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By a graph X we mean a finite set V(X), called the vertices of X, together with

a set E(X), called the edges of X, consisting of unordered pairs of distinct ele-

ments of V(X). We shall indicate the unordered pairs by brackets. Two graphs

X and Y are said to be isomorphic, denoted by X cz Y, if there is a one-to-one

map a of V(X) onto V(Y) such that [aa,ab~\eE(Y) if and only if [a, b~]eE(X).

An isomorphism of X onto itself is said to be an automorphism of X. For each

given graph X there is a group of automorphisms, denoted by G(A'), where the

multiplication is the multiplication of permutations. The complementary graph

Xe of X is the graph whose V(XC) = V(X), and E(XC) consists of all possible

edges which do not belong to E(X). It is easy to see that X and Xe have the same

group of automorphisms. A graph consisting of isolated vertices only is called

the null graph, and its complementary graph is called the complete graph. Both the

null graph and the complete graph of n vertices have S„, the symmetric group

of n letters, as their group of automorphisms. A regular graph of degree k is

a graph such that the number of edges incident with each vertex is k. The null

graphs and the complete graphs are regular. The graph X is necessarily regular

if G(X) is transitive.

In [7], König proposed the following question: "When can a given abstract

group be set up as the group of automorphisms of a graph?" The question can

be interpreted in two ways, (a) Given a finite group G, can one construct a graph

whose group of automorphisms is abstractly isomorphic to G? (b) Given a permu-

tation group G acting on n letters, can one construct a graph of n vertices whose

group of automorphisms is G? The former has been answered affirmatively by

Frucht in [4] and [5], and many others. Concerning the latter, Kagno in [6]

investigated the graphs of vertices ^ 6 and their group of automorphisms. It

is known that not every group can have a graph in the sense of (b). For instance,

letting
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there is no graph of two vertices whose group of automorphisms is G,

but the null graph of a single vertex has its group of automorphisms

abstractly isomorphic to G. It is also known that there is no graph of n vertices

whose group of automorphisms is transitive and abelian for n > 2 with one exception

[3]. To find a necessary and sufficient condition seems to be very difficult. The

purpose here is to study the groups of automorphisms of graphs by using some

of the known results and methods in the theory of permutation groups. The

definitions concerning permutation groups used here are the same as in [13].

In §1 we center around an algorithm for obtaining G(X) for a given graph X with

n vertices,all graphs isomorphic to X (the number of them is equal to the index

of G(X) in S„), and all the isomorphic mappings of X. We also give a sufficient

condition for G(X') to be an inavriant subgroup of G(X), where X' is a subgraph of

X. We also construct an X and X' such that the factor group G(X)/G(X') is isomor-

phic to a given abstract group. In §2 we give, based on a theorem of Schur, a

simple algorithm for constructing all graphs X of n vertices whose G(X) contain

a given transitive permutation group of degree n (a more general result will be

followed by the author). In particular, we give an algorithm for constructing

all graphs X of p vertices whose G(X) is transitive where p is a prime number,

and study the properties of G(X). In §3 we show, by construction, that for

each integer n > 2 there exists a graph X of n2 vertices whose G(X) is primitive

and not doubly transitive.

1. For each graph X with n vertices (label them by the numbers 1 to n), a

matrix A(X) = (atj),i,j = 1,2, ■••,n, is determined, and it is called the adjacency

matrix of X, where

(1   if there is an edge between the ¿-vertex and /vertex,

,J     (0   otherwise.

Clearly, A(X) is an n x n symmetric (0, l)-matrix with zero on the diagonal.

Conversely, if such a matrix is given, then a graph with n vertices is determined.

Lemma A. Let a be a one-to-one map of V(X) onto V(Y), and Pa = (Pif)

be the permutation matrix corresponding to a. Then a is an isomorphism of

X onto Y if and only if A(X)P„ = P„A(Y).

Proof.   We note that since a is a one-to-one map of F(X) onto V(Y), cf

exists and P~' is the transpose matrix of Pa. For every i and j vertices of F(X)

we have, say, <r(i) = k and a(j) = m. Since Pa is a permutation matrix, we have

(A(X)Pa)im = I,a¡rprm = aikpkn

_ il   if [i,fc]e£(X),
|0   otherwise,
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(P„A(Y))im = Sp¡s bsm = pu bJm

il   if[;,m]e£(Y),

[0   otherwise,

then a is an isomorphism of X onto Y if and only if (A(X)Pa)im = (PaA(Y))im

for i,m = l,2,---,n,i.e., if and only if A(X)Pa = PaA(Y).

