AN EXTENSION OF DIFFERENTIAL GALOIS THEORY (1)

BY H. F. KREIMER

1. Introduction. The terminology and notation of this paper are taken from the author's paper The foundation for an extension of differential algebra [1]. Let C be an associative, commutative coalgebra with identity over a ring W, which is freely generated as a W-module by a set M. If $w \to \bar{w}$ is a homomorphism of W into a ring S, let C^s be the S-module obtained from the W-module C by inverse transfer of the basic ring to S. If ρ is a homomorphism of a ring R into the algebra $(C^s)^* = \operatorname{Hom}_S(C^s, S)$, then for each $m \in M$ there is a mapping $a \to a^{\rho}(m)$ of R into S, which will also be denoted by m, and the set of these mappings will be called an M-system of mappings of R into S. Let $m \to \sum_{n, p \in M} z_{mnp} n \otimes p$, where $m \in M$, $z_{mnp} \in W$, and $z_{mnp} = 0$ except for a finite number of elements n and p in M, be the coproduct mapping of C into $C \otimes_W C$; if $a, b \in R$ and $m \in M$, (a + b) m = am + bm and $(ab) m = \sum_{n, p \in M} \overline{z_{mnp}} (an) (bp)$. An M-ring is a ring together with an M-system of mappings of the ring into itself.

In §2, the constants of an M-ring are defined, criteria for the linear independence of elements of an M-domain over its subring of constants are established, and the structure of an M-ring is shown to extend to the field of fractions of certain M-domains. Solution fields and Picard-Vessiot extensions are defined in §3, and connection with the differential Picard-Vessiot theory are made. In §4, strongly normal extensions are defined, and connections with the differential Galois theory of strongly normal extensions are made. For use in this paper, a result from [1] needs to be stated in a stronger form and is stated and proved below.

(1.1.) LEMMA. Let N be a set of elements of a ring R which are not zero-divisors in R, and let Q be the ring of quotients of R relative to N. An M-system of mappings of R into a field S can be extended to an M-system of mappings of Q into S if, and only if, the $(M \times M)$ -matrix $(\sum_{n \in M} \overline{z_{mnp}}(an))_{m, p \in M}$ represents a one-to-one endomorphism of the S-module C^S for every $a \in N$. Furthermore, when such an extension exists, it is unique.

Proof. Let ρ be a representation of R in $(C^S)^*$. ρ can be extended to a homomorphism of Q into $(C^S)^*$ if, and only if, a^{ρ} is a unit in $(C^S)^*$ for every $a \in N$; and when such an extension exists, it is unique. Let $f, g \in (C^S)^*$;

Presented to the Society, June 4, 1962 under the title An extension of the Picard-Vessiot theory; received by the editors February 18, 1963 and, in revised form, January 29, 1964.

⁽¹⁾ Part of a dissertation presented for the degree of Doctor of Philosophy in Yale University.

$$(f \cdot g)(m) = (f \otimes g) \left(\sum_{n, p \in M} \overline{z_{mnp}} \ n \otimes p \right) = \sum_{n, p \in M} \overline{z_{mnp}} f(n) \cdot g(p)$$
$$= g\left(\sum_{n, p \in M} \overline{z_{mnp}} f(n) \cdot p \right).$$

Therefore, under the regular representation of $(C^S)^*$, an element f of $(C^S)^*$ is represented by the transpose of the endomorphism of the S-module C^S which is described with respect to the basis M by the row finite $(M \times M)$ -matrix $(\sum_{n \in M} \overline{z_{mnp}} f(n))_{m, p \in M}$. The mapping $\sigma: f \to (\sum_{n \in M} \overline{z_{mnp}} f(n))_{m, p \in M}$ is an isomorphism of $(C^S)^*$ into the ring S_M of row-finite $(M \times M)$ -matrices over S. If f is a unit in $(C^S)^*$; then f^σ is a unit in S_M and represents a one-to-one endomorphism of C^S . Conversely if f^σ represents a one-to-one endomorphism of C^S , the transpose of this endomorphism of C^S is an endomorphism of the S-module $(C^S)^*$ onto itself. Therefore there is an element g of $(C^S)^*$ such that $f \cdot g = e$, the identity element of $(C^S)^*$, and f is a unit in $(C^S)^*$. The lemma now follows at once.

