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1. Introduction. Let {X„} be a sequence of independent, identically dis-

tributed random variables. One Markov process associated with the X„ which

has been intensively investigated is the free random walk,

Sn= S0 + Xx + ••• + Xn = S0 + Sn.

In this paper we shall investigate another Markov process, T„, which is also

associated with the Xn. This T„ process is defined as follows:

T0 is an arbitrary nonnegative random variable independent of the X„, and

for n > 0,

(1.1) Tn = (Xn + Tn.x) + ,

where for any quantity x we have x+=xifx>0 and x+ =0 ifx^O. The

T„ process behaves like the S'n, with the vital difference that the origin acts as a

reflecting barrier on the left. This process was introduced originally as an

auxiliary device in the investigation of M„, the maximal partial sum amongst

(SX,S2,---,S„), because of the familiar relation

P(M+n £x)~ P(Tn = x | T0 = 0)

(see Lemma 2.1). Previously, the T„ were investigated by Spitzer in [6] and [7],

and the results we obtain here will be extensions of those of Spitzer. However,

our methods are quite different from those of Spitzer.

Before proceeding further, let us adopt some notation which we shall use

throughout the remainder of this paper. Let x _ 0, and let A be a Borel set on

the nonnegative axis. Then, if n > 0,

P„(x;A) = P(TneA\T0 = x),

0P„(x;A) = P(Tn eA; T; # 0,    1 = / < n \ T0 = x),

while for n = 0 we have

P0(x;A) = 3X(A) =    [l       5   -j;

Presented to the Society, August 28, 1963; received by the editors July 30, 1963 and, in

revised form, September 13, 1963.

362



ON RANDOM WALKS WITH A REFLECTING BARRIER 363

In order to understand the results we obtain here, it will be necessary to sum-

marize some of the results in [6] and [7].

In [6] Spitzer showed that if the recurrence condition(!)

(1.2) Î -P^-iL^ =  oo
n = i        n

holds, then there is a unique cr-finite measure n(-) on the Borel sets of [0,oo)

such that n({0}) = 1, and for any Borel set Ae [0, oo), we have

/•oo

(1.3) n(A)   =     i    Pyix; A)n (dx).
Jo-

Moreover,

00

n(A) =  I 0F„(0; A).
n = l

In addition, he also showed that if either the Xn have a symmetric distribution or

EX y = 0, EX\ < oo, then if A = [0,x], we have

(lA) izwr^'-
Moreover,

(1.5) P„(0,{0}XV(n)-l,

where C is an explicitly determined constant. (See (2.18).)

These results of Spitzer lead one to inquire whether or not (1.4) is valid only

under the condition (1.2). Our principal goal will be to show that this question

can be answered in the affirmative by means of the following

Theorem 1. If (1.2) holds, then for any bounded Borel set Acz [0,oo), any

nonnegative x, y, and any fixed integer m, we have

<"» ïz-ïÈiê • **>■
Regarding (1.5), we have the following

(x) It is not difficult to show that when condition (1.2) holds we have, for any Borel set A

such that P„(0; A) > 0 for some «, that P(Tn e A i .o . \ T0 = x) = 1 and, conversely, if

P(Tn = 0 i .o . | r0 = 0) = 1 then condition (1.2) holds. Thus (1.2) is a necessary and sufficient

condition for the T„ process to be "recurrent." In particular (1.2) holds if E \ Xx ] < oo and

EXy 1% 0.
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Theorem 2. If

(1.7) lim n'1 i P(Sk>0) = p(*)
n-> ao k = 1

for 0 5= p < 1, íAezi

(1.8) lim P„(0;{0})r(l-pKL-^n) =  1,
n-* oo

where L(x) is a slowly varying function of known form.

As a corollary of Theorem 1 we shall obtain the following result, which is of

some interest in its own right:

Let V be the first passage time for the sums S'n to the interval (0,co); íAew

for x = 0, we have

<L9>      "mP('/«;>ril5s'°o»") -«p. -a-
n_oo       P(F>n| S0= 0)

provided (1.2) Ao/ds.

In [6] and [7] Spitzer showed also that when X„ has density fc(x) then every

nondecreasing, right continuous solution F(x) of the Wiener-Hopf equation,

(1.10) F(x) = I""  fc(x-y)F(y)dy,
Jo-

induces a measure n satisfying (1.3) and conversely, every such measure gives

rise to a nondecreasing, right continuous solution F(x) of (1.10). Thus, under

condition (1.2) there is (modulo a constant) only one such solution F(x). More-

over, if we let F0(x) be an arbitrary probability distribution on the nonnegative

axis, and we define functions F„(x) by the relation,

(1.11) Fn + X(x)=  ¡C°k(x-y)Fn(y)dy.
J o-

Then (as was pointed out by Spitzer in [7]) it is easy to verify that

/•OO

Fn(x) = Jo_  Pniy, [0, x]) dFoiy).

Consequently, our results show that condition (1.2) alone suffices to guarantee

that the iterates (1.11) converge to the unique nondecreasing, right continuous

solution of (1.10) (with F(0) = 1) in the following manner:

(2) It is easy to verify that (1.7) implies that (1.2) holds.
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lim|^ = F(x).
n-»oo i'nW

2. Proofs. In this section, variables x, y will always denote points on the

nonnegative axis while sets A, B will be Borel subsets of [0, oo). We commence

our investigation with the following known result:

Lemma 2.1. If A = [0,y] zAen

(2.1) Pn(x; A)mP(M:_xeA;(Sn+x)+eA).

Proof. By induction on n it can readily be verified that

T„ = Max{0,S„ + T0, Max(X„, X„ + *„_.,-, X„ + - +X2)}.

Consequently,

(2.2) Pn(x;A) = Pl(S„+x)+i%y,Max(Xn,Xn+Xn_y,-,Xn+.: +X2)£y].

But as the X„ are independent and identically distributed we have that the

right-hand side of (2.2) and (2.1) are equal.

The next lemma is basic to the proof of Theorem 1.

Lemma 2.2. // condition (1.2) is satisfied and A = [0,y] zAen

(2-3) ;™-rvöM)- = i-

Proof. A theorem of E. S. Andersen [1] (a simple proof can be found in [3])

asserts for | Z | < 1 we have

OO 00

S P(M¿= 0)z" = exp S P(Skz%0)tk/k.
n=0 t=l

Thus, when condition (1.2) holds, we have

S P(M„+ = 0) = oo,
n = 0

and since P(M* = 0) is monotone in n, we must have P(M^ = 0) > 0 for all n.

Moreover, it is easily shown (see, e.g., [5]) that if (1.2) holds, then

Min(St, S2,--, S„)-* — oo with probability one. Consequently,

(2.4) PiSt > -x   for all i > 0) = 0.

Now

PiT„ =¿0   for all n > 0 | T0 = x) = PiS¡ > - x for all z)

and thus
00

(2.5) 2 0P„ix; {0}) = 1.
n = l
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From Lemma (2.1) we have that P„(0; A) is monotone in n,  and  thus from

the estimate

P.+ 1(xM)è i oPk(x;{0})Pn + x-k(0;A),
fc = l

we obtain

(2.6) P„+l(x;A)^Pn(0;A)î  0Pk(x;  {0}).
k = l

Since Pn(0,/l)^Pn(0,0)>0 we have Pn(0;A)>0 for all ». Thus, from (2.6)

and (2.5) we have

On the other hand, Lemma (2.1) shows P„+x(x;A) = Pn(0;A), and thus

(2.8) lim sup ̂ "^f =  1.
n -»oo ^nV",  A)

Combining (2.7) and (2.8), we obtain (2.3).

We may now prove Theorem 1. We first establish the special case for m =0,

x = 0, and y = 0.

Lemma 2.3. If condition (1.2) holds and A is any bounded Borel set, then

(2-9) ^TMW " **■
where

(2.10) 7i(A) = Z oF.ÍO; A).
n = l

Proof. We have that

Pn(0;A)   _ gP„-fc(0;{0}) ¿    P„-t(0;{0})   »«.«
p„(0; {O})- AtP.ÍOíW)  oP»(0'i4) + t¿+1 p„(0;{0}) °Pfc(0'/4)

= Gx(m, n; A)  +  G2(zn, n; ^4).

It is easily seen from Lemma 2.2 that

lim lim G i  = n(A),
m n

and thus (2.9) will be proved provided we can show that

(2.11) lim lim G2 = 0(3).
m       n

Now if A = {0}, (2.11) is evident. Suppose

(3) This procedure for establishing a ratio limit theorem was used by Orey [4] in the

investigation of irreducible, null recurrent Markov chains with a denumerable state space.
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A = (a, A],    where b — a < 5.

We have

0Pn+m(0;{0})^   f   0P„(0; dx) 0Pm(x; {0}) ̂  oPn(0;A)   inf   0Fm(*; {0})
J a+ a<x_i>

^ 0P„(0; A)P(Sm g - b, S, > -a, 1 g. i < m).

Now if ô is sufficiently small, then for some m, say m0, we must have (by (2.4)) that

<x = P(Smo^-A, S¡> -a, lgi<mo)>0,

and thus

(2.12) 0Pn(0;A)ia-l0Pn + mo(0;{0}).

But

G2(m+m0, n+mo,{0}) =      T       ^"..wim"^0» W)

- .WW)    i   %#Ä0pmo+t(o!{0}),
Pn+mo(0,{0}) t-»+1   P„(0,{0})

and thus by (2.12) we have

G2(m, n, (a, A]) z% a'1  l^^l^m + m0, n+m0,{0})

S a-1 G2(m + m0, n + m0, {0}).

Consequently, (2.11) holds for A = (a, A] with A — a sufficiently small. Finally,

as0P(0,.) is an additive set function, and as any bounded .4 is contained in a

finite disjoint union of such intervals (and {0} perhaps), each of length ^ ô for

any positive <5, we have that (2.11) holds for every bounded A.This establishes

the lemma.

To complete the proof of Theorem 1 we first observe that if A is any interval

of the type [0,y] then by Lemma (2.2) and equation (2.9) we have

Pn + m(x, A) Pn+m(x,A)   P„jO,A)
n.œ P„(0, {0})     IZ   P„iO,A)   P„(0,{0}) n{A)

and thus (1.6) holds for all such intervals. Now for any A we have

îoPkix,{0})Pn+m_ki0,A)

P„(0, {0})  " P„(0, {0})

{n+m— 1 -,

I    oPkix,{0})Pn+m_ki0,A) I
k=r+l_ ,o£n + n^j_2j  f — ti y + H 2.

P„(0,{0})               "      P„(0,{0})
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From (2.9) and (2.5) we have that for any bounded A,

lim lim Hx = n(A)
r-*oo n-K»

and thus to finish the proof we must show

lim   lim H2(A) = 0
r-* oo     n-»oo

for all bounded A. If A is an interval [0, y], then, by what was just shown above,

this must be true and since A c [0,y] for some y _ 0, we have

H2(A) = H2(\0, y])

for some y and thus the above assertion is true for any bounded A. This then

completes the proof of Theorem 1.

As an immediate consequence of Theorem 1 we have the following extension

of Lemma 2.2.

Corollary 2.4. If A is bounded and if A can be "reached" from 0 (i.e., if

for some n, P„(0, A)>0), then for any fixed integer m

(2-13> !zW£=l-

Corollary 2.5. Let condition (1.2) hold, and define V by

-{
inf {n: Sn> 0}   if for some n we have Sn > 0,

oo otherwise.

Then for each x _ 0, we have

,* , a^ ,•     P(V > n + m I S'0 = -x)       trn    ...

<2-14> i?,     P(V>n\k = 0)        =*i[°' X]}-
Proof.  We have

P(F>n| S'o= -x) = P(M?^x) = P(T„^x| T0 = 0),

and (2.14) follows at once from Lemma 2.3.

Corollary 2.6. Let

F(x) = 7t{[0, x]}, F0(x) = P(T0^x), F„(x) =   j    Pniy; [0, x]) dF0iy).

Suppose condition (1.2) holds, and X„ has density fc(x); then

(2.15) lim -^ = Fix),
»-♦so  rn\y)

and Fix) is the unique right continuous, nonnegative, nondecreasing solution

o/(1.10) wiiAF(0)=l.
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Proof. As mentioned in the introduction, F(x) is the unique solution to (1.10)

with the above properties, and all we need show is that (2.15) holds. Set

A = [0,x], and note that by Lemma 2.3 we have for any z ^ 0 that

n-oo      ¿ni")

But Lemmas 2.1 and 2.2 show that

P„(z;A) ^Pn_x(0,A)<
FM   =     F„(0)

F(x)

and thus Pn(z; A)¡Fn(0) = C (independent of z). Hence, by bounded convergence

we have

Hm ¥á -iim r^F(wdF^-**>•
n-oo   f»W B-.00   J0 MUJ

Next we establish Theorem 2.

If (1.7) holds, then a theorem of Lamperti [2] shows that

(2.16) 1 - Etv = (1 - f)pL(r^r).
where L(x) is a slowly varying function. However, by a theorem of E. S. Ander-

sen [1] (a simple proof may be found in [3]) we have

1 - Etv = expi- f P(Sk > 0)tk¡k\

and thus

¿(fé-f) = V - ^"t1 - Et^ = ex?(p £l*/fc> exP(~ £ p(s" > °)< */fc)

= exp(-I[p-P(St>0)]i*/fc).

Now, clearly

P(T„ = 0 | To = 0) = P(M: = 0) = P(V > n),
and thus

Ïj>(t„ = o | t0 = o)i" = (i - ty~ ̂ (j-ri) •

Karamata's theorem now gives

ËP(r, = o|r0 = o>~^.
t = o T(2-p)

But since P(T„ = 0 | T0 = 0) is monotone in n, it is permissible to conclude

from the above that
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(2.17) F(Tn = 0 | To = 0)~   'r(i-p)'

which completes the proof.

Note.   In the special case of EX y = 0, FJf2<oo, Spitzer [7] established

the important result,

(2.18) lim L^) = exp ( f ß - P{Sk > 0))) = C.

In conclusion, let us note that the representation

/•CO /CO \

(2.19) e"AXdx) = expl   I £(e_ASk; St>0)fc_1 I,

which was shown by Spitzer to be valid for the cases investigated by him, remains

valid just under assumption (1.2). The same argument as used by Spitzer in [6]

suffices to establish (2.16) in general.
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