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0. We consider transition probability operators P(x,£) on a compact metric

space which satisfy a rather strong condition (uniform stability in mean). §1 is

devoted largely to notation and terminology. In §2 an ergodic decomposition is

obtained. It is essentially a sharpening of a decomposition of Yosida's valid under

less stringent conditions [17]. In §3 we discuss the behavior of sample paths of

the Markov processes themselves relative to the ergodic decomposition obtained

in §2. In §4 we give some examples of transition probability operators which are

uniformly stable in mean.

Most of the results of §2 and some of the results of §4 appeared in the author's

thesis, written under the guidance of Professor Blackwell. The results of §3 had to

await Breiman's discovery of a new version of the strong law of largenumbers.

Our Theorem 3.2 is a minor generalization of Breiman's theorem and our proof

a slight modification of his.

1. S is a compact metric space. Its metric is denoted by d. S is the «r-field

generated by the open subsets of S. C(S) is the Banach space of real-valued con-

tinuous functions on S with the uniform norm. The dual C*(S) consists of all the

finite countably additive measures on £. The value of a member p of C*(S) at a

member/of C(S) will be denoted by either (f,p) or J" fdp. A countably additive

measure p on any o-ñeld over any set Í2 is called a probability measure if it is

non-negative and if p(i2) = 1. We sometimes refer to probability measures in

C*(S) as distributions.

A function P on S x £ is called a transition probability operator if

(i) P(x, • ) is a probability distribution for each xeS,

(ii) P( • ,E) is a Z-measurable function for each Ee 2.

Unless otherwise stated, we will from now on assume that P is a fixed transition

probability operator. We will abuse the language by using 'P(x,£)' rather than

'P' to denote not only a value of P but P itself. Associated with P(x,E) are opera-

tors Tand U, the first defined on bounded ^-measurable functions/by (Tf)ix)

= jfiy)Pix,dy), xeS,the second defined on C*(S) by (Up)(E) = JP(x,£)p(dx),

£ e S. Functions fixed under Tand measures fixed under U are called invariant.
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We will assume that T takes C(S) into itself. The restriction of Tto C(S), also

denoted by T, is a non-negative linear operator of norm 1, with U as its adjoint T*.

Henceforth we use 'T*' to denote U. Iterates of P(x,£) are defined inductively by

P"+1(x,£)= (Pn(y,E)P(x,dy), «=1,2,-, where P1(x,£) = P (x,£). P"(x,E) is

a transition probability operator for each n. and we have (T"f)(x) = J7Xy)P"(x,dy),

(T*"p) (E) = }P"(x,E)p(dx).

If A c S, IA is the function on S equal to 1 on A and to 0 on Ac. If 17 is a

nonempty open subsetofS,there is in C(S)a sequence 0 ^/„f Iv. It follows that for

each A = 1,2, — , Pk(x,U) is a lower semi-continuous function of x, and hence

that {x: Pk(x,U) > 0} is open whenever U is open while {x: ¡^(x^) = 1} is

closed whenever F is closed.

Let Q =n^=i sn, where S„ = S for each n = 1,2 ••• . Let s4 be the product

o--field []^°=1S„, where £„ =E for each n — 1,2, —. Then, for each n, X,, is the

S-valued function on Cl defined for each co = (co1,co2,-.., co„, —) in Q by X„(co)

= con. Each Z„is(j3/ — Immeasurable (that is, X~'(Eje-s/for each EeE). Let pbe

any probability measure on S. Then there is a unique probability measure Pß on

sé such that for each £ e E

(i)Pll(XxeE) = p(E),

(ii)Pfi(X„+xeE\X„ = x) = P(x,E),

for n = 1,2,••• and p-almost all xeS. (For a discussion of conditional proba-

bilities expectations and distributions, see [14, Chapter 7]. For details on the

construction and uniqueness ofP„, see [14, pp. 362-366].) The sequence{A^n 3:1}

referred to the probability space (£1, sé, Pß) is called tAe process with initial dis-

tribution p. The subscript p of 'P„' will usually be omitted in discussions where p

is fixed. We then have E(f(Xn+k)\ X„) = (Tkf)(X„) Fyalmost surely, and

(Tkf)(x) = EifiX„+k) | X„ = x) p-almost everywhere.

We shall require that P(x,£) satisfy a rather strong condition, of which there are

several equivalent formulations.

1.1. Theorem.    The following conditions are equivalent:

(a) For each feC{S), the sequence {(1 ln)2Zk=xTkf} converges pointwise to

an fe CiS).
(b) For each fe CiS), the sequence {(1/n) T,"k=iTkf} converges uniformly

to a function f and Tf = f.
(c) For each feCiS), the sequence {(1/n) Yfk=xTkf} is equicontinuous.

id) For each xeS, the sequence {(1 ln)Tlk'=lPkx, ■ )} converges in the

weak* topology of C*(S) to a (necessarily invariant) limiting probability

distribution <¡>x, and the map x -> <px of S into C*(S) is continuous relative to

the weak* topology on C*(S).

Proof. Since || T" \\ = 1 for all n, it follows from 2 and 3 on p. 662 of [5]

that {(1/n) Hnk = xTkf} converges in norm to an invariant limit/if it is weakly

sequentially compact (hence of course if it is strongly compact). But weak con-
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vergence in C(S) is bounded pointwise convergence, so (a) implies (b).If (c) holds,

the sequences {(1/n) ¿Z"=lTkf} are strongly compact by virtue of Ascoli's

theorem [5 p. 266]. Hencs (c) implies (b). Since (b) implies both (a) (immediate)

and (c) (Ascoli's theorem), (a), (b) and (c) are equivalent.

Suppose (b) holds. For each xeS, the map f-*f(x) is a bounded linear

functional on C(S), hence corresponds to a measure cbx. The function 1 is mapped

into the number 1, and non-negative functions are mapped into non-negative

numbers. Thus cbx is a probability measure. Since (f,cbx)*-(lln) T,nk= y(Tkf)(x)

= ((l/n)E*"=iT*rA) = (f,(l/n)'EUyT*kôx), <px is the weak* limit of

(1/n) H"k=yT*kox = il¡n) Zj=1P*(x, • ). (Here 8X denotes the measure con-

centrating unit mass at x.) It is easily shown that cbx is invariant. To state that

x -> cbx is continuous relative to the weak* topology on C*(S) is to state that /is

continuous, which is part of our assumption (b). Thus (d) holds, so (b) implies (d).