2. The constants of an M-ring. Let R be an M-ring and let ρ be the associated representation of R in $(C^R)^*$. An element c of R is a constant if $(ca)^\rho = c \cdot a^\rho$ for every $a \in R$. The constants of R form a subring which contains the identity element of R. The subring of constants of R will be denoted by R_c . Suppose b, $d \in R$ and d is a unit in R. If $bd^{-1} \in R_c$, then $d \cdot b^\rho = d \cdot (bd^{-1}d)^\rho = b \cdot d^\rho$; and, conversely, if $d \cdot b^\rho = b \cdot d^\rho$, then $(bd^{-1}a)^\rho = b^\rho(d^\rho)^{-1}a^\rho = bd^{-1} \cdot a^\rho$ for every $a \in R$ and $bd^{-1} \in R_c$. Taking d = 1, $b \in R_c$ if, and only if, $b^\rho = 1 \cdot b^\rho = b \cdot 1^\rho$. This characterization of the constants of an M-ring implies that if S is an M-extension of R, $R_c \subseteq S_c$. If b = 1 and $d \in R_c$, then $d \cdot 1^\rho = d^\rho = 1 \cdot d^\rho$ and $d^{-1} \in R_c$. Consequently, if R is a field, so is R_c .

Two elements f and g of $(C^R)^*$ are equal if, and only if, f(m) = g(m) for every $m \in M$. Therefore an element c of R is a constant if, and only if, (ca)m = c(am) for every $a \in R$ and $m \in M$. If b, $d \in R$ and d is a unit in R, then $bd^{-1} \in R_c$ if, and only if, d(bm) = b(dm) for every $m \in M$. Also $b \in R_c$ if, and only if, bm = b(1m) for every $m \in M$.

Let S'(M) be the free semi-group with identity generated by the set M. Operations by elements of S'(M) on the M-ring R are defined as follows: The identity element of S'(M) operates on R as the identity automorphism of R, and any other element of S'(M) operates on R as the resultant of the operations on R by its factors. Let h be a positive integer, let r_1, r_2, \dots, r_h be h elements of R, and let s_1, s_2, \dots, s_h be h elements of S'(M). Denote by $W(r_1, r_2, \dots, r_h; s_1, s_2, \dots, s_h)$ the determinant:

$$\begin{vmatrix} r_1 s_1 & r_1 s_2 & \cdots & r_1 s_h \\ r_2 s_1 & r_2 s_2, & \cdots & r_2 s_h \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ r_h s_1 & r_h s_2 & \cdots & r_h s_h \end{vmatrix}$$

(2.1) THEOREM. Let h be a positive integer, and let r_1, r_2, \cdots, r_h be h elements of an M-domain R. If r_1, r_2, \cdots, r_h are linearly dependent over R_c , then $W(r_1, r_2, \cdots, r_h; s_1, s_2, \cdots, s_h) = 0$ for every choice of h elements s_1, s_2, \cdots, s_h in S'(M). If $h \ge 2$, $W(r_1, r_2, \cdots, r_h; s_1, s_2, \cdots, s_h) = 0$ for every choice of h elements s_1, s_2, \cdots, s_h in S'(M), but for some choice of h-1 elements $t_1, t_2, \cdots, t_{h-1}$ in S'(M), $W(r_1, r_2, \cdots, r_{h-1}; t_1, t_2, \cdots, t_{h-1})$ is a unit in R, then r_h is equal to a unique linear combination of $r_1, r_2, \cdots, r_{h-1}$ over R_c .

Proof. If r_1, r_2, \dots, r_h are linearly dependent over R_c , then there exist h elements c_1, c_2, \dots, c_h of R_c , not all zero, such that $\sum_{\alpha=1}^h c_\alpha r_\alpha = 0$. For any $s \in S'(M)$, $\sum_{\alpha=1}^h c_\alpha (r_\alpha s) = (\sum_{\alpha=1}^h c_\alpha r_\alpha) s = 0$. Therefore $W(r_1, r_2, \dots, r_h; s_1, s_2, \dots, s_h)$ is the determinant of a matrix with rows linearly dependent over R_c and must vanish for every choice of h elements s_1, s_2, \dots, s_h in S'(M).

