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1. Introduction. The terminology and notation of this paper are taken from

the author's paper The foundation for an extension of differential algebra [1].

Let C be an associative, commutative coalgebra with identity over a ring W, which

is freely generated as a W-module by a set M. If w -» w is a homomorphism of W

into a ring S, let Cs be the S-module obtained from the W-module C by inverse

transfer of the basic ring to S. If p is a homomorphism of a ring R into the algebra

(Cs)* = Homs (CS,S), then for each me M there is a mapping a -» a"(m) of R

into S, which will also be denoted by m, and the set of these mappings will be called

an M-system of mappings of R into S. Let m -» Zn> p eM zm„p w ® p, where me M,

zmnp e W> ana' zm<ip = 0 except for a finite number of elements n and /j in M, be the

coproduct mapping of Cinto C (x)^ C;ifa, feeRandme AÍ, (a + b)m = am + bm

and (ab)m= H„,peMzmnP (an)(bp). An M-ring is a ring together with an M-

system of mappings of the ring into itself.

In §2, the constants of an M-ring are defined, criteria for the linear independence

of elements of an M-domain over its subring of constants are established, and

the structure of an M-ring is shown to extend to the field of fractions of certain

M-domains. Solution fields and Picard-Vessiot extensions are defined in §3, and

connection with the differential Picard-Vessiot theory are made. In §4, strongly

normal extensions are defined, and connections with the differential Galois theory

of strongly normal extensions are made. For use in this paper, a result from [I]

needs to be stated in a stronger form and is stated and proved below.

(1.1.) Lemma. Let N be a set of elements of a ring R which are not zero-

divisors in R, and let Q be the ring of quotients of R relative to N. An M-system

of mappings ofR into afield S can be extended to an M-system of mappings ofQ

into S if, and only if, the (M x M)-matrix (2ZneMzmi¡p(an))m¡peM represents a

one-to-one endomorphism of the S-module Cs for every aeN. Furthermore, when

such an extension exists, it is unique.

Proof. Let p be a representation of R in (Cs)*. p can be extended to a homo-

morphism of Q into (Cs)* if, and only if, a" is a unit in (Cs)* for every aeN;

and when such an extension exists, it is unique. Letfg e (Cs)* ;

Presented to the Society, June 4, 1962 under the title An extension of the Picard-Vessiot

theory; received by the editors February 18, 1963 and, in revised form, January 29, 1964.

( )Part of a dissertation presented for the degree oí Doctor of Philosophy in Yale University.

247



248 H. F. KREIMER [June

(f- g)(m) = (f®g) i Z„,peM zmnp n®p) =   Z„,peM   zmnpfin) ■ gip)

= g( Z„ji)sM zm„pf(n)  •  p).

Therefore, under the regular representation of (Cs)*, an element / of (Cs)* is

represented by the transpose of the endomorphism of the S-module Cs which is

described  with  respect  to  the  basis  M  by  the  row  finite (M x M)-matrix

(Z„6M^m„p/(«))m,peM- The mapping a: f ^(zZneMzmnpfin))m,psM is an iso-

morphism of (Cs)* into the ring SM of row-finite (M x M)-matrices over S. If/is

a unit in (Cs)*; then /"is a unit in SM and represents a one-to-one endomorphism

of Cs. Conversely iff represents a one-to-one endomorpism of Cs, the transpose

of this endomorphism of Cs is an endomorphism of the S-module (Cs)* onto

itself. Therefore there is an element g of (Cs)* such that / • g = e, the identity

element of (Cs)*, and/is a unit in (Cs)*. The lemma now follows at once.

2. The constants of an M-ring. Let R be an M-ring and let p be the associated

representation of R in (CR)*. An element c of R is a constant if ica)p = c ■ ap for

every a e R. The constants of R form a subring which contains the identity element

of R. The subring of constants of R will be denoted by Rc. Suppose b, deR and

d is a unit in R. If bd_1 eRc, then d ■ b" = d • ibd~id)p = b • dp; and, conversely,

if d ■ b" = b ■ dp, then (fed-'a)" = b"idp)'lap = bd~l -a" for every aeR and

bd_1eRc. Taking d = 1, beRc if, and only if, b"= 1 • o"= b ■ 1". This

characterization of the constants of an M-ring implies that if S is an M-extension

of R, RcçSc. If b = 1 and deRc, then d • 1" = d" = 1 • d"and d"1 eRc. Con-

sequently, if R is a field, so is Rc.

