each j in J, consider

the projection P; of P in the strong product X { W(i): i <j, i £ /'}. The

upper character of P, is exactly j, for it must exceed all these cardinals

i, and the other cardinals up through 2' are excluded as nonquotients of

D. Thus Pj has a cofinal subset which is a union of ch(j) sets Ha, each of

power less than Each Ha has power less than k for some k = k(a) < j

in 7. Hence there exists x = x(j,a) in X j i£ 7} such that for each

y in 7f„, y, ^ X; whenever k(a) ^i<j and iE/. Selecting such x(j, a)

for all j and «, we have / elements of the strong product. Some member r

of / is greater than /; and for i ^ r in I, all the coordinates x,ij,a) have

a common bound 6,. Define 6, in an arbitrary manner for i < r in /.

For any y in P, for ; > r in J, there exists k = ky(j) < j in / such that

the coordinates of y between the kth coordinate and the gap at j are less

than or equal to those of some x(j, a); if we put k^r, we may conclude

y; ^ bi when k ^ i < j. Consider the function ky on the set of all j > r

in J. We shall show that on some cofinal subset of J, ky is bounded away

from m. Suppose the contrary. Then for ordinal t <m, there is a least

u(t) < m such that for all 5 u(f) in J, Ay(;') ̂  J. As in the proof of 3.9,

u is continuous, and the set T of all t > r such that u(t) is closed and

unbounded. Since J is heavy at m, J and T have a common element j.

Here u(j) ^ j, whence ky(j) ^a contradiction. This shows that ky is

bounded on a cofinal set.

If v is an ordinal between r and m such that &y cofinally has values ^ i>,

then y; ^ 6, for all i ^ v in I. Thus for every y in P there is a least index

f(y) £ f such that y, ^ o, after /(y). We have /: P—> I isotone and con-

vergent, and I is cofinal in W(m). This completes the proof.

3.11. Theorem. Assuming the generalized continuum hypothesis, for

every set S of at most Ki regular alephs which contains ch(m) whenever S is

low at m or drags at m, there exists a directed set D such that Q(D) = S.

Proof. We consider four cases according as 5 does or does not include

N0 and Ni. If S includes both, let D be a weak product of all W(m), m £ S,

and if S includes neither, let D be their strong product. The first case is

settled by 2.10. In the second case, clearly SCQ(D). For any regular

cardinal m not in S, D is the product Dx X D2, where Dx is the strong

product of all W(mJ, /n„£5, ma<m, and D2 the strong product of the
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remaining factors. l(D2) exceeds the bursting number m of W(m) (or D2

has zero type); so by 2.6 (or trivially) we need only show that m (£ Q(Dj).

Now (given the generalized continuum hypothesis) a regular cardinal m

always exceeds any product of at most Ni pairwise distinct smaller infinite

cardinals unless m =* Nx+i where Nx is a limit of the factors, so that ch(Xx)

S[ N,. As S does not include K0 or Ni, S cannot be low at Nx; mGS.

If N0 is not in S and is in S, let D be a 1-product of all W(mJ, m„G5.

Then Q(D) contains S, and H0 Q(D) since 1(D) = Ni. For any larger

regular m not in S, factor D = Di X D2 as in the preceding case. Again

the cardinal number of D\ is less than m; so by 2.9, we need only m £ Q(D2),

which holds because of 2.11.

Finally there is the case K0 GS, Ki (£ S. Then S is a set of power Ni or

less, not dragging at any cardinal (use 3.7). The union S' of S and the set

of all cardinals at which S is low is not heavy at any cardinal (use 3.8). By

induction on the order type of S' one sees that S' can be expressed as a

topological sum of countable sets Jß. Let Iß = J0O S. The members of

countable set Iß can be indexed in a one-to-one manner as m(ß, n), n a

positive integer. For each positive integer r, let Dr be the subset of

X { W(m): m G S} consisting of all x such that xm = 0 for those m = m(ß, n)

such that n > r. Note that Dr is a strong product of different cardinal sets

not including W(Ki). Let D be the union of all Dr. D is directed; in fact,

it is a subdirect product of the sets W(m), m in S, so Q(D) contains S.
Consider any regular cardinal m not in S. Suppose there were were a

Tukey function g: W(m) —> D. Since N0 £ S, there must be m values of

g in one Dr, and m(EQ(Dr). As before, Dr is the product of two factors

Ci, C2, which are respectively strong products of certain cardinal sets

smaller than m and larger than m. By 2.6 we need only show m(£Q(Ci).