Suppose $h \geq 2$, $W(r_1, r_2, \cdots, r_h; s_1, s_2, \cdots, s_h) = 0$ for every choice of h elements s_1, s_2, \cdots, s_h in S'(M), but for some choice of h-1 elements $t_1, t_2, \cdots, t_{h-1}$ in S'(M), $W(r_1, r_2, \cdots, r_{h-1}; t_1, t_2, \cdots, t_{h-1})$ is a unit in R. Let t_h be any given element of S'(M). Then $W(r_1, r_2, \cdots, r_h; t_1, t_2, \cdots, t_h) = 0$; and, if A_α is the cofactor of $r_\alpha t_h$ in this determinant, $\sum_{\alpha=1}^h A_\alpha(r_\alpha t_\beta) = 0$ for $1 \leq \beta \leq h$. Therefore $(A_h \cdot A_1^\rho, A_h \cdot A_2^\rho, \cdots, A_h \cdot A_h^\rho)$ is a solution in $(C^R)^*$ of the system of equations $\sum_{\alpha=1}^h (r_\alpha t_\beta)^\rho x_\alpha = 0$, $1 \leq \beta \leq h$. Replacing t_h by any one of the elements $t_\beta m$, $m \in M$ and $1 \leq \beta \leq h$, yields $\sum_{\alpha=1}^h A_\alpha(r_\alpha t_\beta)^\rho(m) = \sum_{\alpha=1}^h A_\alpha((r_\alpha t_\beta)m) = 0$. Therefore $\sum_{\alpha=1}^h A_\alpha \cdot (r_\alpha t_\beta)^\rho = 0$ for $1 \leq \beta \leq h$; and $(A_1 \cdot A_h^\rho, A_2 \cdot A_h^\rho, \cdots, A_h \cdot A_h^\rho)$ is another solution in $(C^R)^*$ of the equations $\sum_{\alpha=1}^h (r_\alpha t_\beta)^\rho x_\alpha = 0$, $1 \leq \beta \leq h$. Then

$$(A_h \cdot A_1^{\rho} - A_1 \cdot A_h^{\rho}, A_h \cdot A_2^{\rho} - A_2 \cdot A_h^{\rho}, \cdots, A_h \cdot A_{h-1}^{\rho} - A_{h-1} \cdot A_h^{\rho})$$

is a solution of the system of equations $\sum_{\alpha=1}^{h-1} (r_{\alpha}t_{\beta})^{\rho} x_{\alpha} = 0$, $1 \leq \beta \leq h-1$. But the determinant of this system of equations is $(W(r_1, r_2, \dots, r_{h-1}; t_1, t_2, \dots, t_{h-1}))^{\rho}$, which is a unit in $(C^R)^*$; therefore, this system of equations can have no nontrivial solution in $(C^R)^*$ and $A_h \cdot A_{\alpha}^{\rho} = A_{\alpha} \cdot A_h^{\rho}$ for $1 \leq \alpha \leq h-1$. Since $A_h = W(r_1, r_2, \dots, r_{h-1}; t_1, t_2, \dots, t_{h-1})$ is a unit in R, $A_{\alpha} \cdot A_h^{-1} \in R_c$ for $1 \leq \alpha \leq h-1$. If t_h is chosen to be the identity element of S'(M), then the equation $\sum_{\alpha=1}^{h} A_{\alpha}(r_{\alpha}t_h) = 0$ yields

$$r_h = \sum_{\alpha=1}^{h-1} - A_{\alpha} A_h^{-1} r_{\alpha}.$$

Since $W(r_1, r_2, \dots, r_{h-1}; t_1, t_2, \dots, t_{h-1}) \neq 0$, r_1, r_2, \dots, r_{h-1} are linearly independent over R_c and the expression for r_h as a linear combination of r_1, r_2, \dots, r_{h-1} over R_c is unique.

(2.2) COROLLARY. Let h be a positive integer, and let k_1, k_2, \dots, k_h be h elements of an M-field K. k_1, k_2, \dots, k_h are linearly dependent over K_c if, and only if, $W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h) = 0$ for every choice of h elements s_1, s_2, \dots, s_h in S'(M).