The argument can be reversed to show that (d) implies (a), which completes the

proof of the theorem.

1.2. Definition. Both P(x,£) and the associated operator T are called

uniformly stable in mean if any (hence all) of conditions (a)-(d) of the preceding

theorem are satisfied.

From now on we shall assume that P(x,£) is uniformly stable in mean. We

shall adhere to the notation used in 1.1. Thus for each xe S,cbx denotes the weak*

limit of the sequence {(1/n) Tk = yPk(x, • )}, while, for each/e C(S),/denotes

the uniform limit of the sequence {(1/n) T,k=lTkf}.

In the next lemma we collect several facts for future reference,

1.3. Lemma,   (a) For each xeS and feC(S).

/(*) = jfdcbx= jfdcbx.

(b) For each Eel,, the map x^>cbx(E) is a ¿Z-measurable function.

(c) If cb is an invariant probability distribution, then

ch(E)=jchx(E)ch(dx)

for each Eel.

Proof, (a) The first equation is really the definition of cbx, for in the proof of

1.1, cj)x was introduced as the measure corresponding to the linear functional

/->/(x). Since/and cbx are invariant, we have (f,cbx) = (f,(l¡n) H" = 1T*fyx)

= ((l/n) 2Zk=lTkf, cbx); letting n -» oo, the second equation follows.

(b) Let £' be the subclass of I consisting of sets £ for which (b) holds. Let U be

any open set. Let {/„} c C(S) be such that /„ \ Iv. Then cbx(U) = jlvdcf)x

= | lim fndcbx = lim ¡fndcbx = lim f„(x), hence x -»• cbx(U) is S-measurable.

Thus 2' contains all open sets. Suppose U and Fare both open. Then cbx(TJ — V)
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= <¡>X(U) — (¡>X(UV) is a 2-measurable function of x. Since £' is clearly closed

under finite disjoint unions, it contains the subfield of E consisting of finite

disjoint unions of differences of open sets. Since £' is clearly closed under non-

decreasing unions and nonincreasing intersections, it follows that Z'= £.

(c) Again, it suffices to prove (c) for £ open. First, if feC(S) and c6 is invariant,

it is clear that jfd(j> = J"/dc6. Thus if £ = U, where Uis open, and continuous

fn\Iv we have c6(fJ) = lim ¡f„(x)4>(dx). But/„(x) jf,d<t>x by (a), so,by a double

application of the bounded convergence theorem we have

4>(V) = j {JW< j 4>(dx) = j 4>AV)4>(dx).

2. We now proceed with the ergodic decomposition ofS. We follow Yosida

[17], but our hypotheses are stronger than his,and we obtain more and sharper

conclusions.

2.1. Definition. ~ is the equivalence relation defined for (x,y)eS x S by

either

x ~ y o /(x) =/(y)     for all feC(S)

or

x~y<s>c6JC = ç6y.

The partition of S induced by ~ is denoted by S>. If De2¿, the<f>xcommon to

all x e D is denoted by <j>D.

The reason that the two definitions of ~ are equivalent is that (f>xis the measure

corresponding to the functional/-+/(x). Since S is compact metric, C(S) contains

a dense subsequence, and if fx,f2,--- is any sequence dense in C(S), then clearly

x ~ y if and only if/„(x) =/„(y) for each n = 1,2, — .

We say that a subset A of S is stochastically closed if Ae I., A #0, ar.d P(x.A)

= 1 for all xeA. Then we have P"(x,A) = 1 for every xe^4 and n = 1,2,—.

A simple computation shows that if <¡> is an invariant distribution and A is

stochastically closed, then c6 {x : x e Ac and P(x,^4)>0} = 0.

2.2. Lemma,   (a) All  members of 3i are closed. Let D e 3).  Then :

(b)   // co is an   invariant  distribution,  then   ç6(D) = 1  implies <j> = ç6D.

If A is a stochastically closed subset of D, then:

(c)chD(Ä)=l,

(d) if 4>DiA) > 0, then <¡>¿A) = 1.

Proof, (a) D = {x: xeS and <¡>x = ç6D}. Thus D is the inverse image of {ç6D}

under the map x-k/)x. But this is continuous relative to the weak* topology on

C*iS), so D is closed.

(b) This is an immediate consequence of 1.3(c).

(c) Let xeA. If fe CiS) has support in the complement of A, then clearly
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if,T*"8x) = ¡¡f(y)P"(x,dy) = 0. Taking averages and letting n-»oo, we have

(/, </>x) = 0. Since this is true for any / with support in (Ä)c, it follows that

(Ä)c has </>x-measure zero, so cbx(Ä) = 1. But cbD = cbx.

(d) Suppose that 0 <cbD(A) < 1. Then the measure \j/ on 2 defined by

\¡/(E) = cbD(AE)lcbD(A), £ e 2 is easily seen to be an invariant distribution distinct

from cbD for which \¡/(D)= 1. But this contradicts (b).

We will now show that, for a given De ¡ft, either cb(D) = 0 for all invariant

distributions </> or else D contains a topologically and stochastically closed subset

A for which cbD(A) = 1. The totality of points contained in the second sort of D

turns out to be a closed set of maximal probability (we say that a subset £ of S is

of maximal probability if B e 2 and <f>(B) = 1 for all invariant distributions cb).

2.3. Lemma. Suppose De3i and cbD(D) = 1. Then D contains a topologically

and stochastically closed subset A such that cbD(A)=l.

Proof. Let cb be any invariant probability distribution. Then for any

£e2, cb(E)= }P(x,E)ch(dx). If <p(£)=l, we have cb(E) = ¡EP(x,E)cb(dx).

It follows that cb{x: xe£and P(x,E) < 1} = 0. Also, if £ is (topologically) closed,

so is {x: xe£ and P(x,£) = 1}. Suppose DeSù and cf>D(D)= 1. Let A0 = D, and

define A„+1 = {x: xeA„ and P(x,A„)= 1}, n = 1,2, — . Since A0 is closed and

of «¿»-measure 1, the same is true of all the A„'s. Setting A =(~>\™=yA„, we see

easily that A is stochastically closed, of ^»-measure 1, and topologically closed.

This completes the proof.

2.4. Definition. S = {£>:£>eS> and cbD(D)= 1}. We will write 2> for

\^)$. The members of <? are called ergodic sets.