Ci has power less than m (as before) unless m = Nx+1, where Nx is a limit

of the factors. In this case S must be low at KA, since mf|S. But every

cardinal N; at which S is low is in some Jg. Only finitely many members

of Iß index factors of Cü the indices of the other factors of Ci do not have

XA as a limit point, and we have a contradiction.

4. Standard sets. The symbol Ax, (of Tukey [7]), where X and n are

ordinals with X ̂  u, denotes any directed set AX(A), A having power N„.

We define Ax*, for all pairs X ̂  u except (X,X) when Nx is singular, as the

directed set of all bounded subsets of W(K„) having power < Nx. Evidently

Ax* is "usually" the same as AX(W(K„)); precisely, this holds if and only

if ch(K„) ̂  Xx.
As was indicated in the Introduction, we shall establish a characteri-

zation of the Ax* depending on the generalized continuum hypothesis,

and, motivated by that, call them standard sets. Without continuum

hypothesis, it may be that the sets Ax* are not very useful standards, and
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it may be that the characterization is "usually " vacuous or characterizes

some different directed sets. At any rate, we agree that the term "standard

set" shall refer to precisely the sets Ax*. For some of them the results do

not require any continuum hypothesis.

The principal bursting number bu(D) of a directed set D is the smallest

bursting number of any cofinal subset of D.

4.1. The principal bursting number is an invariant of cofinal type.

Proof. Use the fact ([3] or [7]) that equivalent directed sets D, E, can

be simultaneously embedded as cofinal subsets of a third directed set F.

If D has a cofinal subset Dx no m of whose elements are bounded, then E

has a cofinal subset Ex any m of whose elements exceed m elements of Dx.

If bu(D) = 1(D), then D is universal in character, i.e, for a given directed

set E to be a quotient of D, the necessary conditions 1(E) ^ 1(D), u(E)

^ u(D), are also sufficient. For (assuming, as we may, that bu(D) is the

bursting number) there exists a one-to-one function g from a cofinal sub-

set of E to D, and g must be a Tukey function, for a subset of its domain

that is large enough to be unbounded is so large that its image must be

unbounded.

We shall call D a band set if bu(D) = 1(D). Band sets coincide with sets

universal in character if the generalized continuum hypothesis is assumed;

this is essentially in [6], in view of 1.4 above.

4.2 (Schmidt). /(Aj = ch(Nx).

4.3. u(Ax„) eg X„. For equality, a necessary condition is ch(X„) 5: Xx, and

a sufficient condition is X™ = X„ for all m < Xx. Assuming the generalized

continuum hypothesis, these conditions are equivalent.

Proof. Schmidt proved [ 6] all of 4.2 and 4.3 except the necessity of ch(X„)

^ Xx without continuum hypothesis. If ch(X„) = m < Xx, then a set S

of X„ elements of A^ = AX(A) cannot be cofinal. For S is a union of m

subsets Sa, each having power less than X„ and having union of power

less than X„. Thus no Sa covers A; and one can choose a set of m elements

of A which is not contained in the union of any S„, and therefore has no

successor in S.

4.4. bu(Av) 2: Xx, with equality at least in case u(Av) = X„.

Proof. Let A have power X„. If Xx is regular, every subset of AX(A) of

smaller power is bounded. Suppose Xx is singular. Then for every regular

cardinal m between ch(Xx) and Xx, and m elements of AX(A) include m

elements of power bounded below Xx, which form a bounded set. This

proves the inequality. Now suppose there is a cofinal set D = j da j of X„

elements of AX(A), indexed by ordinals a<«„. We construct another

cofinal set E= \ea\ by transfinite recursion. Check first that for each a,

the preceding sets e^ cannot cover A. This is obvious if X < n. If X = n,

then since u(Ax„) = X„, N„ is regular by 4.3; that makes this case obvious
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also. Thus for each «, there is aa E A not belonging to any of the preceding

eß. Let e„ = daVJ \a„\. Now E is cofinal, and any Xx of its elements have

a union of power Xx; so any Kx of its elements are unbounded.

Thus we have Schmidt's theorem in case Xx and X„ are the characters:

A^ is a band set and is universal in character [6]. In this case, by 4.3,

Ax* is a set A^. Schmidt noted that no continuum hypothesis is needed

to prove the theorem in case X = 0 or X = u where X„ is regular. Without

continuum hypothesis, one can add the following result.

4.5. // Xx is regular and X < u < X + w0, then u(Ax„) = X„; hence bu(AX(1)

= Kx, and Av is universal in character.

Proof. We must exhibit a cofinal subset of AX(A) having the same power

Xx+*+1 as A, knowing that this is possible for Xx+jt. (The induction began

with k = 0, and regularity of Xx was needed there.) Identify A with

W(o)x+A+1). For ü)x+*< a(£A, there is a set Sa of Xx+* elements of Ax(W(a))

which is cofinal in it. AX(A) is just the union of the sets Ax(W(a)); so the

union of the Sa is cofinal in it.

We turn to the sets Ax*. Thus we are considering the same sets A^ in

the more extensive case ch(X„) S; Xx, and some different sets when ch(X„)

< Nx; but we still exclude the case of singular Xx = X„.

4.2*. l(At) = min(ch(Nx), ch(X,)).

This is obvious.

4.3*. u(Ax*) St X„. For equality, the generalized continuum hypothesis is

sufficient.
Proof. Fewer than X„ sets of powers < Xx ̂  N„ cannot cover W(N„),

unless N,, is singular and Kx = X„, an excluded case. On the other hand,

Ax* is the union of N„ sets Ax(W(a)), a <wK, and with the present hy-

pothesis, they have power ^ X„,

4.4*. bu(Ax*) St Nx. For equality, u(Ax*) = N„ is sufficient.

Proof. We have the result if ch(X^) ^ Nx. Suppose ch(X„) < Nx. For

each regular m > ch(N„), any m elements of Ax* include a set S of m ele-

ments of some Ax(W(a)), a>x < a < w„. If Xx is regular, put m = Xx; S has

bounded subsets of power n for every n < Nx. If Xx is singlar, consider

ch(Xx) < m < Xx. S has m elements whose powers are bounded away from

Xx, so that they form a bounded set. This proves the inequality. The

same construction as in 4.4 proves the equation.

4.5*. // Xx is regular then u(Ax*x+u0) = Xx+tt<).

4.6. For any directed set D of nonzero type, bu(D) g,u(D). ch(bu(Z)))

is a cardinal quotient of D. Also, every directed set E such that 1(E) St bu(D)

and u(E) ^ u(D) is a quotient of D.

Proof. D has (by 1.7, 1.5) ch(u(D)) = m elements da, every m of which

is unbounded. D also has a cofinal set which is a union of m sets Ca = {caß \

each of power < u(D). For each a and ß, let eaß be a common successor
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of caß and da. The eaß form a cofinal set; and a subset cannot have power

u(D) unless m different first indices a occur. Thus bu(D) ^u(D). Next,

D has ch(bu(D)) bounded subsets Ba such that no union of ch(bu(D))

of them is bounded. (Take sets of different power if bu(fl) is a limit cardi-

nal, sets of power 1 otherwise.) Then bounds for the sets B„ constitute

the set of values of a Tukey function from Vv'(ch(bu(D))). For the final

assertion, any one-to-one function is a Tukey function.