- **Proof.** Suppose that $W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h) = 0$ for every choice of h elements s_1, s_2, \dots, s_h in S'(M). If $k_1 = 0$, then k_1, k_2, \dots, k_h are linearly dependent over K_c . If $k_1 \neq 0$, there is a positive integer $i, 1 < i \leq h$, such that $W(k_1, k_2, \dots, k_i; s_1, s_2, \dots, s_i) = 0$ for every choice of i elements s_1, s_2, \dots, s_i in S'(M), but for some choice of i 1 elements t_1, t_2, \dots, t_{i-1} in S'(M), $W(k_1, k_2, \dots, k_{i-1}; t_1, t_2, \dots, t_{i-1}) \neq 0$ and, consequently, is a unit in K. The corollary now follows from Theorem (2.1).
- (2.3) COROLLARY. If R is an M-domain which is an M-extension of an M-field K, then K and R_c are linearly disjoint over K_c .
- **Proof.** Theorem (2.1) and Corollary (2.2) imply that elements of K which are linearly dependent over R_c must be linearly dependent over K_c , whence the corollary.
- (2.4) THEOREM. Let R be an M-domain which is an M-extension of an M-field K, and let Q be the field of fractions of R. If R is generated by its subrings K and R_c and K_c is algebraically closed, then there is a unique structure of an M-field on Q such that Q is an M-extension of R.
- **Proof.** By Lemma (1.1), the M-system of mappings of R into Q deduced from the M-system of mappings of R into R by inverse transfer of the ring R to Q can be extended uniquely to an M-system of mappings of Q into Q, making Q an M-field which is an M-extension of R; if the $(M \times M)$ -matrix $(\sum_{n \in M} \overline{z_{mnp}}(an))_{m, p \in M} (an))_{m, p \in M}$ represents a one-to-one linear transformation on C^Q for every $a \neq 0$ in R. Suppose there were an $a \neq 0$ in R such that $(\sum_{n \in M} \overline{z_{mnp}}(an))_{m, p \in M}$ did not represent a one-to-one linear transformation on C^Q , or, equivalently, the rows of this matrix were linearly dependent over R. Let b_1, b_2, \dots, b_i be the nonzero coefficients in a nontrivial linear relation over R among the rows of this matrix. If η were an M-homomorphism of $K\{a, b_1, b_2, \dots, b_i\}$ over K into K such that $(ab_1)^{\eta} \neq 0$, then a^{η} would be a nonzero element of K such that $(\sum_{n \in M} \overline{z_{mnp}}(a^{\eta}n))_{m, p \in M}$ does not represent a one-to-one linear transformation on C^K , contradicting the existence of an M-system of mappings of K into K.

R is generated as an abstract ring by K and R_c , and K and R_c are linearly disjoint over K_c by Corollary (2.3). Therefore, given a basis for K over K_c , every element of R has a unique representation as a linear combination of the elements of this basis over R_c . Let c_1, c_2, \dots, c_j be the nonzero coefficients out of R_c appearing in the expressions for $a, b_1, b_2, \dots, b_i, ab_1$ in terms of such a basis, with c_1 appearing in the expression for ab_1 . A specialization of c_1, c_2, \dots, c_j over K_c into K_c , with c_1 being specialized to a nonzero element, can be extended to a specialization over K which yields an M-homomorphism η as above. Since K_c is algebraically closed, such a specialization can be obtained as follows: Select al transcendence basis d_1, d_2, \dots, d_v for $K_c(c_1, c_2, \dots, c_j)$ over K_c which includes c_1 if $c_1 \notin K_c$. For $1 \le \alpha \le j$, there exists a monic polynomial $f_{\alpha}(x)$ over $K_c(d_1, d_2, \dots, d_v)$

for which c_{α} is a root. Express the coefficients of the $f_{\alpha}(x)$, $1 \le \alpha \le j$, as rational forms over K_c in d_1, d_2, \dots, d_v with common denominator $g(d_1, d_2, \dots, d_v)$. Choose a specialization of d_1, d_2, \dots, d_v over K_c into K_c for which $c_1 \cdot g(d_1, d_2, \dots, d_v)$ does not vanish. This specialization can be extended to the coefficients of the $f_{\alpha}(x)$ and thence to all the c_{α} , $1 \le \alpha \le j$, with values in K_c ; and c_1 is specialized to a nonzero element. Therefore, there is a unique structure of an M-field on Q, such that Q is an M-extension of R.

3. Picard-Vessiot extensions.

- (3.1) Definition. An M-field K which is an M-extension of an M-field L is a solution field over L if there exists a positive integer h and h elements k_1, k_2, \dots, k_h of K, such that $K = L \langle k_1, k_2, \dots, k_h \rangle$ and, for some choice of h elements t_1, t_2, \dots, t_h in S'(M), $W(k_1, k_2, \dots, k_h; t_1, t_2, \dots, t_h) = W_0 \neq 0$ while $W_0^{-1}W(k_1, k_2, \dots, k_h; t_1, \dots, t_{\alpha-1}, t_{\alpha+1}, \dots, t_h, t) \in L$ for $1 \leq \alpha \leq h$ and t = 1 or $t = t_\beta m$, $m \in M$ and $1 \leq \beta \leq h$. The set of elements k_1, k_2, \dots, k_h is a fundamental set for K over L.
- (3.2) Theorem. Let K be a solution field over an M-field L, and let the notation be as in Definition (3.1). For any $s \in S'(M)$ and $1 \le \beta \le n$, $k_{\beta}s = \sum_{\alpha=1}^{n} A_{\alpha}(s) \cdot k_{\beta}t_{\alpha}$, where $A_{\alpha}(s) \in L$ for $1 \le \alpha \le h$; $L\{k_1, k_2, \dots, k_h\}$ is generated as an abstract ring over L by the elements $k_{\beta}t_{\alpha}$, $1 \le \alpha$, $\beta \le h$; and for any choice of h elements s_1, s_2, \dots, s_h in S'(M), $W_0^{-1}W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h) \in L$. If ϕ is an M-homomorphism of $L\{k_1, k_2, \dots, k_h\}$ over L into an M-domain R which is an M-extension of K, then $k_{\alpha}\phi$ has a unique expression