2.5. Theorem.    £<£" is a closed set of maximal probability.

Proof. Let cb be any invariant distribution. If g is an invariant function, then

//(«GO - g(x))2cbx(dy)cb(dx)[ = ng2(v)««dy)««dx)-2 J>(X> Sg(y)Udy)<t>(dx)
+ ¡¡g\x)cbx(dy)cb(dx). But i¡S1(y)4>Ády)4,(dx) = ¡g2(x)cb(dx) by 1.3(c).

J*OWx(djO = Six) by 1.3(a) (for g = g), while J ¡g2(x)cbx(dy)4>(dx)
= j g2ix)cbidx) simply because cbx(S) = 1. It follows that

(g(y)-g(x))2chx(dy)ch(dx) = 0.

Now let fy, f2, •■■,/„,••• be dense in C(S). For i = 1,2,.", let

ff, = {x: ̂ {y.fly) = f(x)} = 1} = {x: j(f(y) - f^fcb^dy) = 0}. Taking
g =fi in the above, we have that 0(H¡) = 1. We claim also that H¡ is closed. For H¡

is the inverse image of {0} under the map x-> ¡(/¡(y) — ft(x))2cbx(dy), and ex-

pansion of the integrand followed by application of 1.1(d) yields the continuity

of said map. It follows that fYfLyHf is closed and of (/»-measure 1. Since cj> is an

arbitrary invariant distribution. P)H¡ is of maximal probability. But it is easy

to see that C^H¡= Y¡<$, so the theorem is proved.
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Thus, for a given De 3, either DeS,in which case, by 2.3, D contains a sto-

chastically and topologically closed subset A for which <pD(A) = 1, or else D £ S,

in which case D <= ( £ S)c, whence by 2.4, <p(D) = 0 for all invariant distributions

c6 (including, of course, ç6D). Thus it is impossible that 0 < c6D(D) < 1 for some

DeS>.

Suppose S = [0,1], and P(x,£) = f£(c6(x)), where c6(x) = x/2. Then T/=/oc6,

feC(S). Tn/->/(0) uniformly as n->co, and so (¡)x = ö0 for all xeS. Thus

¿2 = <f = {[0,1]}. Any closed set A which contains 0 and has the property that

x/2eAifxeAisa topologically and stochastically closed set. Thus there may be

multitudes of stochastically and topologically closed sets in a member D of S.

It is true, of course, that such sets are determined up to sets of c6D-measure zero,

but this may not tell us very much (suppose, for instance, that c6D concentrates on

one point). In the present example it is quite evident that there is a minimal

topologically and stochastically closed subset of S, namely {0}. We next show

that each EeS contains such a set. We say that a subset F of S is an ergodic

kernel if it is stochastically and topologically closed and contains no proper

subset with both these properties.

2.6. Theorem. Every EeS contains one and only one ergodic kernel F, and

(¡>¿(F) = 1. Every ergodic kernel is contained in some member of S.

Proof. Let EeS. Let !F be the class of all topologically and stochastically

closed subsets of E. By 2.3,3F is nonvoid. By 2.2 (c), any member of 3F has c6£-

measure 1 ; thus SF has the finite intersection property. It follows that F= Ç\ J* is

nonvoid. The compact metric space S satisfies the second axiom of countability ;

that is, any collection ^of open sets has a countable subcollection {G|,G2, — }

such that \J@ = \JjGj. Taking complements, we see that we may select a sequence

{Fj} from & such that F = f\jFj. Since (¡>E(Fj) = 1 for each/c6£(F) = 1. Similarly

P(x,F) = 1 for each xeF. F is of course closed. The fact that the intersection F

of all stochastically and topologically closed subsets of £ is stochastically and

topologically closed implies not only that F is an ergodic kernel but also that it

is the only one contained in £.

Suppose F is an ergodic kernel. Let xeF. Then (¡>X(F) = 1 ; since we also have

<j>x(ES) = 1 it follows that F intersects some ergodic set £. Let G be the ergodic

kernel contained in £. Then c6x(G) = ç6£(G) = 1, so F n G, being of ç/^-measure 1,

is nonvoid. But two ergodic kernels are either disjoint or identical, so F=G c£.

This completes the proof of the theorem.

2.7. Lemma. Let F be a topologically and stochastically closed set. Then

F is an ergodic kernel if and only if, for every xeF and nonempty V open in F,

there is a positive integer n with P"(x,U) > 0.

Proof.   Suppose F is a topologically and stochastically closed set with the
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property of the lemma. Let G be a closed set properly contained in F. Then

F — G is nonempty and open in F. Let xeG. Then there is an n such that

P"(x,F — G) > 0, so G is not stochastically closed. Thus F is minimal with respect

to the property of being both topologically and stochastically closed, hence is an

ergodic kernel.

Suppose F is an ergodic kernel. Suppose there is a nonempty set V open in F

and an x e F such that P"(x, U) = 0 for all n = 1,2, ••■. Let U = F n V, where V

is open in S. Then P"(x,V) = 0 for all // -1,2, — . Let H = {y : P"(y, V) = 0 for all

n = 1,2,-} =^1{y:p"iy,V) = 0} =fY^i{y. P"(y,Vc)=l}. H is closed.
Letting G = F(~\H. we see that G is a topologically closed subset of F which is

nonempty (since xeG). Assume for the moment that P(y,G)= 1 for all y eG.

Then G is a stochastically and topologically closed subset of the ergodic kernel F,

hence G = F. In other words, P(y, U) = 0 for all y e F. If U were not equal to F

then F ~ U would be a proper topologically and stochastically closed subset of F,

which is again a contradiction. So we must have U = F; but then P(y,F) = 0 for

all yeF, which once more contradicts the assumption that F is an ergodic kernel.

Thus there cannot be an xeF and a U open in F for which P"(x,U) >0 for

some n = l,2,—.

It remains only to prove that P(y,G)= 1 for all y eG. Suppose there is a y e G

with P(y,Gc) > 0. Then there is an n for which P(y, {z: Pn(y, V)= 0}c) > 0. Let

£ = {z: P*iy, V) = 0}c = {z: P"(y, V) > 0}. Then Pn+\y, V) = JXy.dz^^F)

> 0. Contradiction. So P(y,G) is indeed equal to 1 for all yeG, and the lemma is

proved.

2.8. Lemma. Let K be the ergodic kernel contained in the ergodic set E.

Then, ifUis any open set whose intersection with K is nonvoid, we have c6£(L/) > 0.