Two elements / and g of (CR)* are equal if, and only if, /(m) = gim) for every

meM. Therefore an element c of R is a constant if, and only if, ica)m = ciam)

for every aeR and me M. If b, deR and d is a unit in R, then bd~' e Rc if, and

only if, d(bm) = b(dm) for every meM. Also freRc if, and only if, bm = b(lm)

for every meM.

Let S'(M) be the free semi-group with identity generated by the set M. Oper-

ations by elements of S'(M) on the M-ring R are defined as follows: The identity

element of S'(M) operates on R as the identity automorphism of R, and any

other element of S'(M) operates on R as the resultant of the operations on R by

its factors. Let h be a positive integer, let ry,r2,--,rk be h elements of R, and let

Sy,s2,---,sh be h elements of S'(M). Denote by W(ry,r2,---,rh; Sy,s2,---,sh) the

determinant :

ri5i     risz     '"    rlsft

r2Sy     r2s2     ■■■    r2Sf?<

•J

rhSl        rhS2        '*"      rhSh
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(2.1) Theorem. Let h be a positive integer, and let rx,r2,---,rh be h elements of

an M-domain R. If rx,r2,---,rh are linearly dependent over Rc, then

W(rx,r2, •■•,rh; sx,s2,---,sh) = 0 for every choice of h elements sx,s2,---,sh in

S'(M). Ifh^.2, W(rx,r2,---,rh; sx,s2, •■■,sh) = 0 for every choice of h elements

sx,s2,---,sh in S'(M), but for some choice of h — 1 elements tx,t2,---,th_x in

S'(M), W(rx,r2,---,r,,_x; tx,t2 ••-,ifc_1) is a unit in R, then rh is equal to a

unique linear combination of rx,r2,---,rh_x overRc.

Proof. If rx,r2,---,rh are linearly dependent over Rc, then there exist h elements

cx,c2,---,ch of Rc, not all zero, such that   2„ = icara = 0.  For any seS'(M),

^ = iCa(»-as) = (E*=1cItrJs = 0. Therefore W(rx,r2,---,rh; sx,s2,---,sh) is the

determinant of a matrix with rows linearly dependent over Rc and must vanish

for every choice of h elements sx,s2,---,sh in S'(M).

Suppose h ^ 2, W(rx,r2,---,rh ; sx,s2,---,sh) = 0 for every choice of h elements

sx,s2,---,sh in S'(M), but for some choice of h — 1 elements tx,t2,---,th-x in

S'(M), W(rx,r2,---,rh_x ; tx,t2,---,th_x)isa unit in R. Let th be any given element

of S'(M). Then W(rx,r2,---,rh; tx,t2,---,th) = 0; and, if Aa is the cofactor of

rjk in this determinant, 2ZX = X Aa(rJß) = 0 for I g. ß £ h. Therefore

(Ah ■ Apx,Ah ■ Ap2,---,Ah • Aph) is a solution in (CR)* of the system  of equations

2lx = x(rJß)pxx = 0, l^ßz^h. Replacing th by any one of the elements tßm,

m 6 M and 1 z% ß ^ h, yields 2*., Ax(rxtß)p(m) = I" = i Ax((rxtß)m) = 0. Therefore

Zj-i¿« • (rjß)p = 0 for lußuh; and (Ax ■ AP,A2 ■ A¡¡,-,Ah ■ Ap) is another

solution in (CR)* of the equations Zj. x (rxtß)"xx =0,l^ß<;h. Then

(Ah ■ Ax — Ax   Ah, Ah • A2 — A2 ■ Ah, ■■■, Ah • Ah^x — Ah_x ■ Ah)

is a solution of the system of equations HxZ\(rxtß)pxx = 0, 1^ jSgA-1. But the

determinant of this system of equations is (W(rx,r2,---,rh_x; tx,t2,---,th-x))p,

which is a unit in (CR)*; therefore, this system of equations can have no non-

trivial solution in (CR)* and Ah ■ Ap = Ax ■ Ag for 1 ^ « á h - 1. Since

A= W(rx,r2,---,rh_x; tx,t2,---,th-x) is a unit in R, Ax • AZ*e Rc for

1 ^ a S h — 1. If th is chosen to be the identity element of S'(M), then the equation