$$k_{\alpha}\phi = \sum_{\beta=1}^{n} c_{\alpha\beta}k_{\beta}, \qquad 1 \leq \alpha \leq h,$$

where $(c_{\alpha\beta})_{1\leq \alpha,\beta\leq h}$ is a matrix over R_c ; moreover, if K_c is algebraically closed and Q denotes the field of fractions of $K\{k_1\phi,k_2\phi,\cdots,k_h\phi\}$, there is a unique structure of an M-field on Q such that Q is an M-extension of $K\{k_1\phi,k_2\phi,\cdots,k_h\phi\}$.

Proof. Let t = 1 or $t = t_{\beta}m$, $m \in M$ and $1 \le \beta \le h$; and let

$$B_{\gamma}(t) = (-1)^{h+\gamma+1} W_0^{-1} W(k_1, k_2, \dots, k_h; t_1, t_2, \dots, t_{\gamma-1}, t_{\gamma+1}, \dots, t_h, t), 1 \le \gamma \le h.$$

Then $B_{\gamma}(t) \in L$ for $1 \le \gamma \le h$; and

$$k_{\beta}t + \sum_{\gamma=1}^{h} B_{\gamma}(t) \cdot k_{\beta}t_{\gamma} = W_{0}^{-1}W(k_{1}, k_{2}, \dots, k_{h}, k_{\beta}; t_{1}, t_{2}, \dots, t_{h}, t) = 0$$

for $1 \le \beta \le h$. If $m \in M$ and $1 \le \beta \le h$, then

$$k_{\beta}tm = -\sum_{\gamma=1}^{h} (B_{\gamma}(t) \cdot k_{\beta}t_{\gamma})m = -\sum_{\gamma=1}^{h} \sum_{n, p \in M} \overline{z_{mnp}}((B_{\gamma}(t))n) (k_{\beta}t_{\gamma}p)$$

$$= -\sum_{\gamma=1}^{h} \sum_{n, p \in M} \sum_{\alpha=1}^{h} \overline{z_{mnp}}((B_{\gamma}(t))n) B_{\alpha} (t_{\beta}p) \cdot k_{\beta}t_{\alpha} = \sum_{\alpha=1}^{h} A_{\alpha}(tm) \cdot k_{\beta}t_{\alpha},$$

where $A_{\alpha}(tm) = -\sum_{\gamma=1}^{h} \sum_{n, p \in M} \overline{z_{mnp}}((B_{\gamma}(t))n) B_{\alpha}(t_{\gamma}p) \in L$ for $1 \le \alpha \le h$. By repetition of this type of argument, it follows that for any $s \in S'(M)$ and $1 \le \beta \le h$,

$$k_{\beta}s = \sum_{\alpha=1}^{h} A_{\alpha}(s) \cdot k_{\beta}t_{\alpha}, \quad \text{where } A_{\alpha}(s) \in L \text{ for } 1 \leq \alpha \leq h.$$

Consequently, $L\{k_1, k_2, \dots, k_h\}$ is generated as an abstract ring over L by the elements $k_{\beta}t_{\alpha}$, $1 \leq \alpha$, $\beta \leq h$; and $W_0^{-1}W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h) = W_0^{-1} \cdot W_0 \cdot \det(A_{\alpha}(s_{\beta}))_{1 \leq \alpha, \beta \leq h} = \det(A_{\alpha}(s_{\beta}))_{1 \leq \alpha, \beta \leq h} \in L$ for any choice of h elements s_1, s_2, \dots, s_h in S'(M).

Now let $s_1, s_2, \dots, s_h, s_{h+1}$ be any h+1 elements of S'(M). $W_0^{-1}W(k_1, k_2, \dots, k_h, k_\alpha; s_1, s_2, \dots, s_h, s_{h+1}) = 0$ for $1 \le \alpha \le h$; and expansion of the determinant $W(k_1, k_2, \dots, k_h, k_\alpha; s_1, s_2, \dots, s_h, s_{h+1})$ in this equation by cofactors of the elements of its last row yields a linear homogeneous equation in $k_\alpha s_\beta$, $1 \le \beta \le h+1$, over L. If ϕ is an M-homomorphism of $L\{k_1, k_2, \dots, k_h\}$ over L into an M-domain R which is an M-extension of K, then

$$W_0^{-1}W(k_1, k_2, \dots, k_h, k_\alpha \phi; s_1, s_2, \dots, s_h, s_{h+1})$$

$$= (W_0^{-1}W(k_1, k_2, \dots, k_h, k_\alpha; s_1, s_2, \dots, s_h, s_{h+1}))\phi = 0, \qquad 1 \le \alpha \le h.$$