Proof. Let K be the ergodic kernel contained in £ e S. Since K is topologically

closed it is a compact metric space. If we define PK(x,B) = P(x,B) for x eK and

members B of 2 which are subsets of K, PK is a transition probability operator

with state space K. Thus to prove the lemma it suffices (by virtue of the preceding

lemma) to show that, if for every xeS and nonempty open subset U of S there is

an n with P'(x, U) > 0, then any invariant distribution c6 assigns positive measure

to every open set. Let U # 0 be open. For each n = l,2, —, let S(U,n)

= {x: P"(x, U) > 0}. S(U,n) is open for each n. By hypothesis, the collection

{S(U,n): n = 1,2, — } covers S. Since S is compact, there are positive integers

nx,---,nk such that S = (J*=1S((7,n;). Let A = max^,—,n,,}. Then

2^=i P"(x,t7) is positive for each xeS. But P"( ■ , U) is lower semi-continuous

for each n, so Z^=i P"( • ,U) is also lower semi-continuous. A lower semi-

continuous function on a compact set assumes its infimum, so there is a <5 > 0 such

that Z^=iP"(x,U) 3: ô for all xeS. Let ç6 be any invariant distribution. Then

c6(t/)= J(l/A) I^1P"(x,l/)ç6(dx)3:<5/A>0. This completes the proof of

the lemma.
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Let a be the collection of invariant distributions. It is obvious that a is convex,

and a simple argument shows that it is compact relative to the weak* topology

on C*(S). If A is a convex set in a linear space, then x e A is called an extremal

point of A if x is not a convex combination of two members of A distinct from x.

Since a is convex and weak* compact, it is, by virtue of the Kreïn-Milman theorem

[5, p. 440], the weak* closure of the convex hull of its extremal points. We conclude

this section by identifying the extremal points of a with the distributions cbE,E e S'.

If cb e a, we say that cb is indecomposable if cb(A) is equal to 0 or 1 for any

stochastically closed subset A of S.

2.9. Theorem,   cb e a is indecomposable if and only if cb = cbE for some EeS.

Proof. Suppose that cb ea is indecomposable. Let {X„,n¿z 1} be the process

with initial distribution cb and transition probability P(x,£). Since ^»eor.the

process is stationary, and if fe C(S) the process {f(Xn),n ^ 1} is also stationary.

It follows from the ergodic theorem for stationary process [4, Theorem 2.1, p.

465] that (1/n) T?k=yf(Xk) converges almost surely to an invariant limit Tas

n -» oo. It follows from the Markovian nature of the process {Xn} that Y is

ip-almost everywhere measurable with respect to the o-ñeld generated by Xy

[4, Theorem 1.1, p. 460]. But since </> is indecomposable and Y invariant it follows

that Y is almost surely constant, and therefore must equal jfdcb. If we now form

the conditional expectation of (1/n) 2Zk=1f(Xk) with respect to Xy, let n-» oo,

and then interchange lim and £{ • | X0} (see [14, p. 348]) we obtain

(1/n) ZZ_i(T*/)pr0) = (l/n)I,"=1£{/(Zt+1) | X0} -> ¡fdcb almost surely.

Thus cb{x:(l/n)I,'k=y(Tkf)(x)-> ¡fdcb} = 1 for any feC(S). It easily follows

from the separability of C(S) that <p{x: (1/n) I"=1 (T*/)(x)-> ¡fdcb for all

feC(S)} = 1. However, lim (1/n) lUy(Tkf)(x) =/(x) = }fdchx (1.3(a)) so

{*:(l/n)£î-i(T*/)(x)-> j"/d.p for all feC(S)} = {x: tpx = cb} belongs to.®,

in fact to S since it has (/»-measure 1. Thus cb = chE for some Ee£. The converse

follows immediately from 2.2(d), and the theorem is proved.

2.10. Theorem, cb is an extremal point of a if and only ifcbis indecompos-

able.

Proof. Suppose first that cbea is not indecomposable. Then there is a

stochastically closed set F with 0 <</>(£) <1. Let (/>« and (/>2 be defined for

£e2 by cby(E) = cb(EF)lcb(F), cb2(E) = cb(EF°)lcb(F:). Both cby and cb2 are

invariant distributions. But cb = cb(F)chy + cb(Fc)cb2; so cb is not an extremal

point of a.

Suppose cb e a is indecomposable. If cb is not an extremal point of a, there are

distinct cby and cf>2 in a together with positive Cy. c2 with cx + c2 = 1 such that

cb = Cycf>y +c2cb2. If cby is indecomposable, cby = cbE for some EeS, by the

preceding theorem, thus concentrates unit mass on the ergodic kernel contained in
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S. If 4>x is not indecomposable, there is a stochastically closed A for which

0<4>X(A)<1; in either case, there is a stochastically closed A for which

0 < 4>iiÄ) g 1. Since 0 < cx < 1 it follows that 0 < 4>iA) < 1, contradicting the

indecomposability of qb. Thus c6 is an extremal point of a. This completes the

proof (the argument is essentially that given in [2]).

3. In this section we study the behavior of the sample paths of the processes

{Xn,n = 1,2, — } and the processes {/(X„),n = 1,2,...} derived from them by

composition with/'s in CiS). If p is a probability distribution in C*iS), it follows

from the definition of uniform stability that lim (1 ¡n) X"=1T**p is a probability

distribution, which we will denote by p. (Thus ox = <j>x.) p is invariant for each

p e C*iS). The process with initial distribution fi will be denoted by {%„, n = 1,2,- ■ •}.

Since p is invariant, {Xn, n = 1,2, •••} is stationary. We will on occasion write

'£'for %'.

3.1. Lemma. Suppose that fe CiS) is invariant. Then, for any process

{X„,n = 1,2, ••■}, iAe process {f(X„), n —1,2, —} converges a.s. to a limit

distributed as fiX).

Proof. Let p be the initial distribution of {X„,n = l,2,---}. Using the

Markov property of {X„,n = 1,2, — } and the invariance of/, we see that

ECK*.)!*!,-.*.-!) = EiJiXn)\Xn.x)= iTf)iXn_x) = A*.-i) a.s.; thus
{f(X„), n = 1,2, — } is a martingale. Since its members are bounded by ||/||, it

converges a.s. to a limit F [14, p. 393]. If geCiS), g(f(X„))^> g(Y) a.s.