£.*-i4£A) = 0   yields

ft-1

rh=   I  -A„Ah~lra.
a = i

Since W('"i,r2,---,rft_1 ;í1;í2, •••,ifc_1) # 0, i-1,r2,---,rfc_1 are linearly independent

over Rc and the expression for r^asalinear combination ¡of rx,r2,---,rh_x over

/<c is unique.

(2.2) Corollary. Let h be a positive integer, and let kx, k2, •••, kh be h elements

of an M-field K. kx,k2,---,kH are linearly dependent over Kc if, and only if,

W(kx,k2,---,kh ; sx,s2,---,sh) = 0 for every choice of h elements sx,s2,---,shin S'(M).
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Proof. Suppose that Wiky,k2, ■■•,kh ; Sy,s2, ■■■,sh) = 0 for every choice of h

elements sx,s2,---,sh in S\M). If kx = 0, then kx,k2,---,kh are linearly dependent

over Kc. If kx^0, there is a positive integer /', l<i^ri,such that Wiky,k2,---,k¡;

Sy,s2,---,s) = 0 for every choice of i elements s¡,s2,-,s¡ in S'(M), but for some

choice of i— 1 elements i,,r2, • ••,!,--1 in S'iM), W(/c1,/c2,---,ki_1;í1,í2, •••,r»_i)#0

and, consequently, is a unit in X. The corollary now follows from Theorem (2.1).

(2.3) Corollary. If R is an M-domain which is an M-extension of an M-field

X, then X and Rc are linearly disjoint over Kc.

Proof. Theorem (2.1) and Corollary (2.2) imply that elements of X which are

linearly dependent over Rc must be linearly dependent over Kc, whence the cor-

ollary.

(2.4) Theorem. Let R be an M-domain which is an M-extension of an M-field

K, and let Q be the field of fractions of R. If R is generated by its subrings X

and Rc and Kc is algebraically closed, then there is a unique structure of an

M-field on Q such that Q is an M-extension of R.

Proof. By Lemma (1.1), the M-system of mappings of R into Q deduced from

the M-system of mappings of R into R by inverse transfer of the ring R to Q can be

extended uniquely to an M-system of mappings of Q into Q, making Q an M-field

which is an M-extension of R; if the (M x M)-matrix ( 2„eMzm„p(an))miJ,eM

represents a one-to-one linear transformation on Ce for every a #0 in R. Suppose

there were an a # 0 in R such that ( 2„eMzmil(,(an))m(,sM did not represent a

one-to-one linear transformation on CQ, or, equivalently, the rows of this matrix

were linearly dependent over R. Let by,b2,---,b¡ be the nonzero coefficients in a

nontrivial linear relation over R among the rows of this matrix. If n were an

M-homomorphism of K{a,by,b2,---,b¡} over X into X such that iabyY^O,

then an would be a nonzero element of X such that ( £,.€Mzm„p(a''n))mj;,eM does

not represent a one-to-one linear transformation on CK, contradicting the exis-

tence of an M-system of mappings of X into X.

R is generated as an abstract ring by X and Rc, and X and Rc are linearly

disjoint over Xc by Corollary (2.3). Therefore, given a basis for X over Kc, every

element of R has a unique representation as a linear combination of the elements

of this basis over Rc. Let Cy,c2,---,c¡ be the nonzero coefficients out of Rc appear-

ing in the expressions for a,by,b2,---,bx,aby in terms of such a basis, with cx

appearing in the expression for aby.A specialization of Cy,c2, ■■■,cj over Xc into

Kc, with Cy being specialized to a nonzero element, can be extended to a speciali-

zation over X which yields an M-homomorphism n as above. Since Kc is alge-

braically closed, such a specialization can be obtained as follows : Select a] tran-

scendence basis dy,d2,---,dv for Kcicy,c2,---,cf) over Kc which includes cx if

Cy$Kc. Forl ^ a g j, there exists a monic poiynomial/a(x)overXc(d1,d2."-.d1,)
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for which ca is a root. Express the coefficients of the/,(x), 1 ^ a ^j, as rational

forms over Kc in dy,d2, ■••,dl,with common denominator g(dy,d2,---,dv). Choose

a specialization of dy,d2,---,dv over Xc into Kc for which cx • g(dx,d2,---,dv)

does not vanish. This specialization can be extended to the coefficients of the

fix) and thence to all the c„, 1 ^ a ^j, with values in Xc ; and cx is specialized

to a nonzero element. Therefore, there is a unique structure of an M-field on Q,

such that Q is an M-extension of R.

3. Picard-Vessîot extensions.

(3.1) Definition. An M-field K which is an M-extension of an M-field L is a

solution field over L if there exists a positive integer h and h elements kx,k2,---, kh

of K, such that X = L<[ky,k2,---,khy and, for some choice of h elements

ty, t2, •••, th in S\M), Wiky, k2, •••, k„; tt, t2, ■■■, th) = W0 # 0 while

W0~1W(k1,k2,---,kh ; il5 - ■-, ia_ x, ía+1,»»»,í/,,r)eJL for 1 z% a ^ h and r=l or

t = tßm, meM and 1 gj ßS h.The set of elements ky,k2,---,kh is a fundamental

set for X over L.

(3.2) Theorem. Let K be a solution field over an M-field L, and let the nota-

tion be as in Definition (3.1). For any s e S'(M) and lz%ß^n,kßs = E"=1/L(s)- kßtx,

where Aa(s)eLfor\ ¿a^A; L{ky,k2,---,kh} is generated as an abstract ring

over L by the elements kptx, 1 z% a, ß f¿ h; and for any choice of h elements

Sy,s2,---,sh in S'(M), Wo1 W(ky,k2,---,kh; sx,s2,---,s,)eL. If ep is an M-homo-

morphism ofL{kx,k2,---,kh} over L into an M-domain R which is an M-extension

of X, then kaeb has a unique expression

n

k„cf> = E caPkß,       íz%az%h,
ß = i

where (cxß)XeXtß^i, is a matrix over Rc; moreover, if Kc is algebraically closed

and Q denotes the field of fractions of K{kxcb,k2eb,---,khcb}, there is a unique

structure of an M-field on Qsuch thatQ is an M-extension of K{kycb, k2cb, ■••, kheb}.

Proof. Let t = 1 or t = tßm, meM and 11% ß ¿L h ; and let

By(t) = (-l)h^+1    Wö1W(ky,k2,-,kh;    ty,t2,-,ty_y,ty+y,-,th,t),    1    ̂    7    ̂     h.

Then BfJ) e L for 1 ̂  y z% h; and

h

kßt+ I Byit) ■kßty = Wö1Wiki,k2,--,kh,kß; ty,t2,--,th,t) = 0
7=1

for 1 ¿ ß á A. If m s M and 1 á ß á h, then
h h

kßtm  = - I iByit) ■ kßty)m = - E     E    Y--p((By(t))n) (kßtyp)
y = 1 y~l   ntp eM

h h h

- - I      I      I ^-((ßy(i))n)ß* (*>P) • V« -   2 4,0) • V«.
y-=l   n.jieM   a = l a = l
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where Ax(tm)= - Uy = x Xn,peMzmnp((By(t))n)Bx(typ)eL for l£ct£h. By rep-

etition of this type of argument, it follows that for any s e S'(M) and Izißith,

h

kßs = Z Ax(s) • kßtx,       where Ax(s)eL for 1 ^ a ^ h.
a = l

Consequently, L{kx,k2,---,kh} is generated as an abstract ring over L by the

elements kßtx, Í g a, ß £ h; and W0-11F(kx,k2, ■■■ ,kh; sx, s2, ■■■ ,sh) =

Wo'1 • W0 ■ det(Ax(sß))XUXißSh= det(Ax(sß))XexJiuheL for any choice of h

elements sx,s2,---,shin S'(M).