4.7. Every standard set Ax* admits two functions p: Ax* —> W(ch(Nx)),

q: Ax*—> rV(ch(X„)), such that every subset of power < Nx on which p and q

are bounded is bounded. If u(Ax*) = X„, then Ax* has a cofinal subset EXll

whose bounded subsets are precisely the sets of power < Kx on which p and q

are bounded.

Proof. If Kx is regular, let p be identically 0. Otherwise identify Wf.ch(Xx))

with a cofinal set of cardinals in lv*(Xx), and let p(d) be the first of these

cardinals exceeding the power of d. If m = ch(X„) ^ Xx, let q be identically

0. Otherwise identify W(m) with a cofinal set of ordinals in W(X„), and

let q{d) be the first of these ordinals which is an upper bound for d. Then

any fewer than Nx elements of Ax*, with their powers bounded away from

Xx and their least upper bounds bounded away from «„, form a bounded

set. If u(Ax*) = N„, then by 4.4* there is a cofinal subset Fx„ every Nx of

whose elements are unbounded; and clearly a set on which p or q is un-

bounded is unbounded.

4.8. Theorem. If A^ has upper character X„ then it is a free sum of the

class of all directed sets D such that u(D) = X„, bu(D) = Xx, artd it is a

member of the class.

Proof. As we already know bu(Ax*), we need only show that all these

sets D have Ax* as a quotient. We may assume that D has bursting number

Xx. By 1.7 and 4.6, there are Tukey functions t: W(ch(Xx)) —> D and j:

W(ch(X(J)) —>D. Let p and q be functions given by 4.7, and let F be a

cofinal subset of Ax* of power X„. Let h: F—>D be a one-to-one function.

For/GF, let g(f) be a common successor of h(f), ip(f), jq(f). On every

unbounded subset of F, by 4.7, h or ip or jq is unbounded. Thus g is a

Tukey function.

We remark that the crude statement of 4.8 in the Introduction is correct

as hedged; the hypotheses that D has power X„ and bursting number Nx

suffice. (Ax* may lack these properties, but it is equivalent in this context

(H) to sets that have them.) To see that they suffice, note that the proof

of 4.8 applies if W(XX) and Vv*(X„) are quotients of D. W(XX) is a quotient,

by the proof of 4.6. This disposes of the case X = u. The remaining case

X < n requires that the power of D is just its upper character u; for if v is

a regular cardinal > u, any v elements of D (a union of u bounded sets)

must contain a bounded set of power v.
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4.9. Corollary. Suppose u(Aj = w(AX(i+1) = K„+1> and Nx > 2m for all

m < Nx. Then A^ is equivalent to AX(1+1.

Proof. In any case AX(1+i Si A^; for embedding an N^-element subset B

in an K„+1-element set A induces a Tukey function from Ax(ß) to AX(A).

4.8 applies to Ax„+) = A£+i; and the hypothesis on Nx implies that no set

AX(B) has an Nx-element bounded subset. Hence the equivalence.

It seems worth noting that whenever u(AX(J exceeds N„, it is the same

as u(AX(1+1), by the method of 4.5. For 4.9, though, the value must be just

N„+1. Of course the generalized continuum hypothesis implies that. On

that hypothesis, we have determined all Ax„ except those with regular Nx

> ch(K)1); those have upper character N„+1 and principal bursting number

either Nx or Xx+1.

We can conclude (on the same hypothesis) that band sets and sets

universal in character coincide and exist for all possible characters I, u

(I = ch(0 g ch(u)). On the weaker hypothesis of 3.2 (2N°<Ka+J, one

can add to 4.8 as follows: for singular N„, the free sum of all directed sets

D such that u(D) = bu(D) = X„ is W(N„). I am indebted to the referee

for correcting my original misstatement. The proof is (nevertheless) not

hard; one need only show that for any regular cardinal m ^ ch(K„) there

is D satisfying u(D) = bu(D) = X„ and omitting m from its spectrum.

