AN EXTENSION OF DIFFERENTIAL
GALOIS THEORY (")

BY
H. F. KREIMER

1. Introduction. The terminology and notation of this paper are taken from
the author’s paper The foundation for an extension of differential algebra [1].
Let C be an associative, commutative coalgebra with identity over a ring W, which
is freely generated as a W-module by a set M. If w — 1% is a homomorphism of W
into a ring S, let C° be the S-module obtained from the W-module C by inverse
transfer of the basic ring to S. If p is a homomorphism of a ring R into the algebra
(C%)* = Homg(C5,S), then for each me M there is a mapping a — a”(m) of R
into S, which will also be denoted by m, and the set of these mappings will be called
an M-system of mappings of R into S. Let m — En,peMzm,,pn ® p, where me M,
Zmnp € W, and z,,,, = 0 except for a finite number of elements n and p in M, be the
coproduct mapping of Cinto C ®, C;ifa,be Rand me M, (a + b)ym = am + bm
and (ab)ym = E,,,peMz—,;:; (an)(bp). An M-ring is a ring together with an M-
system of mappings of the ring into itself.

In §2, the constants of an M-ring are defined, criteria for the linear independence
of elements of an M-domain over its subring of constants are established, and
the structure of an M-ring is shown to extend to the field of fractions of certain
M-domains. Solution fields and Picard-Vessiot extensions are defined in §3, and
connection with the differential Picard-Vessiot theory are made. In §4, strongly
normal extensions are defined, and connections with the differential Galois theory
of strongly normal extensions are made. For use in this paper, a result from [1]
needs to be stated in a stronger form and is stated and proved below.

(1.1.) LeMMA. Let N be a set of elements of a ring R which are not zero-
divisors in R, and let Q be the ring of quotients of R relative to N. An M-system
of mappings of R into afield S can be extended to an M-system of mappings of Q
into S if, and only if, the (M x M)-matrix ( X, e,‘,z,,,T,,(an)),,,,‘,eM represents a
one-to-one endomorphism of the S-module C3 for every a e N. Furthermore, when
such an extension exists, it is unique.

Proof. Let p be a representation of R in (C5)*. p can be extended to a homo-
morphism of Q into (C%)* if, and only if, a” is a unit in (C%)* for every ae N;
and when such an extension exists, it is unique. Let f, g € (C°)*;
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(f M) =(f®8) (X, pert Zrmp N®D) = Zp pert Zmnpf () - g(P)
= g( En,l,veM zi;;f(") . p)

Therefore, under the regular representation of (C5)*, an element f of (C%)* is
represented by the transpose of the endomorphism of the S-module C° which is
described with respect to the basis M by the row finite (M x M)-matrix
( Zn eM Zm_npf(n))m, peM:- The mapplng g: f—’ ( Zn eM zm—upf(n))m,p eM is an iso-
morphism of (C%)* into the ring S,, of row-finite (M x M)-matrices over S. If f is
a unit in (C%)*; then fis a unit in S,, and represents a one-to-one endomorphism
of C5. Conversely if f? represents a one-to-one endomorpism of C¥, the transpose
of this endomorphism of C% is an endomorphism of the S-module (C%)* onto
itself. Therefore there is an element g of (C5)* such that f - g = e, the identity
element of (C5)*, and fis a unit in (C®)*. The lemma now follows at once.

2. The constants of an M-ring. Let R be an M-ring and let p be the associated
representation of R in (CX)*. An element ¢ of R is a constant if (ca)’ = c - a’ for
every a € R. The constants of R form a subring which contains the identity element
of R. The subring of constants of R will be denoted by R.. Suppose b, d € R and
d isa unitin R.Ifbd '€ R_, thend - b* =d - (bd "'d)’ = b - d°; and, conversely,
if d-b°=b-d° then (bd 'a)’ = b*(d*) 'a® =bd™' - a® for every aeR and
bd"!'eR.. Taking d=1, beR, if, and only if, b?=1-b"=b-1°. This
characterization of the constants of an M-ring implies that if S is an M-extension
of R,R,c S, If b=1and deR,, thend-1°=d’=1-d”and d "*eR,. Con-
sequently, if R is a field, so is R,.

Two elements f and g of (C*)* are equal if, and only if, f(m) = g(m) for every
me M. Therefore an element ¢ of R is a constant if, and only if, (ca)m = c(am)
for every ae R and me M. If b, de R and d is a unit in R, then bd~' e R, if , and
only if, d(bm) = b(dm) for every me M. Also beR, if, and only if, bm = b(1m)
for every me M.

Let S’(M) be the free semi-group with identity generated by the set M. Oper-
ations by elements of S’(M) on the M-ring R are defined as follows: The identity
element of S’(M) operates on R as the identity automorphism of R, and any
other element of S’(M) operates on R as the resultant of the operations on R by
its factors. Let h be a positive integer, let r,,r,,---,r, be h elements of R, and let
S$1,82,°++, 5, be h elements of S’(M). Denote by W(ry,r;, 3743 51552,°*+»5;) the
determinant:

FiSy FiSz ot FiSy
FaSy T3Sy, cr FaSM
°d

FpS1 ThS2 ot TSy
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(2.1) THEOREM. Let h be a positive integer, and let ry,r,,-+-, 1, be h elements of
an M-domain R. If ry,r,, -, 1, are linearly dependent over R, then
W(rys7y, =3 Th3 S1,82,2+,8,) =0 for every choice of h elements si,s,,:+,s, in
S'(M). If h 22, W(r{,rp,-++st4 3 S1,82,°+58) = 0 for every choice of h elements
51582558, in S'(M), but for some choice of h — 1 elements t,,t,,---,t,_, in
S'(M), W(rysras-+-sry—1; tisty ==*st,—y) is a unit in R, then r, is equal to a
unique linear combination of ry,r,, -+, r,_, over R,.

Proof. If ry,r,, -, r, are linearly dependent over R, then there exist h elements
€1,C3,+»¢, of R,, not all zero, such that X!_,c,r,=0. For any seS'(M),
Y ca(res) = (X c,r)s =0. Therefore W(ry,ra,-,74; Sy,S2,--+,5;) is the
determinant of a matrix with rows linearly dependent over R, and must vanish
for every choice of h elements s,,s,,-+,s, in S'(M).

Suppose h =2, W(ry,r5, 514 3 S1,82, - +,5,) = 0 for every choice of h elements
$1583,°,8, in S’(M), but for some choice of h — 1 elements t,,t,,---,t,_, in
S'(M), W(ry,ra,-+-sFh—15 t15t2,+*, t,_1) is @ unit in R. Let ¢, be any given element
of S'(M). Then W(ry,r,,---,ry; ti,ty -+, t,) =0; and, if A, is the cofactor of
rd, in this determinant, X!'_, A,(rity) =0 for 1 < B < h. Therefore
(A, - A5, A, - A5,---, A, - AD) is a solution in (C®)* of the system of equations
22=1(r,,t‘,)"x, =0, 1< B <h. Replacing t, by any one of the elements t;m,
meM and 1 < B < h, yields Ty A(r,t,)(m) = Xk A((rat)m) = 0. Therefore
A, (rat))’ =0 for 1B < h; and (A, - Af, A, - Af,-++, A, - Af) is another
solution in (C®)* of the equations X!_, (rat)’x, =0, 1 ZB < h. Then

(Ah'Af—A1 : A;’.’, Ay - Ag“Az CAf e, Ay Alf-l — Ay Ap)

is a solution of the system of equations X)Z{(r.)’x,=0,1 < B<h — 1. But the
determinant of this system of equations is (W(ry, 75, sFu_13 tistzs s tae1))’s
which is a unit in (C®)*; therefore, this system of equations can have no non-
trivial solution in (C®)* and A4, - A?= A, Af for 1 £ a < h — 1. Since
Ay = W(ry,ray o They; tisty, o ty—y) is a unit in R, A, A, 'e R, for
1 = a < h—1.1f t,is chosen to be the identity element of S'(M), then the equation
h_ A(rt) =0 yields

h-1

rn= X —AA 'r,.

a=1
Since W(ry, 7y, They stistas s tymy) # 0, 1y, 75, -+, 7, _, are linearly independent
over R, and the expression for r, as alinear combination tof ry,r,,--,r,_, over
R, is unique.

(2.2) COROLLARY. Let h be a positive integer, and let k,,k,,---,k, be h elements
of an M-field K. ky,k,,-++,k, are linearly dependent over K, if, and only if,
W(kyykyy -+, Ky 5 S1582, 2+, 8,) =0 for every choice of h elements s,,s,,-+,s, in S'(M).
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Proof. Suppose that W(k, ky,---,k,; $1,8,'+,5,) =0 for every choice of h
elements s,s,,-,s,in S'(M). If k; =0, then ky,k,,-,k, are linearly dependent
over K. If k,; #0, there is a positive integer i, 1 <i<h, such that W(k,, k5, k;;
51,85,++,5;) = 0 for every choice of i elements s,,s,,-:-,s; in S'(M), but for some
choice of i—1 elements t,,t,,--+,t;_; in S' (M), W(ky, ky, ==+ ki q3t15t5, 5 t—1)F#0
and, consequently, is a unit in K. The corollary now follows from Theorem (2.1).

(2.3) CorROLLARY. If R is an M-domain which is an M-extension of an M-field
K, then K and R, are linearly disjoint over K.

Proof. Theorem (2.1) and Corollary (2.2) imply that elements of K which are
linearly dependent over R, must be linearly dependent over K, whence the cor-
ollary.

(2.4) THEOREM. Let R be an M-domain which is an M-extension of an M-field
K, and let Q be the field of fractions of R. If R is generated by its subrings K
and R, and K, is algebraically closed, then there is a unique structure of an
M-field on Q such that Q is an M-extension of R.

Proof. By Lemma (1.1), the M-system of mappings of R into Q deduced from
the M-system of mappings of R into R by inverse transfer of the ring R to Q can be
extended uniquely to an M-system of mappings of Q into Q, making Q an M-field
which is an M-extension of R; if the (M x M)-matrix ( X, ey Zmnp(an))m, pem
represents a one-to-one linear transformation on C2 for every a # 0in R. Suppose
there were an a # 0 in R such that (ZneMz_m;(an))m,pEM did not represent a
one-to-one linear transformation on C2, or, equivalently, the rows of this matrix
were linearly dependent over R. Let by, b,,--, b; be the nonzero coefficients in a
nontrivial linear relation over R among the rows of this matrix. If # were an
M-homomorphism of K{a,b,b,,---,b;} over K into K such that (ab;)"#0,
then a" would be a nonzero element of K such that ( X, Mz—,,,,,:,(a"n)),,,, p ey does
not represent a one-to-one linear transformation on C¥, contradicting the exis-
tence of an M-system of mappings of K into K.

R is generated as an abstract ring by K and R_, and K and R, are linearly
disjoint over K by Corollary (2.3). Therefore, given a basis for K over K, every
element of R has a unique representation as a linear combination of the elements
of this basis over R,. Let ¢, ¢,, -+, c; be the nonzero coefficients out of R, appear-
ing in the expressions for a,b,,b,,--,b;,ab, in terms of such a basis, with ¢,
appearing in the expression for ab, . A specialization of ¢;,¢5,:+,c; over K_into
K_, with ¢, being specialized to a nonzero element, can be extended to a speciali-
zation over K which yields an M-homomorphism 7 as above. Since K, is alge-
braically closed, such a specialization can be obtained as follows: Select a} tran-
scendence basis dy,d,, -, d, for K/c,,¢5,+:+,¢;) over K. which includes c; if
c; ¢ K,. Forl =< a < j,thereexistsa monic polynomialf,(x)over K(dy,d;,**,d,)
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for which ¢, is a root. Express the coefficients of the f,(x), 1 £ a <j, as rational
forms over K in dy,d,,--,d, with common denominator g(d,,d,,--,d,). Choose
a specialization of dy,d,,--,d, over K, into K, for which ¢, - g(d,,d,, --,d,)
does not vanish. This specialization can be extended to the coefficients of the
f(x) and thence to all the ¢,, 1 £ a < j, with values in K_; and ¢, is specialized
to a nonzero element. Therefore, there is a unique structure of an M-field on Q,
such that Q is an M-extension of R.

3. Picard-Vessiot extensions.

(3.1) Definition. An M-field K which is an M-extension of an M-field L is a
solution field over L if there exists a positive integer h and h elements k,, k,, -, k,
of K, such that K =L{k,k,,--+,k,> and, for some choice of h elements
ty, ty, o, t, in S'(M), Wi(ky, kyy -+, kys ty, tp, -+, t) = Wy # 0 while
Wy Wk, kyy ks tisooostucys tysys-ty,0)€L for 1<a<hand t=1 or
t=tgm, meM and 1 < B < h.The set of elements k,,k,, -+, k, is a fundamental
set for K over L.

(3.2) THEOREM. Let K be a solution field over an M-field L, and let the nota-
tion be as in Definition (3.1). For any se S'(M) and 1S <n, kys= X5 _ 1 A(s)" kgt,,
where A (s)eL for1 <o =< h; L{k,,k,,---,k,} is generated as an abstract ring
over L by the elements kyt,, 1 <o, B < h; and for any choice of h elements
$1552,+, 8y in S'(M), Wy * W(ky, ks, -+, k3 81,52, -+,8)€L. If ¢ is an M-homo-
morphism of L{ky,k,,---,k,} over L into an M-domain R which is an M-extension
of K, then k,¢ has a unique expression

ka¢= 2 caﬁkﬂ’ léaéh,
=1

where (C,p)1<a,p<n is @ matrix over R,; moreover, if K, is algebraically closed
and Q denotes the field of fractions of K{k,p,k,¢,---,kyP}, there is a unique
structure of an M-field on Q such that Q is an M-extension of K{k;¢,k,@, ---, ky$}.

Proof. Lett=1ort=tym, meM and 1 < < h; and let
By(t)=("' 1)h+y+l WO_IW(klakz""’kh; Listass ty—19ty+1"",th’t)’ 1= y = h.
Then B(f)e L for 1 £y < h; and
h
kpt + ZIB}.(t) * kﬁty = WO_IW(kl, kz,"',kh, kﬁ; tl,tz,“', t’l’ t) =0
y=

for1<pf=<h.IfmeMand1Zp=<h,then

h h
ktm = —Z B,(t) kstym = — L T Zmm(BLO)n) (ket,p)

b2 7=1 n,peM
h

=1
B b
= - X 2 Zpmp(B(O)) B, (D) * kyt, = X A, (tm) - kgt,,
a=1

y=1 n,peM a=1
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where A(tm)= — T} _, T, ,cuZomp(B0)) B,(t,p)e L for 1 <a < h. By rep-
etition of this type of argument, it follows that for any se S'(M) and 1 £ 8 < h,

h
ks = X As) - ket,,  where A,(s)eL for 1 <a < h.
a=1

Consequently, L{ky,k,,--,k,} is generated as an abstract ring over L by the
elements kgt,, 1 < o, B < h; and Wy 'W(ky,ky, - 5ky; Si, S35 o0 58) =
Wyl - W, - det (Au(Sp)1 20,8 <1 = det (A,(s5))1 <0, p<n€L for any choice of h
elements s,,s,,--,s,in S'(M).

Now let 51,55, ", 54,5441 be any h+ 1 elements of S'(M). Wy *W(ky, ks, -+, Ky, Ky
51582, SpSp+1) = 0 for 1 < a £ h; and expansion of the determinant
W(ky ky, o+ kysKy3 S15525 5S4 Sp+1) in this equation by cofactors of the elements
of its last row yields a linear homogeneous equation in k,s5, 1 < < h + 1, over L.
If ¢ is an M-homomorphism of L{k,,k,,---,k,} over L into an M-domain R
which is an M-extension of K, then

Wo—lw(kl,kz, s Kps Ka® 5 S155257 Sy Spa 1)
= (WO—IW(kl’kZ,"'akhaka 5 S,,S2,~-~,s,,,s,,+1))¢ =0, lsas h.

Therefore  W(ky,kyy - s knko® 5 S1552, 3 SpsSp41) =0, while  W(ky, ky, -+, ky;
tisty,-,t,) = W, is a unit in R; hence k,p has a unique expression as
ko = E’,',=1 Capkg, 1 = o < h, where (C,p)1<4,5<n 1S @ matrix over R,. Assume
R =K {k$,k,¢,--,k,@}. Then R is generated by its subrings K and R_; Q is the
field of fractions of R; and, if K, is algebraically closed, there is a unique structure
of an M-field on Q such that Q is an M-extension of R by Theorem 2.4).

(3.3) DerFINITION. A solution field K over an M-field L is a Picard-Vessiot
extension of Lif K .=L_and L_is algebraically closed.

With Theorem (3.2) and the results on admissible M-isomorphisms contained
in [1], itis possible to develop a Galois theory for P-V extensions. The development
can be made analogous to the presentation of the differential Galois theory of
P-V extensions of ordinary differential fields in Kaplansky’s An introduction to
differential algebra [2]. The details, which were worked out in the author’s
doctoral dissertation, will be omitted here and the principal results merely sum-
marized.

The M-Galois group of an M-fieldK over an M-subfield L is the group G of all
M-automorphisms of K over L. If K’ is an intermediate M-subfield of K,
L c K’ ¢ K, denote by A(K') the M-Galois group of K over K’, which is a sub-
group of G. If H is a subgroup of G, denote by I(H) the set of all elements of K
left fixed by the automorphismsin H; I(H)is an M-subfield of K and L < I(H) < K.
An intermediate M-subfield K’ of K is Galois closed in K if K’ = I(4(K")), a
subgroup H of G is Galois closed in G if H = A(I(H)), and there is the usual
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one-to-one correspondence between the intermediate M-subfields of K which are
Galois closed in K and the subgroups of G which are Galois closed in G.

(3.4) THEOREM. Let K be a P-V extension of an M-field L and let G be the
M-Galois group of K over L. G is an algebraic matrix group over L, and the
Galois theory implements a one-to-one correspondence between the connected,
algebraic subgroups of G and those intermediate M-subfields of K over which K
is a regular extension. Furthermore, let K be a regular extension of L; a con-
nected algebraic subgroup H of G is invariant if, and only if, L is Galois closed
in I(H); and, if H is invariant, G[H is isomorphic to the M-Galois group of I(H)
over L.

(3.5) THEOREM. Let K be an M-field of differential type which is a P-V
extension of an M-field L and let G be the M-Galois group of K over L. The
Galois theory implements a one-to-one correspondence between the algebraic
subgroups of G and those intermediate M-subfields of K over which K is a
separable extension. Furthermore, let K be separable over L; an algebraic
subgroup H of G is invariant if, and only if, L is Galois closed in I(H); and, if H
is invariant, G/H is isomorphic to the M-Galois group of I(H) over L.

4. Strongly normal extensions. Let S and T be M-extensions of an M-ring R.
In §5of [1], a structure of an M-ring on S ®g T is given such that the canonical
homomorphisms of S and T into S @ T are M-homomorphisms. The structure
is unique; and, in the sequel, S ®z T will always be considered an M-ring in this
way.

(4.1) DeriNiTION. An M-field K which is an M-extension of an M-field L is a
strongly normal extension of L if :

(i) K is a regular extension of L.

(ii) K is finitely generated over L (as a field).

(iii) K, = L_and L, is algebraically closed.

(iv) If I is a prime M-ideal in K® ;K and Q is the field of fractions of
(K ® 1 K)/I, then there is a unique structure of an M-field on Q such that Q is an
Me-extension of (K ®K)/I. This M-field @ will be denoted by {(K® ,K)/I).
(Since K is a regular extension of L, (0) is a prime M-ideal in K®_ K and
{K®.K)(0))=<(K®K) is the field of fractions of (K ®  K)/(0) = K®K.)

(v) The field (K® K is generated by its subfields K® 1 and <(K®_ K),.

If K is a regular P-V extension of an M-field L, then properties (i) and
(iii) are immediate. If I is a prime M-ideal in K®, K, then (K® K)/I is
an M-extension of K with respect to the embedding K - K ® 1 - (K ® . K)/I and
K—->1® K- (K®K)/I is an M-homomorphism of K over L. Properties (ii),
(iv) and (v) now follow from Theorem (3.2).

(4.2) LemMmA. If K is a strongly normal extension of an M-field L and Q is the
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field of fractions of K@ K ® 1 K, there is a unique structure of an M-field on Q
such that Q is an M-extension of K® ; K® K.

Proof. (K® KD ®x (K ®K) isan M-extension of (K ® | K)i®x (K® K);
and the canonical isomorphism ¢ of (K®; K)®x(K®K)onto K®; K®, K,
mapping (k; ® k,) ® (k3 ® k,) onto ky ® kok3 ® kg, is an M-isomorphism. There
is a unique extension of ¢ to an isomorphism ¢ of (K® K> ®@x<K®_K)
into Q; and, identifying <K ®,;K)®x(K® K) with its isomorphic image
KK®LK>Qx(K®LK))?, (K®.K)®x(K®K) is identified with its M-iso-
morphicimage K® ; K ® K. Let R be the M-subring of (K@ K} ®x (K®K)
generated by <K®,K)>.®1, 1®K®1, and 1® (K®_ K),. R is an M-
extension of K with respect to the embedding K—»1® K® 1; R is generated
by its subrings 1 ® K ® 1 and R, which contains (K ®; K), ® 1 and
1QIKK® LK), ; and Q is the field of fractions of R. By Theorem (2.4) there is
a unique structure of an M-field on @ such that Q is an M-extension of R. The
M-system of mappings of Q into Q restricts to an M-system of mappings of
(K®_LK)®x<(K®.K) into Q which coincides on R with the M-system
of mappings of (K®,K)®x<(K®_,K) into Q deduced from the M-system
of mappings of (K® K)®x<K®_K) into <(K®_ K)Q®x (K®_,K)
by inverse transfer of the ring (K®;K)®@x<K®_K) to Q. Since any ex-
tension of an M-system of mappings of R into Q to an M-system of mappings
of (KQLK)Rx<(K®,K) into Q is unique, the above two M-systems of
mappings coincide on (K@, K)®x<K®, K) and the M-field Q is an M-
extension of (K ® K> ®x (K ® . K ). Therefore this M-field Q is an M-extension
of K®;K® K, and the structure of an M-field on Q such that Q is an M-
extension of K ® ; K ® ; K must be unique.

It is now possible to develop a Galois theory for strongly normal extensions
of M-fields and this development can be made analogous to the presentation of a
Galois theory for strongly normal extensions of a special class of M-fields by
A. Bialynicki-Birula in his paper, On Galois theory of fields with operators [3].
Again, the principal results will be merely summarized here.

Let G be a connected algebraic group defined over L, and let V be a principal
homogeneous space with respect to G defined over L. If g is a point of G rational
over L., the action of g on ¥V induces an automorphism g of L(V) over L. Let
G(L,) denote the group of automorphisms of L(V') over L of the form g, where g is
a point of G rational over L.

(4.3) THEOREM. Let K be an M-field which is an M-extension of an M-field L,
with properties (iii) and (iv) of Definition (4.1). Then K is a strongly normal
extension of L if, and only if, there exists a connected algebraic group G defined
over L, and a principal homogeneous space V for G defined over L, having the
following properties:
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(i) V is a model for K over L.
(ii) The M-Galois group of K over L contains G(L,).

Conditions (i) and (ii) determine G and V uniquely up to an isomorphism. More-
over, G(L,) is the M-Galois group of K over L and G is a model of (K®_K),
over L, for every such G.

(4.4) THEOREM. Let K be a strongly normal extension of an M-field L. The
Galois theory implements a one-to-one correspondence between the connected
algebraic subgroups of G(L.) which are defined over L. and those intermediate
M-subfields of K over which K is a regular extension.

(4.5) THEOREM. Let K be an M-field of differential type which is a strongly
normal extension of an M-field L. The Galois theory implements a one-to-one
correspondence between the algebraic subgroups of G(L. which are defined
over L, and those intermediate M-subfields of K over which K is a separable
extension.

In [3], Theorem (4.5) is stated only for an M-field K of characteristic zero in
which the M-system of mappings consists of the identity automorphism and
derivations. Using the separability of K over the M-subfields being considered
to replace the assumption of zero characteristic, the above generalization follows
readily. If K is an M-field of characteristic p # 0 in which the M-system of map-
pings consists of the identity automorphism and derivations, then K*< K, =L,
and K = L = L_, since L. is algebraically closed. But if the M-system of mappings
of K into K contains higher derivations of arbitrarily large rank or infinite rank, K
may be a nontrivial strongly normal extension of L.

(4.6) DEFINITION. An element a of an M-field K is a Picard-Vessiot element
over an M-subfield L of K, if the vector space over L spanned by the elements as,
se S’(M) is finite-dimensional. The dimension of the vector space is the degree of
a over L.

(4.7) LeMMA. Let K be a strongly normal extension of an M-field L and let
aeK. a is a P-V element over L if, and only if, the vector space over L, spanned
by the images of a under M-automorphisms of K over L is finite -dimensional.

(4.8) THEOREM. Let K be a strongly normal extension of an M-field L. K is a
P-V extension of L if, and only if, K is generated over L by its P-V elements
over L.

Proof. If K is a P-V extension of L, let the notation be as in Definition (3.1).
K = L{ky,ky,+-+, k) and ky, k,, -, k, are P-V elements over L by Theorem (3.2).
Conversely, suppose K is generated over L by its P-V elements over L. Since K
is finitely generated over L, there exists a finite number of P-V elements of K over
L, say a,,a,, -, a;, which generate K over L. The vector space over L spanned
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by the images of a,,a,,---,a; under M-automorphisms of K over L is finite-
dimensional by Lemma (4.7). Let k,,k,,---,k, be a basis for this vector space
over L,. Then K = L <{ky,k,,---,k,» and, since k,,k,,-:-,k; are linearly inde-
pendent over L, = K_, there exist h elements t,t,,:--,t, in S’(M) such that
W(ky ks oo ky s tists, oo ty) = Wy #0. If ¢ is an M-automorphism of K over L,
(kas)¢ = ki’ §= 22=1 caﬁ(d)) ) (kﬂs)a S ES,(M) and 1 é a é ka where (caﬂ(¢))l§¢,ﬂ_s_h
is a matrix over L.. For any choice of h elements sy, s,,--,s, in S'(M),

(Wo_IW(kl’kz, <, Ky 81582, "',Sh))¢
(det(Cop(DN1<a,8<n" Wo) ™ l(det(caﬂ(¢))l <a.psn Wk ko, o kys 81,852,000, 8,)
= WO—IW(kl, kz, ooy kh 5 815825 s,,).

Since L is Galois closed in K by Theorem (4.4), Wy 'W(ky,ky, - ky3
S1,82,°+,Sp) € L for every choice of h elements s,,s,,-:+,s,in S'(M) and K is a
P-V extension of L.

(4.9) THEOREM. Let K be a strongly normal extension of an M-field L. Then
K is a P-V extension of L if, and only if, the M-Galois group of K over L is affine.
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