Now let sx,s2,---,sh,sh + x beany h + l elements of S'(M). W0~1W(kx,k2,---,kh,kx;

s1,s2,---,sh,sh+x) = 0 for 1 *£ a ^ h; and expansion of the determinant

W(kx,k2,---,kh,kx; sx,s2,---,sh,sh+x) in this equation by cofactors of the elements

of its last row yields alinear homogeneous equation in kxsß, 1 ;£ ß ^ h + 1, over L.

If </> is an M-homomorphism of L{kx,k2,---,kh} over L into an M-domain R

which is an M-extension of K, then

"o   "(ki,k2,■■■,kh,kxcp ; sx,s2,---,sh,sh+x)

= {W0~iW{kx,k2,---,kh,kx; sx,s2,---,sh,sh+x))cb = 0, l^ci^h.

Therefore W(kx,k2,---,kh,kxcb ; sx,s2,---,sh,sh+x) = 0, while W(kx,k2,---,kh;

h>h>"'ttù = W0 is a unit in R; hence kxch has a unique expression as

kxcb = 2Zhß = xcxßkß, 1 ^ a ^ h, where (cxß)X£Xtß^h is a matrix over i<c. Assume

R = K{kxcb,k2cb, ■■■,khcb}. Then R is generated by its subrings K and Rc; Q is the

field of fractions of R; and, if Kc is algebraically closed, there is a unique structure

of an M-field on Q such that Q is an M-extension of R by Theorem 2.4).

(3.3) Definition. A solution field K over an M-field L is a Picard-Vessiot

extension of L if Kc = Lc and Lc is algebraically closed.

With Theorem (3.2) and the results on admissible M-isomorphisms contained

in [1], it is possible to develop a Galois theory for P-V extensions. The development

can be made analogous to the presentation of the differential Galois theory of

P-V extensions of ordinary differential fields in Kaplansky's An introduction to

differential algebra [2]. The details, which were worked out in the author's

doctoral dissertation, will be omitted here and the principal results merely sum-

marized.

The M-Galois group of an M-fieldX over an M-subfield L is the group G of all

M-automorphisms of K over L. If K' is an intermediate M-subfield of K,

L ç: K' çz K, denote by A(K') the M-Galois group of K over K', which is a sub-

group of G. If H is a subgroup of G, denote by 1(H) the set of all elements of K

left fixed by the automorphisms in H ; 1(H) is an M-subfield of K and L çz ¡{H) £ K.

An intermediate M-subfield K' of K is Galois closed in K if K' — I(A(K')), a

subgroup H of G is Galois closed in G if H = A(I(H)), and there is the usual



1965] AN EXTENSION OF DIFFERENTIAL GALOIS THEORY 253

one-to-one correspondence between the intermediate M-subfields of X which are

Galois closed in X and the subgroups of G which are Galois closed in G.

(3.4) Theorem. Let X be a P-V extension of an M-field L and let G be the

M-Galois group of X over L. G is an algebraic matrix group over Lc and the

Galois theory implements a one-to-one correspondence between the connected,

algebraic subgroups of G and those intermediate M-subfields of K over which X

is a regular extension. Furthermore, let X be a regular extension of L; a con-

nected algebraic subgroup H of G is invariant if, and only if, L is Galois closed

in 1(H); and, if H is invariant, G¡H is isomorphic to the M-Galois group of 1(H)

over L.

(3.5) Theorem. Let K be an M-field of differential type which is a P-V

extension of an M-field L and let G be the M-Galois group of K over L. The

Galois theory implements a one-to-one correspondence between the algebraic

subgroups of G and those intermediate M-subfields of X over which X is a

separable extension. Furthermore, let K be separable over L; an algebraic

subgroup H of G is invariant if, and only if, L is Galois closed in 1(H); and, if H

is invariant, G\H is isomorphic to the M-Galois group of 1(H) over L.

4. Strongly normal extensions. Let S and T be M-extensions of an M-ring R.

In §5 of [1], a structure of an M-ring on S ®R T is given such that the canonical

homomorphisms of S and T into S ®R T are M-homomorphisms. The structure

is unique; and, in the sequel, S®RT will always be considered an M-ring in this

way.

(4.1) Definition. An M-field X which is an M-extension of an M-field L is a

strongly normal extension of L if :

(i)    X is a regular extension of L.

(ii)   X is finitely generated over L (as a field).

(iii) Kc = Lc and Lc is algebraically closed.

(iv) If I is a prime M-ideal in K®LK and Q is the field of fractions of

(K®LK)/I, then there is a unique structure of an M-field on Q such that Q is an

M-extension of (X®tX)/L This M-field g will be denoted by <(X®LX)//>.

(Since X is a regular extension of L, (0) is a prime M-ideal in K®LK and

<(X ® L X)/(0) > = <X ® L X > is the field of fractions of (X ® L X)/(0) = X ® L K.)

(v)   The field <X® L X > is generated by its subfields K® 1 and   <X ® LX >c.

If X is a regular P-V extension of an M-field L, then properties (i) and

(iii) are immediate. If / is a prime M-ideal in K®LK, then (X®LX)/7 is

an M-extension of X with respect to the embedding X -> X ® 1 -* (X ®LK)jI and

X-> 1 ®X->(X®LX)/7 is an M-homomorphism of X over L. Properties (ii),

(iv) and (v) now follow from Theorem (3.2).

(4.2) Lemma. IfK is a strongly normal extension of an M-field L and Q is the
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field of fractions of K®LK®LK, there is a unique structure of an M-field on Q

such that Q is an M-extension of K®LK®LK.

Proof. <.K®LK}®K CK ®LK} is an M-extension of (K®LK)¡®K (K®L K);

and the canonical isomorphism cb of (K®LK)®K(K®LK) onto K®LK®LK,

mapping (kx ® k2) ® (k3 ® k4) onto kx ® k2k3 ® /c4, is an M-isomorphism. There

is a unique extension of cb to an isomorphism <£ of {K®LK}®K([K®LK}

into Q; and, identifying (.K®LK)®K<[K®LK} with its isomorphic image

(<[K®LK}®K {K®LK}f, (K®LK)®K(K®LK) is identified with its M-iso-

moxphicixnageK®LK®LK.LetRbetheM-subxingof (K®LKy®K <[K®LK}

generated by (K®LKyc®l, 1®K®1, and 1® <[K®LK}C. R is an M-

extension of K with respect to the embedding K->1®K®1; R is generated

by its subrings 1 ® K ® 1 and Rc which contains <[K ®LK}C ® 1 and

1 ®l(K ®LK}C ; and Q is the field of fractions of R. By Theorem (2.4) there is

a unique structure of an M-field on Q such that Q is an M-extension of R. The

M-system of mappings of Q into Q restricts to an M-system of mappings of

(K®LKy®K(K®LK) into Q which coincides on R with the M-system

of mappings of (.K®LK}®K<[K®LKy into Q deduced from the M-system

of mappings of {K®LK}®K(K®LK} into (K®LK}®K(K®LKy

by inverse transfer of the ring <[K®LK}®K<[K®LK.y to Q. Since any ex-

tension of an M-system of mappings of R into Q to an M-system of mappings

of (K®LKy®K<[K®LKy into Q is unique, the above two M-systems of

mappings coincide on (K®LKy®K(K®LK.y and the M-field Q is an M-

extensionof (K®LK.y®K <X®LK>. Therefore this M-field g is an M-extension

of K®LK®LK, and the structure of an M-field on Q such that Q is an M-

extension of K®LK®LK must be unique.

It is now possible to develop a Galois theory for strongly normal extensions

of M-fields and this development can be made analogous to the presentation of a

Galois theory for strongly normal extensions of a special class of M-fields by

A. Bialynicki-Birula in his paper, On Galois theory of fields with operators [3].

Again, the principal results will be merely summarized here.

Let G be a connected algebraic group defined over Lc and let F be a principal

homogeneous space with respect to G defined over L. If g is a point of G rational

over Lc, the action of g on V induces an automorphism g of L(V) over L. Let

G(LC) denote the group of automorphisms of L(V) over L of the form g, where g is

a point of G rational over Lc.

(4.3) Theorem. Let K be an M-field which is an M-extension of an M-field L,

with properties (iii) and (iv) of Definition (4.1). Then K is a strongly normal

extension of L if, and only if, there exists a connected algebraic group G defined

over Lc and a principal homogeneous space V for G defined over L, having the

following properties:
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(i)   V is a model for K over L.

(ii) The M-Galois group of X over L contains G(LC).

Conditions (i) and (ii) determine G and V uniquely up to an isomorphism. More-

over, G(LC) is the M-Galois group of X over L and G is a model of <X®LX>C

over Lc for every such G.

(4.4) Theorem. Let K be a strongly normal extension of an M-field L. The

Galois theory implements a one-to-one correspondence between the connected

algebraic subgroups of G(LC) which are defined over Lc and those intermediate

M-subfields of X over which X is a regular extension.

(4.5) Theorem. Let X be an M-field of differential type which is a strongly

normal extension of an M-field L. The Galois theory implements a one-to-one

correspondence between the algebraic subgroups of G(LC) which are defined

over Lc and those intermediate M-subfields of X over which X is a separable

extension.

In [3], Theorem (4.5) is stated only for an M-field X of characteristic zero in

which the M-system of mappings consists of the identity automorphism and

derivations. Using the separability of X over the M-subfields being considered

to replace the assumption of zero characteristic, the above generalization follows

readily. If X is an M-field of characteristic p # 0 in which the M-system of map-

pings consists of the identity automorphism and derivations, then Xp£ Xc = Lc

and X = L = Lc, since Lc is algebraically closed. But if the M-system of mappings

of X into X contains higher derivations of arbitrarily large rank or infinite rank,X

may be a nontrivial strongly normal extension of L.

(4.6) Definition. An element a of an M-field X is a Picard-Vessiot element

over an M-subfield L of X, if the vector space over L spanned by the elements as,

s e S'(M) is finite-dimensional. The dimension of the vector space is the degree of

a over L.

(4.7) Lemma. Let X be a strongly normal extension of an M-field L and let

aeK. a is a P-V element over L if, and only if, the vector space over Lc spanned

by the images of a under M-automorphisms of K over L is finite -dimensional.

(4.8) Theorem. Let X be a strongly normal extension of an M-field L. X is a

P-V extension of L if, and only if, X is generated over L by its P-V elements

over L.

Proof. If X is a P-V extension of L, let the notation be as in Definition (3.1).

X = L(ky,k2,---,khy and ky,k2,---,kh are P-V elements over L by Theorem (3.2).

Conversely, suppose X is generated over L by its P-V elements over L. Since X

is finitely generated over L, there exists a finite number of P-V elements of X over

L, say ay,a2, •••,a/, which generate X over L. The vector space over Lc spanned
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by the images of ay,a2,---,a¡ under M-automorphisms of X over L is finite-

dimensional by Lemma (4.7). Let ky,k2,---,kh be a basis for this vector space

over Lc. Then X = L (Jcy,k2,---,khy and, since ky,k2,---,kh are linearly inde-

pendent over LC = XC, there exist h elements ty,t2,---,th »n S'(M) such that

Wiky,k2,---,kh;ty,t2,---,tf)= W0 ̂  0. If eb is an M-automorphism of XoverL,

ikxs)* = k*s= lî.xc^fp) • ikßs), seS'iM) and 1 ̂  a ^ k, where (c^))ls.>iS)k

is a matrix over Lc. For any choice of h elements Sy,s2,---,shin S\M),

iW0   Wiky,k2, •••,kh ; Sy,s2, •■■,sh))

= (A^(caßicb))i^fßeh-W0y\deticaßi^))yaclieuh- Wiky,k2,---,kh;sy,s2,---,sh))

—  W0   Wiky,k2,"-,k),;sy,s2,"-,Si).

Since L is Galois closed in X by Theorem (4.4), W0~1Wik1,k2,---,kh;

Sy,s2,---,sh)eL for every choice of h elements Sy,s2,---,sh in S'iM) and X is a

P-V extension of L.

(4.9) Theorem. Let X be a strongly normal extension of an M-field L. Then

X is a P-V extension ofL if, and only if, the M-Galois group of X over L is afine.
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