Without any restriction on cardinals, one has

4.10. Any band set D with 1(D) = Nx and u(D) = N„ must be equivalent

toAv.

Proof. D has a cofinal subset E of power N„ in which the bounded sets

are precisely the sets of power < Nx. For a Tukey function from E to

AX(E), take each element e to the singleton \e). For a Tukey function in

the opposite direction, take each S £ AX(E) to a bound for S in E.

As we remarked earlier, the proof of 4.8 proved more; in particular,

4.11. // u(Ax*) = X„ then Ax* is a quotient of every D such that u(D) Si N,,,

bu(L>) ̂ Nx, and ch(Nx) and ch(N„) are in Q(D).

4.12. Q(AX*J) contains ch(Xx), ch(NJ, and the regular cardinals between

Nx and N„. // it has any other elements they are greater than N„.

Proof. For every cardinal m between Nx and N„, Ax* contains m distinct

singletons, any m of which are unbounded. If m is regular, this yields a

Tukey function. For ch (N„), a set of singletons whose union is cofinal in

W(X„) gives a Tukey function. If Nx is singular, there are ch(Nx) initial

segments of W(NM) whose powers approach Xx; hence a Tukey function.

For any other regular cardinal m < Nx, let A be a set of m elements of

A£. The function p of 4.7 is bounded on an m-element subset B; the func-

tion o is bounded on an m-element subset C of B. Then C is bounded,

and W(m) is not a quotient.

4.13. For each cardinal N„ < Nx, any K0+, elements of Ax* include N„+1



1965] the category of cofinal types. ii 413

elements, every K„ of which is bounded.

Proof. There are N„+1 elements all of which are bounded unless at least

one of ch(Kx), ch(KM) is Nn+1 (by 4.12). If both are then N„ </(Ax*) (4.2*)

and every N„ element is bounded. If ch(Nx) is N„+i and ch(N„) is not, then

any N„+1 elements of Ax* have a subset A of X„+1 elements on which the

function q of 4.7 is bounded. Since H„ < ch(Nx) g Nx, any N„ elements of

A are bounded. The remaining case is similar.

Those quotients A*„ (£ X(N„)) of Ax* for which a is not in the interval

[\,n] will be called the exceptional cardinal quotients of Ax*. By 4.12, there

are at most two of them, assuming the generalized continuum hypothesis.

4.14. Theorem. Assuming the generalized continuum hypothesis, the

standard quotients l*ß of a standard set Ax*, other than the exceptional cardi-

nal quotients, are just those for which X < a ^ ß ^ u and q(AX*) includes

ch(X„) and ch(Ntf).

Proof. By 4.11 (with 4.3* and 4.4*), all these A*0 are quotients. For any

other quotients A*(, ß > a by 4.12, and necessarily ß ^ n and ch(N„) and

ch(K/3) are in q(AX*). It remains to rule out the possibility a < x. A*ß has

a cofinal subset E consisting of at least X„ + i elements, every N„ of which

is unbounded. By 4.13, A*„ has no such subset. Then a Tukey function

from E to A^ would have to take a constant value on a set of power N0+i,

which is absurd.

Our concluding observation on standard sets is that some are direct

products of others.

4.15. If ch(N„) = m 5j ch(Nx), but X < p, then Ax* is a direct product of

W{m) and all Ax* 41, X < a < u.

Proof. These sets are indeed quotients, W(m) by 4.12, Ax*+J (= Ax„+i)

by the method of 4.9. Suppose D has these quotients. Since they are com-

plete, there are isotone convergent functions /0: D—> W(m) and /„: D—> Ax*+1.

Replace W(m) by a sequence of X„'s order-isomorphic with W(m) converg-

ing to K„; call it A. Define /: D—>AX* as follows: f(d) is the union of all

the sets f„{d), for « < f0(d) in A. Since m g ch(Nx), /(d) is indeed an ele-

ment of Ax*. / is isotone; and since Ax* is the union of the Ax*+l, / is con-

vergent.

5. Additional results and problems. An alternative notation for AX(A) or

Ax„ is Ax(m), X ordinal and m cardinal, meaning any set AX(A) where A

has power m.

5.1. If n is an infinite cardinal and ch(n) > N0, then Ao(2") is equivalent

to a strong product whose factors F(m,a) are n copies of A0(2m) for each m <n.

Proof. First, the power of Ao(2m) is 2m, and the strong product has power

2s where s = ^Tnm (m <n), which is n. As Ao(2") is universal in character

with characters N0 and 2", we need only show that the strong product,
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or some quotient of it, is the range of a Tukey function from Ao(2"). To

this end, identify Ao(2n) with the set of all subsets of the set W(n). For

each a£ W(n), let F(m,a) be a copy of Ao(2m), where m is the cardinal

number of a; and identify F(m,a) with the set of sets of ordinals less

than a. For each m < n, we have no more than n factors F(m,a). Define

the coordinate function ga: Ao(2") —> F(m, a) to take each H C W(n) to

the set of all elements of H less than a. Then the ga are the coordinates

of a Tukey function. For if (//, } is a countably infinite set of subsets of

W, any two H„ Hj are distinguished by some ga; this countable set of as

has a bound /SE W(n), and g8({/7, j) is infinite, hence unbounded.

Let ir(ra) denote a strong product of n copies of w0 (for infinite n).

5.2. Theorem. The strong product n(n) has Ao(n) as a quotient, and it is

equivalent to Ao(2") if n St 2m for all m < n and ch(re) > N0. Ao(Ki) is not a

quotient of ir(N0).

Proof. The relation jt(N0) S; Aoo is trivial. For n > N0, identify Ao(rc)

with the set of isolated ordinals in W(n); identify the coordinate indices

a with the ordinals ^ n having character N0. For each a, select a sequence

of ordinals ß,(a) increasing to a. Let g„(x) be 0 for x < ßi(a) and for x > a,

but k for ßk(a) ^ x < ßk+l(a). Any infinite set of x's contains a sequence

converging to a limit a, and ga is unbounded on such a sequence.

If n Si 2m for all m < n then each Ao(2m) is a quotient of ir(n). Since the

strong product of n factors ir(n) is simply ir(n2) = jt(«), the strong product

in 5.1 is a quotient of ir(n). Thus if the character of n is not K0, ir(n) is

equivalent to the universal set Ao(2").

Finally, a convergent function from 7r(N0) to Ao(Ki) would yield a Tukey

function from Ao(Ni) to ir(N0). Its coordinates would be N0 integer-valued

functions on an uncountable set X, not all bounded on any infinite subset

of X. But these are the coordinates of a function from X into a separable

metric space. In such a space, every uncountable set contains a convergent

sequence, on which the coordinate functions must be bounded. The proof

is complete.

5.3. Corollary. Assuming the generalized continuum hypothesis, Ao(Na+i)

is equivalent to ir(N„) when ch(X„) > N0. // X is a limit ordinal or X = 1,

then Ao(Kx) is not equivalent to a strong product of sets of smaller upper char-

acter.

Proof. The first assertion, and the second for X = 1, are immediate from

5.2. As for the limit cardinals NA, a strong product of sets not having upper

character Nx cannot have upper character Nx; for there would have to be

either Kx factors (not of zero type) or factors with upper characters in-

creasing to Nx, and in either case the product is too big.

5.4. Theorem. Every standard set Ao(2m) is equivalent to an ultrafilter

of subsets of W{m).
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Proof. The point is that a set W of m elements, for m infinite, has 2m

independent subsets Sa; that is, the free Boolean algebra on 2m generators

can be isomorphically embedded in the algebra of all subsets of W. This

is the Stone dual of the statement that a Cartesian product of 2m two-point

spaces is a continuous image of the Stone-Cech compactification of a

discrete space of m points, and follows at once from the proof by E. Marc-

zewski (Szpilrajn) [5] that such a product has a dense set of m points.

In W, let Sf be the collection of all subsets of the form of a union of

infinitely many Sa minus a union of finitely many Sa. By independence,

the collection $f has the finite intersection property; it generates a filter

which is then contained in an ultrafilter °k. As % has power 2m, it is a

quotient of Ao(2m). On the other hand, for a Tukey function from Ao(2m)

to take any one-to-one function whose values are complements of sets

Sa. Every infinite union of S„'s is in %, so their complements are un-

bounded.

Many other directed sets of upper character greater than m can be re-

presented by filters in W(m). Here is a sample representation, using

instead of Marczewski's independent sets Erdös' almost disjoint sets:

more than m subsets of W(m), each having m elements but no two having

m common elements [l]. It is convenient to turn the filter upside down.

5.5. If u(D) = X„+1 and bu(D) g ch(X„), then D is equivalent to an ideal

of subsets of W(X,j.

Proof. D is equivalent to one of its cofinal subsets E of power X„+1 and

bursting number at most ch(X„). Let F be a family of X„+1 almost dis-

joint sets in W(X„). Let i be a one-to-one correspondence between E and

F, and define h(e) = U i(e') (e' ^e). Then h is isotone from E to an

upward-directed family of subsets of W(X,J, and h is isomorphic since no

union of fewer than ch(X„) sets i(e') contains another i(e").

We conclude with remarks on four unsolved problems.

Problem 1. How many nonequivalent directed sets D exist with u(D) 5= X!?

There are at least five: one trivial (zero type), three standard sets, and

wo X «i. These, but not more, can be distinguished by the values of 1(D),

u(D), and bu(D). Assuming the continuum hypothesis, ir(X0) is a sixth.

5.2 shows that its principal bursting number is not X0, whence (by 4.6)

it is Xi. One must then distinguish 7r(X0) from w0 X «i. Of several simple

proofs, perhaps this is the most informative. In ir(X0), every unbounded

subset contains a countable unbounded subset. Hence, as in the proof of

2.6, whenever g: ir(X0) —*D X co, is a Tukey function, its first coordinate

must already be a Tukey function.

The answer to Problem 1 may be X2. Two particular sets whose position

is unsettled are the filter of dense open sets in a Euclidean space and a 1-

product of X] copies of w0- The former at least is not equivalent to Am.

Problem 2. How many nonequivalent ultrafilters exist on a set of power X0?
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Between two (one trivial) and N2 (if (H)).

We call a directed set D directly irreducible if B X C St D implies B St D

or C St D. Call D completely irreducible if every set of directed sets {Ca\

such that for all a, Ca St D is false, has an upper bound B such that ß St D

is false. The obvious results are

Every cardinal set is directly irreducible. w0 is completely irreducible.

Hence the following questions seem reasonable.

Problem 3. Is every standard set directly irreducible!

Problem 4. Is every cardinal set completely irreducible?

Problem 3 is related to a problem of Fine and Gillman [ 2]. Rather than

introduce their notation and state their conjecture (which implies direct

irreducibility of AoJ, let us develop the relation for the first case of the

problem. If B X C St Ao,, there is a Tukey function g from the set D = Ani

into Bx C. Regard D as a discrete topological space; let ßD be its Stone-

Cech compactification. Let U C ßD be the union of the closures of all sub-

sets S of D such that g(S) projects upon a bounded set in B. U is an open

set containing D. The sets with bounded images in C similarly yield an

open 3et V. For g to be a Tukey function means U (~) V = D. If neither

projection of g(D) contains Ni elements no N0 of which are bounded, one

has an answer to a question at the end of [ 2]; and the methods of [ 2] may

be applicable.

On Problem 4 we actually have a negative result; by 3.9, if m is a p-

number, W(m) is not completely irreducible. The reader may restate the

problem as he pleases. Negative results for any more cardinals would

contribute to the theory of spectra; affirmative results for any more

directed sets at all would be of interest.
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