Therefore $W(k_1,k_2,\cdots,k_h,k_\alpha\phi;s_1,s_2,\cdots,s_h,s_{h+1})=0$, while $W(k_1,k_2,\cdots,k_h;t_1,t_2,\cdots,t_h)=W_0$ is a unit in R; hence $k_\alpha\phi$ has a unique expression as $k_\alpha\phi=\sum_{\beta=1}^hc_{\alpha\beta}k_\beta$, $1\leq \alpha\leq h$, where $(c_{\alpha\beta})_{1\leq \alpha,\beta\leq h}$ is a matrix over R_c . Assume $R=K\{k_1\phi,k_2\phi,\cdots,k_h\phi\}$. Then R is generated by its subrings K and R_c ; Q is the field of fractions of R; and, if K_c is algebraically closed, there is a unique structure of an M-field on Q such that Q is an M-extension of R by Theorem 2.4).

(3.3) DEFINITION. A solution field K over an M-field L is a Picard-Vessiot extension of L if $K_c = L_c$ and L_c is algebraically closed.

With Theorem (3.2) and the results on admissible M-isomorphisms contained in [1], it is possible to develop a Galois theory for P-V extensions. The development can be made analogous to the presentation of the differential Galois theory of P-V extensions of ordinary differential fields in Kaplansky's An introduction to differential algebra [2]. The details, which were worked out in the author's doctoral dissertation, will be omitted here and the principal results merely summarized.

The M-Galois group of an M-field K over an M-subfield L is the group G of all M-automorphisms of K over L. If K' is an intermediate M-subfield of K, $L \subseteq K' \subseteq K$, denote by A(K') the M-Galois group of K over K', which is a subgroup of G. If H is a subgroup of G, denote by I(H) the set of all elements of K left fixed by the automorphisms in H; I(H) is an M-subfield of K and $L \subseteq I(H) \subseteq K$. An intermediate M-subfield K' of K is Galois closed in K if K' = I(A(K')), a subgroup H of G is Galois closed in G if H = A(I(H)), and there is the usual

one-to-one correspondence between the intermediate M-subfields of K which are Galois closed in K and the subgroups of G which are Galois closed in G.

- (3.4) THEOREM. Let K be a P-V extension of an M-field L and let G be the M-Galois group of K over L. G is an algebraic matrix group over L_c and the Galois theory implements a one-to-one correspondence between the connected, algebraic subgroups of G and those intermediate M-subfields of K over which K is a regular extension. Furthermore, let K be a regular extension of L; a connected algebraic subgroup H of G is invariant if, and only if, L is Galois closed in I(H); and, if H is invariant, G/H is isomorphic to the M-Galois group of I(H) over L.
- (3.5) Theorem. Let K be an M-field of differential type which is a P-V extension of an M-field L and let G be the M-Galois group of K over L. The Galois theory implements a one-to-one correspondence between the algebraic subgroups of G and those intermediate M-subfields of K over which K is a separable extension. Furthermore, let K be separable over L; an algebraic subgroup H of G is invariant if, and only if, L is Galois closed in I(H); and, if H is invariant, G/H is isomorphic to the M-Galois group of I(H) over L.
- 4. Strongly normal extensions. Let S and T be M-extensions of an M-ring R. In §5 of [1], a structure of an M-ring on $S \otimes_R T$ is given such that the canonical homomorphisms of S and T into $S \otimes_R T$ are M-homomorphisms. The structure is unique; and, in the sequel, $S \otimes_R T$ will always be considered an M-ring in this way.
- (4.1) DEFINITION. An M-field K which is an M-extension of an M-field L is a strongly normal extension of L if:
 - (i) K is a regular extension of L.
 - (ii) K is finitely generated over L (as a field).
 - (iii) $K_c = L_c$ and L_c is algebraically closed.
- (iv) If I is a prime M-ideal in $K \otimes_L K$ and Q is the field of fractions of $(K \otimes_L K)/I$, then there is a unique structure of an M-field on Q such that Q is an M-extension of $(K \otimes_L K)/I$. This M-field Q will be denoted by $\langle (K \otimes_L K)/I \rangle$. (Since K is a regular extension of L, (0) is a prime M-ideal in $K \otimes_L K$ and $\langle (K \otimes_L K)/(0) \rangle = \langle K \otimes_L K \rangle$ is the field of fractions of $(K \otimes_L K)/(0) = K \otimes_L K$.)
- (v) The field $\langle K \otimes_L K \rangle$ is generated by its subfields $K \otimes 1$ and $\langle K \otimes_L K \rangle_c$. If K is a regular P-V extension of an M-field L, then properties (i) and (iii) are immediate. If I is a prime M-ideal in $K \otimes_L K$, then $(K \otimes_L K)/I$ is an M-extension of K with respect to the embedding $K \to K \otimes 1 \to (K \otimes_L K)/I$ and $K \to 1 \otimes K \to (K \otimes_L K)/I$ is an M-homomorphism of K over L. Properties (ii), (iv) and (v) now follow from Theorem (3.2).
 - (4.2) LEMMA. If K is a strongly normal extension of an M-field L and Q is the