Corollary A.l. Let a be a permutation of V(X) onto V(X), and Pa = (Pu)

be the permutation matrix corresponding to a. Then a is an automorphism of

X if and only if A(X) commutes with Pa.

Theorem 1. Let X be a graph of n vertices and X' be a subgraph of X

(i.e., V(X')=V(X) and E(X')çz E(X)) such that G(X')<=G(X). Then the

number of the isomorphic graphs of X' in X is ^ the index of G(X') in G(X).

Proof. Let erbe any element of G(X). We claim that a is an isomorphism of

X' onto some subgraph of X. Since P^X^P"1 is a symmetric (0, l)-matrix with

zeros on the diagonal, PaA(X')Pa-1 can be considered as the adjacency matrix for

some graph Y' with the same number of vertices as X'. By Lemma A, X' ^ Y'.

We show that Y' is also a subgraph of X: Let e' be any edge in £(!"), and e

be the corresponding edge in £(A"). Since a is an automorphism of X,

e'=aeeE(X), i.e., £(Y')S E(X). Similarly, V(Y')=V(X).

We also claim that all elements in the same left coset oG(X'), where a e G(X),

transform X' alike, and two elements from different left cosets transform X'

differently. We shall consider the corresponding matrices. By Corollary A.l, we

have (P<rPfl)A(X')(PaPll)~1 = P^CX')?;1, irrespective of the elements p chosen

in G(X'). On the other hand, if two elements from different cosets did not trans-

form X' differently, we would have P„A(X')P;1 = PaA(X')P~\ whence A(X')

commutes with P~ 1Pa which, by Corollary A.l, means a~1coeG(X') and coe

aG(X'). That is a contradiction and the number of the isomorphic graphs of X' in

X is ^ the index of G(X') in G(X).

Corollary 1.1 Let X' be a graph of n vertices. Then the number of graphs

isomorphic to X' is equal to the index of G(X') in S„ (i.e., equal to n\ divided

by \G(X')\ where \G(X')\ is the order of G(X')).

Proof. Let X be the complete graph of n vertices. If Y' ^ X', then Y' has

n vertices and Y' is a subgraph of X. Apply Theorem 1 to complete the proof.

Corollary 1.2. Let X' be a graph of n vertices. Then any permutation in

S„ is an isomorphism of X' onto some graph Y' of n vertices.

From the preceding discussion it is clear that we have an algorithm for obtain-

ing the group of automorphisms of a given graph X of n vertices, i.e., we can

obtain the matrix A(X) accordingly and consider PaA(X)P~\ where <r runs
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through S„. The permutation a is an automorphism of X if and only if the matrix

PaAiX)P~1is equal to A(X). Similarly, we have an algorithm for obtaining all

the graphs isomorphic to X, i.e., when PaA(X)P~lis not equal to A(X), we may

consider it as the adjacency matrix of some graph Y which is isomorphic to X.

There are (n!/|G(X)|)- 1 such graphs (not including X itself), and the set of

permutations [op; peG(X)} consists of all isomorphisms of X onto Y, and is

of cardinality |G(X)|.

Another immediate consequence of Corollary A.l is the following.

Theorem 2. Let X' be a subgraph of X, and G(X')s G(X). Then G(X')

is an invariant subgroup of G(X) if G(X') is also the group of automorphisms

of every graph isomorphic to X' in X (i.e.,G(X') = G(Y')for every Y' isomorphic

to X' in X).

Proof.   If G(X') = G(Y') for every  Y' isomorphic to X' in X, then for

every /leG(X')   and  every   creG(X),   we   have    (Pff1_■p/iPffM(X')(P<,"1P/1Pff)"1

= (P;1P,M(y')(£<r1PM)-1 = ^(X') where ¿(y') = (P.¿(-Y')P'<r1. By CorollaryA.

ff"VeG(X'), i.e., o-_1G(X>çG(X') for every ere G(X), and  G(X') is in-

variant in G(X).

In §2 we shall see that there exists no graph of n vertices whose group of

automorphisms is a proper invariant subgroup of S„, i.e., the complete graphs

do not have any subgraph X' whose G(X')is a proper invariant subgroup of Sn.

However, the following example shows that a graph X containing all possible

edges except one can have a subgraph X' whose G(X') is a proper invariant sub-

group of G(X) and also illustrates the theorems at this point: Let F(X) = {a,b,c,d}

and £(X) consists of all possible edges except [a,d]. Also let F(X') = F(X) and

£(X') = {[fl,6], [b,c], [c,d]}. Then G(X) = {1, (ad), (£>c), (ad) (fee)}, and

G(X') = {1, (ad)(bc)}. Clearly, G(X') is a proper invariant subgroup since G(X

is abelian.

bl/Nc bi-le è^—^c
V x' y

A\e see that Y' is isomorphic to X', and the isomorphisms are (ad) and (£>c).

Theorem 3. For any given finite group G of order > I, there exists a graph

X and a subgraph X' of X such that G(X') is a proper invariant subgroup of

G(X) and (G(X)/G(X')) a G.

Proof. From Frucht's result in [4] or [5], we know that there exists a graph

y of n vertices, n > 1, such that G(T) ¡a G. We shall denote the vertices of Y

by xu,x21,.-»,xnl. Let X' be the following graph: F(X') = {xu,x12,x21,x22,

*23> •■• , x¡y,íxi2, ••• , x¡¡ + y, ■•• , xnl, Xn2,.»• • , xnn + y j,    and    £(X ) =  E(Y)
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U {[_xki,xkf\; i #7,i,j = 1,2,••• ,k + 1, and k= l,2,---,n}. In other words,

we obtain X' from Y by adding a complete graph of k + 1 vertices at xkX for

k = 1,2, ■••, n. It is easy to see that an automorphism of X' leaves each xiX fixed,

and may permute x¡¡ among themselves where j = 2,3,••• ,i+l. Hence, G(X')

a Sx x S2 x ••• x Sn. Let V(X) = V(X') and E(X) = E(X') U {[xy, xkX~\;

j = 2,3, ••• ,i + l,i # fc, and i,fc = 1,2,••• ,n}. Clearly, X' is a subgraph of X

and G(X')c G(X) ~ G(Y) xSxxS2x ■■■ x S„. Since apa-1 leaves every xfl

fixed for every a eG(X) and every peG(X'), G(X') is a proper invariant subgroup

of G(X), and (G(X)IG(X')) ~ G(Y) ~ G.

2. Let G be a transitive permutation group acting on n letters, say, 1,2, ■•■, n,

and let the orbits of the subgroup Gx = {aeG;al = 1} be denoted by

Ax = {1}, A2,■•-, Ak (since G is transitive, there is no difference by considering

Gx or any G¡,2 ^ i ^ n). Associate with each A,, an n x n matrix £(A„) = (b¡¡),

i,j = l,2,---,n, with

fl, if there exists a oeG and an xeA,, with <rl =7" and ax = i,

,J       [0, otherwise.

It is easy to see that B(AX) is the identity matrix /, and ¿Zk=xB(A¡) = J, where J

is the n x n matrix whose entries are all 1. Every row or column of £(A¡) con-

sists of exactly |A¡| ones where |A¡| denotes the number of elements in the orbits

A¡ for i = 1,2,••-,&.

The following theorem is due to Schur (p. 94 in [13]): Let G be a transitive

permutation group acting on n letters regarded as a group of n x n permu-

tation matrices, let V(G) — [M = (my), i,j = 1,2, ■■■ ,n; mu e a commutative

field £, and for PaeG, PJA = MPa where the multiplication is the ordinary

matrix multiplication}, and let Ax — {1},A2,--- ,Ak be the orbits of Gx. Then

V(G) is a vector space over £ with B(AX), B(A2), ■•• ,B(Ak) as a basis.

In [13], £ is the complex number field. Apparently, the theorem holds for any

commutative field since the argument in the proof practically does not have to

be changed (See [11]). For our purpose here we shall take £ to be GF(2).

Now we may state the algorithm for constructing all graphs X of n vertices

whose G(X)2 G where G is a given transitive permutation group of degree n:

(1) From the given group G we can easily find all the orbits Ax = {l},A2,---,At

of Gx where 2 f¿ k ^ n. (2) Compute £(A¡) for i = 2,3, •••,fc. (We may ignore

£(At) since the graphs which we consider have no loops.) (3) Consider each £(A;)

for i = 2,3, • • -, k. If £(A,) is a symmetric matrix, then a graph X¡ can be construct-

ed whose A(X¡) is £(A¡). If it is not symmetric, ignore it temporarily. (4) Consider

£(A;) + B(Aj), i t¿ j, i,j = 2,3, ■•-,&;. If it is symmetric, construct the graphs as

in (3). If not, ignore it temporarily. Repeat the same process for all possible sums

of 3,4, "-,/c — 1 different £(A,) matrices. (5) Include the null graph of n vertices.

We claim that this process gives us all the graphs each whose group of auto-
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morphisms^ G. Let X be any graph of n vertices such that G(X)2 G, then ^4(X)

is determined by X, and, by Corollary A.l, G4(X) commutes with all P„eG (re-

garded as permutation matrices). That means AiX) = Z*=1 a;£(A,), a¡eGF(2).

Since AiX) has all zeros on the diagonal, ay = 0. Hence, X is one of the graphs

which we have constructed. Conversely, each of the graphs X which we have

constructed by using the algorithm must have its AiX) commute with each of the

permutation matrices of G since AiX) is a linear combination of the£(A¡). Hence,

by Corollary A.l, G ç G(X).

For convenience, this process shall be called Schur's algorithm on G, where G

is a given transitive permutation group.

An example: Let G be the dihedral group of order 8 acting transtitively on four

letters 1, 2, 3, 4. The orbits of Gy are At = {1}, A2 = {2,4} and A3 = {3}, and

BiA2) =

0   10    1

10    10

0 10   1

1 0   1    0J

and   £(A3) =

0   0 10

0   0 0    1

10 0   0

10    1 0   0

Since £(A2) and £(A3) are symmetric and £(A2) + £(A3) = J — I, the following

graphs of four vertices are all the graphs each whose group of automorphisms

contains G:

(a) (b) (c) (d)

where the group of automorphisms of graphs (a) and (b) is the dihedral group,

and that of (c) and (d) is S4, which certainly contains G.

Theorem 4. Let p be a prime number, and G be the cyclic group generated

by (123-.p). Then Schur's algorithm on G gives all the graphs of p vertices

each whose group of automorphisms is transitive.

Proof. Each graph X of p vertices obtained by Schur's algorithm acting of

G has its G(X) transitive since G(X) contins G. Conversely, let X be a graph

of p vertices whose G(X) is transitive, then p divides |G(X)| (see p. 8 in [13]),

and G(X) contains an element whose order is p (see p. 47 in [2]). Clearly, this

element is a generator of G, i.e., G(X) contains G, and X must be one of the

graphs obtained by Schur's algorithm on G.

Let G be the group generated by (12---p) where p is an odd prime. Then none

of the £(Af) is a symmetric matrix, where A,- = {i} and i = 2,3,--,p, and it is

easy to see that £(A¿) + £(Aj) is a symmetric matrix if and only if j = p — i + 2

where i = 2,3,"-,(p + l)/2. Each £(A¡) + £(Ap_i+2) is the adjacency matrix of an
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1-cycle. From Theorem 4 we know that any graph X of p verticles, where p

is an odd prime, whose G(X) is transitive must be a regular graph with these

1-cycles combined together.

Lemma B. There exists no graph whose group of automorphisms is k-ply

transitive for k ^ 2 except the complete graphs and null graphs.

Proof. Let G be a doubly transitive permutation group, i.e., Gx is transitive

on the remaining n — 1 letters; then Gx has only two orbits Ax = {1} and A2

such that £(A2) = J — I. By the algorithm, the graphs whose group of auto-

morphisms contains G are the complete graphs and null graphs. The proof is

completed by using the fact that a /c-ply (k ^ 3) transitive group certainly is

doubly transitive.

We also can prove Lemma B without using the algorithm. If X is not a null

graph then there is an edge [a,b~\eE(X), and by the double transitivity of G(X),

all edges belong to E(X), i.e., X is a complete graph.

Corollary B.l. There exists no graph of n vertices whose group of auto-

morphisms is a proper invariant subgroup of Sa.

Proof. Since the alternating group A„ is the only proper invariant subgroup

n S„ for n ^ A and A„ is doubly transitive for n > 3, by using Lemma B we

complete our proof for n > A. Since the transitive four-group and A3 axe transi-

tive and abelian, we know from [3] that they cannot be the group of automor-

phisms of any graph with 4 and 3 vertices, respectively.

Corollary B.2 (Kagno [6]). There exists no graph whose group of auto-

morphisms is An.

Theorem 5. Let X be a noncomplete and non-null graph of p vertices, where

p is a prime, and G(X) be transitive. Then (a) G(X) is solvable, (b) G(X) is a

Frobenius group, (c) G(X) is (3¡2)-ply transitive.

Proof, (a) It follows from Lemma B, and a famous theorem of Burnside

[2, p. 339] that every nonsolvable transtive group of prime degree is doubly transi-

tive, (b) Since G(X) is solvable and transitive of prime degree, by a theorem of

Galois [1, p. 79] G(X)ab = (l),aïb. We claim that G(X)a # (1). Suppose

G(X)a = (l); then G(X) would be a regular group, and |G(X)\ - the degree of

G(X) = p. Consequently, G(X) must be a cyclic group, but we know that there

exists no graph of n verticles whose G(X) is cyclic for n > 2 [6], [3]. For n = 2,X

is either the complete graph or the null graph. Hence, G(X) is a Frobenius group,

(c) It follows from the fact that every Frobenius group is (3/2)-ply transitive.

3. It is easy to see that Theorem 4 does not hold if p is not a prime. For in-

stance, the Petersen graph [8, p. 241] has 10 vertices, its group of automor-
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phisms is transitive and does not contain the cyclic group generated by (12---10).

However, all the non-null and noncomplete graphs obtained by Schur's algorithm

on the group generated by (12---n), where n is a composite number, are imprimi-

tive. This fact follows from Lemma B and a theorem of Schur [11] which states

that if n is not a prime, and G is a permutation group of degree n containing the

cyclic group generated by (12---n), then G is either doubly transitive or imprimi-

tive. Hence, for each composite number n, we can easily construct graphs of n

vertices each of whose group of automorphisms is imprimitive. This leads to

the question "Does there exist a non-null and noncomplete graph X of n vertices

whose G(X) is primitive for any given composite number n?" Since Wielandt

[13, p. 110], [12] showed that when n — 2p and n # a2 + 1, where p is a prime,

a primitive group of degree n is doubly transitive, the answer to our question

is negative. Again, to find a necessary and sufficient condition seems to be very

difficult. Here, we shall use the cartesian product of graphs (for definition, see

below, and, for interesting properties, see [9] and [10]) to show the following.

Theorem 6. For every integer n > 2 there exists a graph Z of n2 vertices

whose GiZ) is primitive and not doubly transitive.

Definition. Let X and Y be graphs. Z = X x y is said to be the cartesian

product graph of X and Y if V(Z) = F(X) x ViY) and £(Z) = {[(x1,y1),(x2, y2)];

Xy=x2 and [yy,y2~\ eE(Y) or yy = y2 and [x1;x2] e£(X)}.

Lemma C. Let Z = X x Y. Then G(Z) is transitive if and only if G(X) and

G(Y) are transitive.

Proof. For each a e G(X), we define a permutation p„ on V(Z) by pa(x, y)

=(ex, y). We claim that pae G(Z). If [(x,, yf), (x2, y2) ] e £(Z), then either xt = x2

and [v1,y2]6£(y),ory1 = y2and [xt,x2] e £(X). The former indicates oxy = ax2,

and the latter implies [crx,,crx2] e£(X). Hence, \(pxx,yx),(ax2,y2)~\eE(Z), i.e.,

\ß<fcx,yy), p„(x2, y2)] e EiZ). Conversely, if [pff(x1; yf), pff(x2, y2)~\ e £(Z), then,

by using <reG(X), one can easily show that \(xx,yx), (x2,y2)~\e E(Z). Hence,

paeG(Z).

Similarly, for each 9 eG(Y), we define pe(x,y) = (x,9y), and show peeG(Z).

Let ixy,yy) and (x2, y2) be any two vetrices in F(Z). We know that there

exists an er e G(X) such that oxy=x2, and 0e G(Y) such that 9yy = y2 If y y = y2,

then pa(Xy,yy) = (x2,yy). If X! = x2, then pe(xy,yy) = ixy,y2). If xx±x2 and

y y ̂  y 2, then pepa(xuyi) — ix2^yi)- Hence, G(X) is transitive.

Conversely, if GiZ) is transitive, then for every x¡ and x¡ in F(X), there exists

a peG(Z) such that p(x¡, yk) = (xp yk), i.e., induces a permutation a on V(Z)

such that <7X¡ = Xj-. We claim that <teG(X). \_(x¡,yk), (xt,)>■,)] e£(Z)if and only if

[x„ xt]e £(X). Also, [(x¡, yk), (x„ ykf] e EiZ) if and only if [(c7X¡, yk), (<tx„ yk)~\ e EiZ),

i.e., if and only if [crx¡, <rxt] e £(X). This implies that o e G(X). Consequently,

G(X) is transitive. Similarly, G(Y) is transitive.
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Now the proof of Theorem 6 goes as follows : Let X be the complete graph

of n vertices, and label the vertices by l,2,---,n. Let Z = X x X. Then V(Z)

= {(i,j); i,j = 1,2, ■■■,n}. For convenience, we shall call i the first coordinate and

j the second coordinate of the vertex (i,j). Clearly, Z is a non-null and noncom-

plete graph. By Lemma C, G(Z) is transitive of degree n2, and by Lemma B, G(Z)

is not doubly transitive.

Let £ be a block of G(X) whose length is t, 1 ̂  t ^ n2; then t must divide n2.

We may assume that fl contains the vertex (1,1).

Case 1. t = n Since Z = X x X, there is a permutation p. on V(Z) such that

rí(hi) = (j,i) for all i,j = 1,2, ■■-,n. It is clear that peG(Z). We claim that

A# {(1,1),(2,1), •••,(n, 1)}. Suppose the contrary; then we would have pBC\ B

5¿£, #0 which contradicts £ being a block of G(X). Welclaim that B cannot con-

tain k vertices whose first coordinates are the same, where 1 < k< n. Suppose,

on the contrary, £ contained (i,ix), (i, i2), •••,(/, ik); then there would be a j such

that £ contains no vertex whose first coordinate is j. Since there is a p e G(X) such

that p(i) =j, p(j) = i and p(u) = u for all u # /,;' since n > 2, such a u exists), p induces

a ppeG(Z), where /ip(r,u) = (pt,u). Then ¿ipfl n£ # £, and (1,1)6(/ip£ O £). That

is a contradiction. We also claim that £ ^ {(l, 1),(2, i2),---,(n,i„)}. Again, suppose

the contrary. We first notice that not all ir are 1 for r = 2,3, • ■ ■, n, because it would

be a previous case. Say is¥=l for some] s ; then /¿pBnA#fl, =± 0 where

pp(t,u) = (pt,u) and p(l) = ir,p(ir) = 1 and p(k) = k for all k # 1, ir (since

n > 2, such a k exists). Hence, £ cannot be of length n.

Case 2. n2 > t> n, i.e., t = sn, 1 < s < n. If £ contains more than s vertices

each;of whose first coordinate is i, then there must be a j such that / # i, 1 á/á *»»

and £ contains less than s vertices each of whose first coordinate is /. Consequently,

ppB n £ ,£ £, # 0 where p„(t,u) = (pt,u), and p e G(X) such that p(i) = j,

p(j) = i and p(k) = k for all /c ̂  i,j (since n >2 such a k exists). If fl contains exact-

ly s vertices each of whose first coordinate is i,i = 1,2,••-,«, then pB nfl # fl,

# 0, where p. is defined as in Case 1. Hence, fl cannot be of length t,n2 > t> n.

Case 3. n > t > 1. fl cannot contain all the t vertices each of whose first co-

ordinate is 1 since G(X) (= S„) is primitive. Hence, there exists an i^l such that

fl contains at least one vertex whose first coordinate is i. Since n > t and n > 2,

there is a j # 1, i such that fl contains no vertex whose first coordinate is j. Conse-

quently, ppB (~\B^ fl, ^ 0, where p eG(X) and p(i)=j,p(j) = i and p(/c) = k

for fc ̂  i,j- Hence, fl cannot be of length t, 1 < t < n, either, fl must be of trivial

length, and G(Z) is primitive.

Corollary 6.1. For every integer n>2, there exists a primitive permutation

group of degree n2 which is not doubly transitive.

Remark. (Added in proof). R. L. Hemminger points out to me that the

following example shows that " > " in Theorem 1 is necessary, and that the
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converse of Theorem 2 does not hold in general: Let X' be a subgraph of X such

that V(X) = F(X') = {a, b, c, d], E(X') = {[a, b], [b, c]} and (EX) =

{{a,^, [b,c], [c, d], Id, a], [a, c]}. Then G(X') <= G(X) and the index

is 2. But the number of isomorphic graphs of X' in X is greater than 2, and

there is a subgraph Y' of X such that G(Y')c? G(X') and GiY') # G(X)'.

I wish to thank A. J. Hoffman for helpful conversations.
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