Hence (1/n) Hnk=xE{g(f(Xk))} - £ {g(F)}. But (1/n) lk=iE{gifiXk))}

= (1/n) IZ=1 ß{gifiXk)) | Xx = x}pidx) = (1/n) Ink=x t 7*"\go f)ix)pidx)

= iill^TU.T'-'igof), p) = (go/,(l/n)I", = 1T*fc-V) - igofifi)
= E{gifiX))}. Thus E{giY)} = E{gifiX))} for all g e CiS), and it follows that Y
and fiX) have the same distribution. This completes the proof of the lemma.

The following is the strong law of large numbers for uniformly stable in mean

transition probability operators. It was discovered by Breiman [1], who proved

it in the case of a unique invariant distribution. If the invariant distribution is

unique, all the /'s are constant, and so all the averages (1 ¡n) Y,"^xTnf con verge

uniformly to constants. But it is the uniformity of the convergence rather than

the constancy of the limit which is important in Breiman's proof, and so his

proof holds in the case of uniform stability in mean provided one line of additional

argument is added. However, we give here a reorganization of Breiman's proof

in which certain of Breiman's auxiliary notation is avoided. (This reorganization

was suggested by another proof of Breiman's theorem due to Furstenberg [7].)

3.2. Theorem. Let {Xn,n= 1,2, — } Ae any process. Then, for almost all

coed, the sequences ií/n)¿Zl=xfiXkico)) and fiXkico)) have the same limit

for all fe CiS). This common limit is distributed as fiX).
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Proof.   The proof is in three parts.

(a) Let Xy,x2,---  be a sequence in S for which

(1/n)   i   {(Tf)(xk)-f(xk+y)}-+Oasn^œforallfeC(S).
k = l

Then

n

/(x„)~(l/n)  I   /(xt)-»0 «su-»» for all feCiS).
k=l

To prove (a), assume the hypothesis, fix/, then replace/ successively by Tf,

T2f,--. This yields (1/n) I."k=x{(TJf)(xk)-f(xk + x)} ̂ 0 as n-oo for each

j = 1,2,-, hence (1/n) I¡L.{((l/m) Iff^T* f)(xk)-f(xk+1)->0 as n^co

for each m = 1,2, —. Since (1/m) Hf=yT] f converges uniformly to/, we have

/(xJ-O/n) 2Znk = yfixk + y)^0 as n->co.

(b) For almost all coeQ, (1/n) T,ak = y{(Tf)(Xk(co)) -f(Xk + 1(co))} -»O as

n -> oo for each fe C(S).

For a fixed/e C(S) the a.s. convergence to zero of

(1/n)   ¿   {(Tf)iXk)-f(Xk + l)}
K=l

follows from E on p. 387 of [14]. Now let/run through a sequence /i,/2,—

dense in C(S). For almost all coeQ, (1/n) L¡^1{(T/¡)(Xírcü))-/¡(Xt(a>))}

converges to zero for each i = 1,2, —. It follows from the density of {/,} in C(S)

that, for these eo's, (1/n) Y<nk=y{iTf)iXkico))-fiXkico))} converges to zero for

each fe C(S).

(c) For almost all co e Q,f(X „(co)) converges as n^y oo for each feC(S).

This follows from 3.1 upon successive replacement off by members fy,f2,- ■•

of a sequence dense in C(S).

The theorem now follows from (a), (b), and (c).

Let Xy, x2, ■ ■ ■ be a sequence in S, and A a subset of S. We say that {x„} approaches

A if d(x„,,4) -> 0. Clearly this happens if and only if all the cluster points of {x„}

belong to the closure of A. We say that {x„} approaches A in density if given any

neighborhood V of A, (1/n) E"= xIvixk)-> 1 as n-»oo.

3.3. Theorem. Let {X,„n = 1,2,...} be any process. For almost all coeQ,

the sample path {X„(co)} approaches an ergodic set and approaches in density

the ergodic kernel contained in that ergodic set.

Proof.    We first show that for almost all co, there is an £ e S approached by

{Xn(co)}.

(a) For almost all coeQ, {Xn(co)} approaches some DeSi.

Since 2 is a partition of S it suffices to show that for almost all co,{Xn(co)}
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does not have cluster points in two distinct members of 3>. Suppose {XHioj)}

does have cluster points xeD and yeD', where D and D' are distinct members

of 3. By definition of 3>, there is an fe CiS) such that /is constantly equal to A

on D and to A' on D' where A # A'. By virtue of the continuity of/, {/(Jf„(co))}

has as cluster points both A and A'. But if we exclude a P-null set, {/(X„(co))}

converges for all fe CiS). It follows that for these co's, {X„io))} cannot have

cluster points in distinct members of 3. This proves (a).

(b) For almost all a>, {Xnico)} has at least one cluster point in  Y.S.

Let m be a positive integer. Let F= {x: d(x, H<%) < ljm}. Let/eC(S) with

range in [0,1] be equal to 0 on Ve and to 1 on 2 S. Then fix) = ¡fd<px = ¡zefd(j>x

= piUS) — 1 for all xeS. Thus /(X„) is identically equal to 1, whence

(1/n) H"=ifiXk) -* 1 a.s. as n-* co. It follows that if we exclude a P-null set

Am of co's, {X„ico)} has a cluster point in {x: d(x, £<f) _ 1 /m}. If we exclude

the P-null set A = (J^=1Am, {X„(co)} has a cluster point in {x: d(x, Z<f) ^ 1/m}

for each m = 1,2, •••. Since the set of cluster points of a sequence is closed, each

such {X„ia>)} has a cluster point in Z<^. This establishes (b).

That almost all sample paths {Xniœ)} approach some EeS now follows from

(a) and (b). We now exclude from Q the null set of co's for which either {X„ico)}

does not approach some £ eS or for which the assertion of Theorem 3.2 does not

hold. Assume that {X„(co)} approaches EeS. Let K be the ergodic kernel contained

in £. Let V be an open neighborhood of K. Let/e CiS) and into [0,1] be equal to

zero on Ve and to 1 on K. Then, if xe K, fix) = §fd(f)x = jxfd<j>x = (¡>xiK) = 1.

But since/= 1 on K,f= 1 throughout £. Since {X„(co)} approaches £,/(A'„(co))-»-l.

But then (1/n) It"=1/K(Z,(co)) = (1/n) I^jYA^co))-+ lim fiX„ico)) = 1. Thus

{Xkico)} approaches K in density. This completes the proof of the theorem.

Let Z be the integers with the discrete topology, and let S be the one point

compactification Z\j{ oo} of Z. Let P{n,{n + 1}) = Pin,{n — 1}) = 1/2 for all

neZ, and let P(oo, {oo}) = 1. It is well known that <j>x = ¿œ for all xeS, so

P(x,£) is uniformly stable in mean. S = 3 = {S}, while {co} is the only ergodic

kernel. However, almost all sample paths of any process visit all points in 2£

infinitely often [6, p. 288]. This example shows that although sample paths con-

verge to ergodic sets, they need not converge to ergodic kernels. Thus the

qualifying phrase "in density" is essential in the statement of Theorem 3.3.

We now examine the set £•#"= \J{K: K e of}. We denote by C+iS) the

collection of non-negative members of CiS).

3.4. Theorem,   x e H ¿f if and only if fix) > 0 ^/(x) > 0 for all fe C+(S).

Proof. Suppose xeK for some K e Jf. If fix) > 0, then /(x) _ «5 > 0 in

some neighborhood V of x. Since ^(F) > 0 by 2.8,/(x) = J/dcp* ^ è4>x(V) >0.

Now assume that xeS has the property that/(x)>0 implies/(x)>0 fcr all

feC +(S). To begin with, x must belong to some ergodic set. For suppose x $ X S '
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Let/be any non-negative continuous function positive at x and zero on the closed

setZ^". Then, since E S is of maximal probability, fix) = jfdcbx=0. Let

{Xn,n = 1,2,...} be the process starting at x. Let F be any open neighborhood

of x. Then almost all sample paths of {Xn} return to V with positive relative

frequency. To show this, we proceed as follows. Let U be a closed neighborhood of x

contained in V. There is an/e C(S) with range in [0,1] which is 1 on U and zero

onT. Thenilln)2l=yIriXk)^il/n)I,k1=yfiXk)-*Y&lmostsmelyas n-»co,

where Y is a random variable distributed asf(X). We must show that P\_Y> 0] = 1.

Since /(x)>0, we have/(x)>0. The distribution of X is <px, so P[7>0]

= P[f(X)>0-] = (px{y:f(y)>0}^cbx{y:f(y)=f(x)}^chx(E)) where £ is the

ergodic set containing x. But <px(E)= 1 by definition of "ergodic set." Since x

has a countable neighborhood base it follows that almost all sample paths of

{X„} return to all neighborhoods of x with positive relative frequency. We can

now conclude that x belongs to some ergodic kernel K. For suppose not. For

each KeCt, let QK be the set of co's in Q for which {X„(co)} approaches K in

density. By Theorem 3.3, almost all co's belong to [_J{QX: Ke Jf}. Now fix K.

Since x £K, there are disjoint neighborhoods Fand U of x and K respectively. If

coeQK,lim (1/n) I £ = ,/„(**(«)) = 1, so lim (1/n) IZ=«/k(*a(<»)) = 0. Letting

K range over Jf, we see that for each co e \^}{QK '• K eJf} there is a neighborhood

of x to which {X (co)} returns with zero relative frequency. Contradiction, x must

belong to some ergodic kernel. This completes the proof of the theorem.

3.5. Corollary. Y,^f is a Gs.

Proof. There is in C+(S) a sequence fy,f2,•••,/„, •■• such that for eachxeS

and open neighborhood U of x there is an /„ with /„(x) = 1 and /„ = 0 on Ve.

Using the preceding theorem, we then obtain the identity

00

IJT= H {x:/„(x)>0=>/B(x)>0}.
n=l

This last set, in turn, can be written as f\f=i({x:fnix) = 0} u{x:/„(x) > 0}).

But for each n, {x :/„(x) = 0} is closed, hence a G¿. Since the class of G ¿'s is closed

under finite union and countable intersection, it follows that 2 «#"is a Gs.

We close this section with an example for which £ 3f is a nonclosed G... Let

S= [0,1] x [0,1]. Let v be a function on [0,1] to C*[0,1] satisfying the following

conditions: (i) v(0) = 80, (ii) for each xe(0,l],v(x) is a probability measure

assigning positive measure to every open subset of [0,1], (iii) v is continuous

relative to the usual topology on [0,1] and the weak* topology on C*[0,1].

(It is easy to construct such v's.) For each x e [0,1], let Lx= {(x, v): 0 ;_ y _: 1}.

For each xe[0,l] and E<zzS, let £x = {y: (x,y)eE}. For each ix,y)eS and

£ e2, let P((x, >>),£) = v(x)(£x). It is easy to see that P((x,v),£)is a transition

probability operator and that the corresponding operator T takes CiS) into
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itself. It is also clear that T"= Tfor all n = 1,2,— ; thus Tis uniformly stable

in mean. For each (x,y)eS, the invariant measure <¡>(Xt7) associated with(x,y) is

simply P((x,y), •). It then follows that é = {Lx:0^x^l}, while Jf

= {(0,0)} \j{Lx: 0 < x = l}.Thus E¿f = {(0,0)}u{(x,y): 0 < x = 1, 0^ y< 1}

is not closed.

4. Tis said to be quasi-weakly (-strongly) compact if || Tm — K || < 1 for some

positive integer m and weakly (strongly) compact operator K. For operators in

CiS) the two notions coincide. To prove this we need the following facts. The

weakly and strongly compact operators on a Banach space B form two-sided

ideals in the linear space of all bounded operators on B. If B = CiS), then the

product of two weakly compact operators is strongly compact [5, pp. 484, 486,

and 494]. It follows that the product of a finite number of operators on CiS) is

strongly compact if at least two of them are weakly compact. Now let Tm= K + V,

where  K is weakly compact and || F|| < 1. Then

Tmn = Kn+KV~1 + VKV~2+ ••• +V~1K + V1

where Kn is strongly compact. Since || KV~l+ VKV~2 + — + V'^ + V \\

= n || K j| || FU"-1 + || V||", n may be chosen so that || Tmn- K„ || < 1, and the

quasi-strong compactness of T follows.

The results of Yosida and Kakutani [18] imply that if Tis a quasi-strongly

compact operator with || T|| g 1, the averages (1/n) Z"=i Tkconverge in the

uniform operator topology [5, p. 711,Corollary 4]. It follows, of course, that Tis

uniformly stable in mean. Our results are much weaker in all respects than those

of Yosida and Kakutani, and this paper adds absolutely nothing to the theory of

quasi-strongly compact operators. However, the condition of quasi-compactness

excludes all but the least interesting of the Markov operators induced by point

transformations and random point transformations. We willnowbe more explicit

about this last concept.

Let A be a fixed positive integer. Let tj)x,<j>2,---,(f>Nbe continuous maps of S

into itself. Let px,p2,---, PN be continuous function on S into [0,1] such that

"EN„ = iP„= 1. There is a Markov operator which corresponds to the following

random point transformation : A particle at the point x at time n is moved to </>xix)

with probability pfx) at time t = n + 1, i = 1, • • •, N. Thus for x 6 S and EeH, Pix,E)

= S{p¡(x): cMx) e £}, while, for fe CiS), Tf= I?mlpt ■ if o eh.). The case N = 1

has been and still is the object of much study. We refer the interested reader to

[15] and [8]. ([15] contains most of our results for the case A = 1.) Conditions

on the p¡'s and c6¡'s which imply that Tis uniformly stable in mean are hard to

come by. We shall give three such conditions.

The first is that each p¡ be constant and for each x,y in S and i = 1, — ,n we

have d(c6¡(x),c6i(y))^d(x,y). Given feCiS) it is immediate that {Tnf},

hence   {(1/n) Z*=iT*/}, is equicontinuous, so Tis uniformly stable in mean.
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If ¿((/»¡(xXç/^y)) = dix,y) for all /" = 1, —,A and x,y in S it seems appropriate

to say that the processes is one of random isometries. The set-up is very similar

to that in random ergodic theory [13]. In the latter case we have instead of a

metric space iS,d) a measure space (S, 2,p), and the functions <j>¡ are required

to be not isometries but measure preserving transformations: p(c6i~1£)= p(£)

for each /' = 1, • • •, A and £ e Z. Ulam and von Neumann showed (see [13]) that

(1/n) H%xTf converges both in L^norm and almost everywhere for each

feLxiS,X,p), whereas in our case we obtain the uniform convergence of the

same averages for/eC(S).

The fact that T arises from a process of random isometries imposes no upper

bound on the number of ergodic kernels. (Of course there cannot be more ergodic

kernels than points in S, and there are at most 2 °of them.) Simply take A = 1,

thus forcing px to equal 1, and take for <j>x the identity map of S. Then each point

is an ergodic kernel. This is a rather degenerate case. For suppose that there is

more than one ergodic kernel. Let Kx and K2 be distinct ergodic kernels, and let

ô = diKx,K2) > 0. Assume that none of px, ••-,pw is equal to 0. Let xe Kx and

y eK2. Then, given any pair of finite sequences ix, ••■,imandjx, — ,/„ from 1, —,A,

it follows from the stochastically closed nature of Kx and K2 that

Therefore, if for any x,y in S and ô > 0 there are sequences {ik} and {_/,} with

d(4>iS<t>im-t---<i>il(x)---),<l>jn(4>j„-,---4>jAy)---))<o', there is exactly one ergodic

kernel.

We now give another condition on the </>¡'s and p¡'s which implies uniform

stability in mean. We assume that there is an r < 1 and a k < oo such that

d(c6;(x),c&;(y))5i rd(x,y) and | pfx) - ply) \ ̂  Ad(x,y) for all x,y in S and

/ = 1,—,A. We then say that the process is one of random contractions. The

corresponding operators T were studied in detail by Doeblin and Fortet [3].

We summarize their main result. Let B be the subcollection of (complex) CiS)

consisting of functions / for which

m(/)=      sup        |/(x)-/(y)|/d(x,y)
x,y eS;x^y

is finite. B is a linear subspace of CiS), and it is dense in CiS) relative to the topology

induced by the uniform norm on CiS), which we now denote by || ■ ||œ. The

equation ||/1| = ||/1| œ + m(/) defines a new norm on B relative to which B is a

Banach space. It is easy to verify that, under the assumptions just made, Tmaps B

into itself, and the restriction of Tto B is an operator of norm 1 relative to the

norm || ||. Doeblin and Fortet show that, as an operator on B, Tis quasi-

strongly compact (see also [10] and [11]). This implies that (1/n) H"k=xTkf

converges in ||  ||-norm for each feB, hence in || ■ | „-norm for each feB, hence



1965] BENTON JAMISON 465

in I ■ Il a, norm for each/eC(S). Thus T(as an operator in CiS)) is uniformly

stable in mean.

It is not necessary to use the full strength of the analysis of Doeblin and Fortet

to show that Tis uniformly stable in mean. A simple computation shows that for

any feB we have m(Tf)i%rm(f) + Nk\\f\\O0 (see [3, p. 143]). It follows by

induction that m(T"f) ^ r"m(f) + Nk((l - r")l(l-r)) \\f\\m, for each n= 1,2,-

and feB. Fixing/, we see that the functions T1/satisfy aLipschitz condition

uniformly in n. So, therefore, do the functions (l¡n)Hk=yTkf. Thus

{(1/n) Hl=yTkf} is equicontinuous, hence compact, relative to the uniform

topology in C(S). It then follows (see the proof of Theorem 1.1) that (1/n) Z*=y Tfk

converges uniformly. This is true for each/e£, but since B is dense in C(S)

follows that it holds for each feC(S). Thus Tis uniformly stable.

We now show that there can be only a finite number of ergodic kernels in the

random contraction case. Suppose not. Then there is a sequence

{Kj} of ergodic kernels such that 0 < d(Kj,KJ+y) -* 0 as n -* co. Let

fj(x) = [l/d(K;,K;+1)] inf (d(x,Kj),d(Kj,KJ+y)). It is easily verified that/,, is

into [0,1], is 0 on K¡¡and 1 on KJ + y, and that/,- e B (in fact, m(ff)= l/d(Kj,Kj+1)).

Since Kj and Kj+1 are ergodic kernels we must have/; also equal to 0 on Kj and 1

on Kj+ y. Since (1/n) 2Z"k = y Tkf¡ converges in the norm of £,/,• e B. Since || /,■ || „ = 1,

we see that miff) ^ lld(Kj,Kj+y) -* oo as j -> oo. But m(/;) = m(Vf¡)

= r^n(/j) + N/c((l - r /(1 - r)) ||/1| œ for each n = l,2, —, and this implies

that m(fj) ^ Nkl 1 - r for each / Thus the assumption that there are infinitely

many ergodic kernels leads to a contradiction.

Isaac [11] has observed that the Doeblin-Fortet analysis of the operator T

continues to hold provided that2Z^=yPi(x)d(chi(x),cbi(y))zird(x,y) for some

r < 1 and all x,y in S (where it is assumed as before that | p¡iy) - px(y)\ z% kd(x,y)

for  some  k < oo  and  all  x,yeS).

We now specialize S in order to discuss chains of infinite order (see [9] for

references to the literature). Let N be an arbitrary positive integer. Let J = {1,•• • ,N}

and let S = ]T£o J¡> where I¡ = I for each i = 0,1, •• •. Give S the product topology

induced by the discrete topology on L Then S is compact and metrizable; in fact

the product topology is that of the metric d(x,y) = T^=0\xn-y„\l2n+1, where

x = (x0,x1,--) and y<=(y0>yi> — ) are in S. For each i = l,---,N, «p¡ is the

function which sends (i0= ii,'2> ••) mt0 (Uo>ii>'"). Then d(«p¡(x),0((y)

^(l/2)d(x,v). Now let p«.,—,Pjv be real-valued continuous functions with

p¡ = 0 and Pi + ••• + Pjv = 1. The p¡'s may be thought of as specifying the laws

of evolution of a stationary discrete-parameter random system with N states.

If n is any positive integer, and x = (x0,X!, •••) is in S, we interpret p,(x) as the

conditional probability that the system is in state i at time t = n + 1 given that

it is in state x0 at time t = n,Xy at time t = n — l,---,xk at time t = n — fc, —.

Thus each xeS represents a possible past history of the system at a given time,

and pj(x) is the probability that a system with past history x jumps to state i.
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The successive past histories constitute a Markov chain : If the system has past

history x at time t = n, it will have past history <j>¡(x) at time t = n + 1 with

probability p¡(x).

If x = (x0,xl5 •••) and y = (y0,yi, •••) are in S, (x = y)m means that x¡ = y¡

for each i = 1, — ,m. The sets Um = {(x,y): x,yeS, (x = y)m} for m = 0,1,—

constitute a base for a uniform structure fon S which generates the product

topology on S. For each m = 0,1,— let em = sup iS,SNsupu=)I)J p,(x)-(p,y)|.

To say that px,---,pN are continuous is to say that em->0 as m -> co. One way of

obtaining uniform stability in mean is to demand that em approach zero at a

certain rate. For instance, if one requires that em g A/2m, one obtains

| Pi(x) — Pi(y)\ = kd(x,y), and so the Doeblin-Fortet analysis mentioned above

applies to T. A weaker condition, also introduced in [3,] is that Hem< oo. Tis

uniformly stable in mean in this case also. (This follows easily from the remarks

and computations on p. 136 of [3].) Recently C.T. Ionescu Tulcea has sharpened

and generalized the results obtained by Doeblin and Fortet in the case Ze,,, < co [9].

We now let S = G, a compact separable group. Let p be any probability measure

on the Borel sets of G. Let H be the support of G (the smallest closed subset of G

with p-measure 1). Let [p] denote the smallest closed set containing H which is

closed under multiplication in G. It is easy to see that [p] is a closed subgroup of

G^ Let X denote Haar measure normalized so that X(G) = 1. The transition probability

operator we considered is the one which sends g e G into g'g, where g' is an

element selected at random from G in accordance with the probability measure p.

Such a process is called one of random (left) multiplication. The corresponding

operators T and T* are given as follows :

(Tf)(g)= Jf(g'g)dKg'),    feC(G),   geG,

T*v   = p*v,     veC*(G),

where p*v is the convolution of p and v. It is well known that the topology of a

compact separable group is given by a left-invariant metric (see [12] for references).

If we endow G with this metric we easily verify that Tis uniformly stable in mean.

It is well known (see[12])that if [p] = G, then X is the unique invariant distri-

bution. If [p] is a proper subgroup, each member of G/[p] is an ergodic kernel,

the invariant distribution on [p] is normalized Haar measure on [p], and the

invariant distribution on any other member of G / [p] is obtained in the natural

way from that on [p]. (None of this is new. In fact, our assumption that G is

separable is unnecessary. For references, see the bibliography of [12].)

If not only (1/n) Z*=iT*/but also {T"f} is equicontinuous for each/e CiS)

we say that Tis uniformly stable. In this case, more is known about the behavior

of {T"f} than its uniform Cesaro convergence. For example, in [12] we obtain,

under the hypothesis that Tis uniformly stable, necessary and sufficient conditions
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for the uniform convergence of the sequences {T"f} themselves rather than their

Cesaro averages.

The present paper overlaps [16] to some extent. In this work, Rosenblatt

obtains an ergodic decomposition equivalent to ours. He characterizes Z^ as

the closure of the union of the supports of the c6x's as x ranges over S. The ergodic

kernel contained in a given member £ of S is characterized as the support of <pE.

He allows the state space S to be a (possibly nonmetrizable) compact Hausdorff

space. This enables him to apply his results to the study of random multiplication

on a compact semi-group.This application renders more interesting the question

of whether the results of §3 hold when S is not metric. It is natural to suppose

that they do, but the condition that C(S) is separable (i.e., that S is metrizable)

is used in an essential way in the proof of part (c) of 3.2, and 3.3 in turn requires

the full strength of 3.2 for its proof. Metrizability of S is not required to

show that for each feC(S). the sequences f(Xn(co)) and (1/n) Z"=i/(*k(<ö))

converge to a common limit for almost all co e Q. If C(S) is not separable, however,

it does not immediately follow that for almost all œ e £1 the sequences {f(X„((o)) }

and {(1//i)Z*=1/(Xh(cü))} converge to a common limit for all /eC(5). This

last assertion may not even hold when CiS) is not separable. (If S is compact

Hausdorff, CiS) is separable if and only if S is metrizable: see [5, p. 340].) This

leaves us willing to conjecture but unable to prove that 3.3 holds even when S is

nonmetrizable. The motion within an ergodic kernel is studied in [16] under the

hypothesis that T is uniformly stable ("equicontinuous" is the term used in [16].

In a future paper we will present further results on the motion within an ergodic

kernel.

The referee has called our attention to a recent paper of S. P. Lloyd [19]. From

the properties of the mapping/-»/ of CiS) into itself, Lloyd deduces a number of

properties of the c6x's (rx's in his paper). He also studies the properties of the

decomposition 3 induced by the equivalence relation x ~ y (recall that x ~ y

iff <t>x = (pj,). He points out that 3 is upper semi-continuous, and that Z S is

closed. Thus there is considerable overlapping between his paper and the first

two sections of ours.
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