field of fractions of $K \otimes_L K \otimes_L K$, there is a unique structure of an M-field on Q such that Q is an M-extension of $K \otimes_L K \otimes_L K$.

Proof. $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ is an M-extension of $(K \otimes_L K) \otimes_K (K \otimes_L K)$; and the canonical isomorphism ϕ of $(K \otimes_L K) \otimes_K (K \otimes_L K)$ onto $K \otimes_L K \otimes_L K$, mapping $(k_1 \otimes k_2) \otimes (k_3 \otimes k_4)$ onto $k_1 \otimes k_2 k_3 \otimes k_4$, is an M-isomorphism. There is a unique extension of ϕ to an isomorphism $\overline{\phi}$ of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ into Q; and, identifying $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ with its isomorphic image $(\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle)^{\phi}$, $(K \otimes_L K) \otimes_K (K \otimes_L K)$ is identified with its M-isomorphic image $K \otimes_L K \otimes_L K$. Let R be the M-subring of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ generated by $\langle K \otimes_L K \rangle_c \otimes 1$, $1 \otimes K \otimes 1$, and $1 \otimes \langle K \otimes_L K \rangle_c$. R is an Mextension of K with respect to the embedding $K \to 1 \otimes K \otimes 1$; R is generated by its subrings $1 \otimes K \otimes 1$ and R_c which contains $\langle K \otimes_L K \rangle_c \otimes 1$ and $1 \otimes I \langle K \otimes_L K \rangle_c$; and Q is the field of fractions of R. By Theorem (2.4) there is a unique structure of an M-field on Q such that Q is an M-extension of R. The M-system of mappings of Q into Q restricts to an M-system of mappings of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ into Q which coincides on R with the M-system of mappings of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ into Q deduced from the M-system of mappings of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ into $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ by inverse transfer of the ring $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ to Q. Since any extension of an M-system of mappings of R into Q to an M-system of mappings of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ into Q is unique, the above two M-systems of mappings coincide on $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$ and the M-field Q is an Mextension of $\langle K \otimes_L K \rangle \otimes_K \langle K \otimes_L K \rangle$. Therefore this M-field Q is an M-extension of $K \otimes_L K \otimes_L K$, and the structure of an M-field on Q such that Q is an Mextension of $K \otimes_L K \otimes_L K$ must be unique.

It is now possible to develop a Galois theory for strongly normal extensions of M-fields and this development can be made analogous to the presentation of a Galois theory for strongly normal extensions of a special class of M-fields by A. Bialynicki-Birula in his paper, On Galois theory of fields with operators [3]. Again, the principal results will be merely summarized here.

Let G be a connected algebraic group defined over L_c and let V be a principal homogeneous space with respect to G defined over L. If g is a point of G rational over L_c , the action of g on V induces an automorphism \bar{g} of L(V) over L. Let $\bar{G}(L_c)$ denote the group of automorphisms of L(V) over L of the form \bar{g} , where g is a point of G rational over L_c .

(4.3) THEOREM. Let K be an M-field which is an M-extension of an M-field L, with properties (iii) and (iv) of Definition (4.1). Then K is a strongly normal extension of L if, and only if, there exists a connected algebraic group G defined over L_c and a principal homogeneous space V for G defined over L, having the following properties:

- (i) V is a model for K over L.
- (ii) The M-Galois group of K over L contains $\bar{G}(L_c)$.
- Conditions (i) and (ii) determine G and V uniquely up to an isomorphism. Moreover, $\bar{G}(L_c)$ is the M-Galois group of K over L and G is a model of $\langle K \otimes_L K \rangle_c$ over L_c for every such G.
- (4.4) THEOREM. Let K be a strongly normal extension of an M-field L. The Galois theory implements a one-to-one correspondence between the connected algebraic subgroups of $\bar{G}(L_c)$ which are defined over L_c and those intermediate M-subfields of K over which K is a regular extension.
- (4.5) THEOREM. Let K be an M-field of differential type which is a strongly normal extension of an M-field L. The Galois theory implements a one-to-one correspondence between the algebraic subgroups of $G(L_c)$ which are defined over L_c and those intermediate M-subfields of K over which K is a separable extension.
- In [3], Theorem (4.5) is stated only for an M-field K of characteristic zero in which the M-system of mappings consists of the identity automorphism and derivations. Using the separability of K over the M-subfields being considered to replace the assumption of zero characteristic, the above generalization follows readily. If K is an M-field of characteristic $p \neq 0$ in which the M-system of mappings consists of the identity automorphism and derivations, then $K^p \subseteq K_c = L_c$ and $K = L = L_c$, since L_c is algebraically closed. But if the M-system of mappings of K into K contains higher derivations of arbitrarily large rank or infinite rank, K may be a nontrivial strongly normal extension of L.
- (4.6) DEFINITION. An element a of an M-field K is a Picard-Vessiot element over an M-subfield L of K, if the vector space over L spanned by the elements as, $s \in S'(M)$ is finite-dimensional. The dimension of the vector space is the degree of a over L.
- (4.7) LEMMA. Let K be a strongly normal extension of an M-field L and let $a \in K$. a is a P-V element over L if, and only if, the vector space over L_c spanned by the images of a under M-automorphisms of K over L is finite -dimensional.
- (4.8) THEOREM. Let K be a strongly normal extension of an M-field L. K is a P-V extension of L if, and only if, K is generated over L by its P-V elements over L.
- **Proof.** If K is a P-V extension of L, let the notation be as in Definition (3.1). $K = L\langle k_1, k_2, \dots, k_h \rangle$ and k_1, k_2, \dots, k_h are P-V elements over L by Theorem (3.2). Conversely, suppose K is generated over L by its P-V elements over L. Since K is finitely generated over L, there exists a finite number of P-V elements of K over L, say a_1, a_2, \dots, a_i , which generate K over L. The vector space over L_c spanned

by the images of a_1, a_2, \dots, a_i under M-automorphisms of K over L is finite-dimensional by Lemma (4.7). Let k_1, k_2, \dots, k_h be a basis for this vector space over L_c . Then $K = L \langle k_1, k_2, \dots, k_h \rangle$ and, since k_1, k_2, \dots, k_h are linearly independent over $L_c = K_c$, there exist h elements t_1, t_2, \dots, t_h in S'(M) such that $W(k_1, k_2, \dots, k_h; t_1, t_2, \dots, t_h) = W_0 \neq 0$. If ϕ is an M-automorphism of K over L, $(k_{\alpha}s)^{\phi} = k_{\alpha}^{\phi} s = \sum_{\beta=1}^{h} c_{\alpha\beta}(\phi) \cdot (k_{\beta}s), s \in S'(M)$ and $1 \leq \alpha \leq k$, where $(c_{\alpha\beta}(\phi))_{1 \leq \alpha, \beta \leq h}$ is a matrix over L_c . For any choice of h elements s_1, s_2, \dots, s_h in S'(M),

$$(W_0^{-1}W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h))^{\phi}$$

$$= (\det(c_{\alpha\beta}(\phi))_{1 \le \alpha, \beta \le h} \cdot W_0)^{-1}(\det(c_{\alpha\beta}(\phi))_{1 \le \alpha, \beta \le h} \cdot W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h))$$

$$= W_0^{-1}W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h).$$

Since L is Galois closed in K by Theorem (4.4), $W_0^{-1}W(k_1, k_2, \dots, k_h; s_1, s_2, \dots, s_h) \in L$ for every choice of h elements s_1, s_2, \dots, s_h in S'(M) and K is a P-V extension of L.

(4.9) THEOREM. Let K be a strongly normal extension of an M-field L. Then K is a P-V extension of L if, and only if, the M-Galois group of K over L is affine.

REFERENCES

- 1. H. F. Kreimer, The foundations for an extension of differential algebra, Trans. Amer. Math. Soc. 111 (1964), 482-492.
 - 2. Irving Kaplansky, An introduction to differential algebra, Hermann, Paris, 1957.
- 3. A. Bialynicki-Birula, On Galois theory of fields with operators, Amer. J. Math. 84 (1962), 89-109.
- 4. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. 49 (1948), 1-42.
- 5. —, Picard-Vessiot theory of partial differential fields, Proc. Amer. Math. Soc. 3 (1952), 596-603.
 - 6. ——, Galois theory of differential fields, Amer. J. Math 75 (1953), 753-824.

FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA