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1. Introduction.   The following result is known (see [1, p. 148]).

Theorem 1.1. If there exists a Liapunov ifunction with a negative definite

derivative for the system

iE) x'=fit,x)

then the zero solution of iE) is stable and every solution F(í,í0,x0) starting

with |x0| sufficiently small tends to zero on some sequence of points t„-+ 4- co.

Two questions can now be asked. What further restrictions on the Liapunov

function are necessary and sufficient for every such solution to tend to zero as

t -v + oo ? What further restrictions are necessary and sufficient for every solution

to be integrable on the half-line to the right of the initial point i0 ? The first question

has been answered by many authors [1], [4], [5], [8], [9]. The second question

has been asked by Cesari [2, §1.5] and answered by him for second order linear

equations [2, §5.6]. Levin and Nohel [6,], [7] also have obtained some results

in this direction using Liapunov's second method. The purpose of this paper

is to provide a more complete answer to this question. To this end, a new kind

of stability (//-stability) is introduced and a theory which parallels the theory

of asymptotic stability by Liapunov's second method is developed.

2. Definitions and notation. The norm of an element y of Euclidean «-space

E" is given by | y | = £?= y\y¡\; the norm of an n x n matrix A = (atj) is given by

\A\ = S«,y|fly|. Consider the ordinary differential equation

CE) x'=/(í,x)

where x and/ belong to E", t is a real scalar, and/ is defined on the semi-cylinder

í>M = {(í,x):í^O, |x|<M}, 0<M^ + oo.  Let D^^DM - {it, 0): t ^ 0}.
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Assume that/(t,0) = 0 for t 2: 0 and that/(t,x) is sufficiently smooth for local

existence and uniqueness [3]. (Uniqueness is convenient, not essential, see [4].

It is interesting to note, however, that the mere existence of a Liapunov function

for (E) actually implies that the zero function must be a solution and that it is

unique in the following sense: if a solution becomes zero at some point, it remains

zero thereafter.) For (r0, x0) e DM, let F(t, i0, x0) be that solution of (E) for

which F(t0, t0, x0) = x0.

Definition 2.1. x = 0 is stable for (E) if for all e > 0, and all i0^ 0, there

exists a ô = <5(e,i0) > 0 such that if |x0| < <5, then F(t,t0, x0) exists on [r0, oo)

and satisfies \F(t,t0,x0)\ < e for all t ^ t0.

Definition 2.2. x = 0 is asymptotically stable for (E) if it is stable

and if for all t0 ^ 0, there exists a 8Q = <50(r0) > 0 such that if \x0\ < <50, then

F(t, t0, x0) -* 0 as t -> oo.

Definition 2.3. x = 0 is LF-stable for (E) if it is stable and if for all t0 ̂  0,

t here exists a ô0 = ô0(t0) > 0 such that if | x01 < <50, then

/•oo

(2.1) |F(f,í0,x0)|'dí<oo.
J to

Definition 2.4. x = 0 is uniformly IP-stable if it is If-stable and if there

exists a number m, 0 < m < M, such that for every (t0,x0)eDm, there is a

neighborhood N of(t0, x0) in which the integral (2.1) converges uniformly.

Definition 2.5. x = 0 is (uniformly) LF-stabïe in the large if x = 0 is stable,

the solution F(t,t0, x0) exists on \_t0, cc)for every (t0, x0)eö0O, and the integral

(2.1) converges (uniformly in some neighborhood of (t0, x0)) for every

(f0,x0)eD00.

Definition 2.6. V(t,x) is a scalar function defined on DM whose generalized

total derivative [11] with respect to (E) is given by

V,E)(t,x) = lim sup/T1 [V(t + h,x + hf(t,x)) - F(i,x)].

Definition 2.7. V(t,x) is positive definite on DM if for every s>0, there

exists Ô = <5(e) > 0 such that if \x\ ¡£«, then V(t,x) = ô for all t = 0. V(t,x)

is negative definite if — V(t,x) is positive definite.

Definition 2.8. F(f,x) is mildly unbounded on Dœ if for every T>0,

V(t,x) -> + co as |x|-> + oo uniformly on the set 0 îS t :g T.

Definition 2.9. V(t,x) is locally Lipschitzian on D*f if for every (t0, x0) e D^,

there exists a neighborhood N of (t0, x0) and a constant k = k(t0 ,x0, N) such

that

\V(t,xx)-V(t,x2)\^k\xx -x2|

for every (t,xx) and (t,x2) in N.

Definition 2.10.  V(t,x) is a Liapunov function on DMfor (E) if

(i)    V(t,0) = 0forallt^i0,
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(ii)   V(t,x) is continuous on DM,

(iii)  V(t,x) is positive definite on DM,

(iv)  V(t,x) is locally Lipschitzian on D%,

(v)    V(E)(t,x) z^O on DM.

Definition 2.11. 3?(E) is the class of Liapunov functions for (E).

Definition 2.12. f£(E) is the class of mildly unbounded Liapunov functions

for (E).
Definitions 2.5, 2.8, and 2.12 make sense for the case M = + oo only. In the

other definitions, the value M = + oo is allowed, but it is tacitly assumed that

M is finite in §4. Definitions 2.1, 2.2, 2.6, and 2.7 are standard [1]. Definition 2.9

(and thus 2.10) is slightly more general than usual; in fact, it is by using D^ rather

than DM in 2.9 that Theorem 4.5 has a reasonably wide range of application, see

Example 4.7. Definitions 2.3, 2.4, 2.5, and 2.8 are apparently new.

3. Preliminary results. For future reference, we state three lemmas.

Lemma 3.1. Let Ve ¿C(E) and(t0,x0)eDM. Then

(a) I^ejOo, x0) = lim supÄ^o+ h"1 [F(í0 + h, F(t0 + h, t0,x0)) - V(t0, x0)].

(b) // V(t,F(t,t0, x0)) is a continuously differentiable function of t,

F(E)(í0, x0) = — V(t,F(t, t0, x0)) evaluated at t = t0.

(c) IfVeC1 on DM, then

V(E)(t,x) = -¡¡Vit,x)+  î fit,x)~Vit,x).

Sketch of the proof. If x0 = 0, then both sides of (a) are zero. If x0 ¥= 0,

then (r0, x0)eD% and the local Lipschitz property of V on D% gives (a). Also,

(b) follows immediately from (a) while (c) follows by adding and subtracting

F(t,F(í + /i,í,x)).

The second lemma is due to Liapunov [8] and is proved everywhere (see

[1], [4], [5] for example).

Lemma 3.2. If there exists a function V e\f£iE), then x = 0 is stable for iE).
Eflfc

The final lemma is a converse theorem originally due to PersidskiT [10] (see

[1]) and modified by KrasovskiT [5].

Lemma 3.3. Let fit,x) and fx(t,x) be continuous on DM (fx is the Jacobian

matrix(ôflBxf)). Let x = 0 be stable for (E). Then for any number m, 0 < m < M,

there exists a function V e¿¡?(E) on Dm.

4. LP-stability. We now present the main results pertaining to Lp-stability.

Theorem 4.1. Let VeSC(E)be such that V(E)(t,x) g - c|x|p on DM for some

c> 0, p > 0. Then x = 0is V'-stable for (E).
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Proof. By Lemma 3.2, x = 0 is stable. Let f0 ̂  0 and choose ô0 > 0 so «that

if |x0| < ô0, then (t,F(t,tQ,x0))eDM for t = t0. Define for t ^ r0

f \F(s,t0,x0)\l
Jt0

(4.1) y(t) = V(t,F(t,to,x0)) + c  |   \F(s,t0,Xo)\pds

Fix t e [r0, oo) and let x = F(t, t0, x0). Then

lim sup fc-1[y(i + h) - y(t)]

g lim sup /i_1[F(í + h,F(t + h, í0, x0)) - F(f,F(í,í0, x0))] + c\F(t,t0, x0) I"
h->0 +

= lim sup h~1 [F(i + h, F(t + h, t, x)) - V(t, x)] + c I x I"
(l->0 +

=   F(E)(í,x) + c|x|"áO.

Thus y(t) is nonincreasing on [f0, oo).  Since y(t0) = V(t0, x0), we see that

fit) è V(t0, x0) for all t = t0. Hence from (4.1),

0 g F(í,Fit, t0, x0)) Ú - c f    | F(s, to,x0)\p ds+ V(t0, x0)
J t0

for all t > to, so that

1 |F(í,í0,x0)|p dt ^— V(t0,x0),
«0 c

proving Theorem 4.1.

Levin and Nohel [6], [7] obtained a result similar to the above for a particular

differential system under the assumption that VeC1 on DM.

Example 4.2. Consider the first order linear equation

(4.2) x' = if*

which has the general solution F(t, t0, x0) = g(t) [g(i0)] ~l x0 ■ If g(t) is a con-

tinuously differentiable, bounded L1 function on [0, oo) which does not tend

to zero as t -* oo (see [9]), then x = 0 is L^stable but not asymptotically stable

for (2). On the other hand, if g(t) = [log(r + 2)]_1, then the zero solution of

(4.2) is asymptotically stable but not Lp-stable for any p > 0. Thus asymptotic

stability and L "-stability are different concepts. We do, however, have the follow-

ing connection.

Theorem 4.3. Suppose there is a constant k>0 such that |/(i,x)| ^k on

DM. Then if x = 0 is If-stable for some p > 0, it is also asymptotically stable.

Proof. For f0 = 0, let ö0(t0) be the function described in Definition 2.3. Suppose

that for some r0 ̂ 0, there exists an x0, |x0| <<50, such that F(t,to,xo)-^0 as

i-» co. Then   there is  a  number e>0  and  a   sequence  i„->oo   such  that
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|F(í„, í0, x0)¡ §; 2e for all n. Since (d/dr)F(f, t0, x0) is bounded on í0 ^ í < oo,

there is a number A > 0 such that

|F(r,i0,x0)|^£ for tn£t£t„ + X,

n = 1,2, ••», which contradicts (2.1), proving Theorem 4.3.

The converse of Theorem 4.3 does not hold even for autonomous systems

because [log(i + 2)]_1 is also a solution of the scalar equation

— x2 exp( — |x| _1)     if x 7e 0,

if x = 0.

r-x2

I     0

Now it is natural to ask whether the converse of Theorem 4.1 holds. The fol-

lowing two theorems provide a partial answer. The first deals with the linear

case and is completely general. The second deals with the nonlinear case and

requires stronger hypotheses.

Theorem 4.4. Let fit,x) = A{t)x in (F) where Ait) is a continuous matrix

on [0, oo). Suppose x — 0 is L"-stable for (£). Then on DM there exists a function

Fe ä'iE) such that Y~mit,x) z% -\x\*.

Proof. Fit, t0,x0) = Xit)X~1it0)x0, where X(i) is that fundamental matrix

for x' = Ait)x for which X(0) = E, the identity matrix. Since x = 0 is stable,

there exists a constant k > 0 such that I Z(i) [ ̂  fe for all t ^ 0. Define A(i) = |X(r)l

and ebito,Xo)=\X~1it0)x0\. Then [F(r,r0, x0)| ^ A(i) cb (r0, x0), hence |x0|

^ A(r0)</>(r0, x0).  For (r,x)eDM,  define

/» 00 /• 00

(4.3) t/(i,x)= [Xis)cbit,x)Yds+\      [AT»«? (•*>*)]" ds.

We shall prove the theorem by exhibiting three positive constants kx, k2, and fc3

such that if it, x), it, xt), and (i, x2) are any points in DM,

(4.4) kx\x\> ^  F(í,x)^fe2|X-1(í)|p|x|p,

(4.5) V(E)it,x)  z%   -\x\",

(4.6) \Vit,Xy)-Vit,x2)\ú fe3(|x1|p-1 + |x2|p-1)|X-1(í)|"|x1-x2|.

Note that (4.6) implies that V is locally Lipschitzian on DM, hence a fortiori, on

Now (4.4) follows from

and

V(t,x) g 2 f     [A(s)<Hi,x)]p ds z%  { 2 f   [l(s)]p ds ) | X'1

V(t,x)^ J"[a(s) -jg- " dS^{fc-p   £" [A(s)]pds) |

p
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Note    that    <p(t, x) = \X'l(t)x\ = \X(0)X~\t)x\ = |F(0,r,x)[,      hence

<p(t,F(t, t0, x0)) = | F(0, t, F(t, t0, x0)) | = | F(0, i0, x0) | = <b(t0, x0). Therefore

/•OO /»OO

V(t,F(t,t0,x0))= j    [A(s)<b(t0, x0)Yds+\    [A(s)<b(t0, x0)]" ds

which is a continouuously differentiable function of t.

Thus   (dldt)V(t,F(t,t0,Xo))=-\_l(t)<b(to,Xo)Y,   hence   by   Lemma    3.1b,

V(E)(to,Xo)= - Wío)<Hfo,Xo)]Pá -|x0|pforany (f0,x0)e£>M, proving (4.5).

Finally, we see that

/» CO

(4.7)    \v(t,xx)-V(t,x2)\  £2j    \_X(s)Yds\\X-1(t)xx\>' -¡X-1 (t)x
p

2

Now if rx and r2 axe real numbers, then by the mean value theorem,

|rf-rf| -| rf'-tyi - r2)\ Í p(rpx'1 + rS"1)^, - r2\

for some «^ between rx and r2. Hence

||z-1(0x1|p-|x-1(0x2|p|

^p^X-^x,]"-1 +\X-i(t)x2\p-1)\\X~l(t)xx\-\X-1 (t)x2\\

áp|x-1(0|p-1(|x1|í,-1+|x2|p-1)|x-,(0x1-^-1(0^|

áp|X-1(0P|(|x1|"-1+|x2|p-1)|x1-x2|,

which, using (4.7), establishes (4.6), where k3 = 2p j^0 [X(s)Yds, and proves

Theorem 4.4.

Now if two functions belong to Lpon [0, oo), so do their sum and difference.

Since it is known that if the zero solution of a linear system is stable, all solutions

are stable, it follows that if the zero solution is Lp -stable, all solutions are

L p-stable

Theorem 4.5. Let f(t,x) and fx(t,x) be continuous on DM. Let x = 0 be

uniformly Lp-stable. Suppose further that for every closed subset Q of D*, there

exists a function \¡/Q(t)eLF on the interval [0, oo) such that

(4.8) \^(t + to,to,xo)\ú^o(f),

for (í0,x0)e<2, t ~¿. 0, where 3>(í, i0,x0) is the matrix of partial derivatives

(dFildx0f)(t,to,x0). Then there exists on Dm a function Ve^C(E) such that

V,E)(t,x)=-\x\<'.

An alternative statement of condition (4.8) is that the zero solution of the

first variation y' =fx(t,F(t,t0, x0))y is Lp-stable uniformly with respect to the

parameters (i0, x0) on closed subsets of £),*. In either form, the condition seems

too strong and not very natural, yet the following proof relies heavily upon it.
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Proof. By Lemma 3.3, there exists on Dm, a function Ue J?(E). In fact, U can

be so chosen that U and Ux axe continuous on Dm (thus U is locally Lipschitzian

in D*) and U(t,F(t, t0, x0)) = U(t0, x0) for every (t0, x0)eDm.

Next, define on Dm,

/. OO /»CO

(4.9) W(í,x)=        \F(s,t,x)\"ds=\     |F(s + í,í,x)|p£Ís.

Then lF(i,0) = 0 for t^O and by the uniformity of the ¿."-stability, W(t,x) is

continuous on Dm. By uniqueness, F(s,t,F(t,t0, x0)) = F(s,t0, x0) and therefore

Wit,F{t,t0, xo)) =  ¡f |F(s,t0,x0)\pds, hence

(4.10) ^W(t,F(f,i0,x0))= -\F(t,t0,x0)\".

To see that W(t,x) is locally Lipschitzian on D*, let (t0,x0)eD* and* choose

the neighborhood Nx of (t0, x0) given by Definition 2.4 so that Nx is contained

in D*. Let N be an open, convex neighborhood of (t0,x0) such that Ña Nx,

where Ñ denotes the topological closure of N. Let

fc = sup|      \F(s + t,t,x)\"~1ir'ñ(s)ds:(t,x)e Ñ .

Let (t,xx) and (f,x2) belong to N. By a generalized form of the mean value theorem,

F(s + t,t,xx)- F(s + t,t,x2) = 0(s + t,t,z)(xx -x2)

where (t,z) is some point on the line segment joining (t,Xj) to (i,x2). Since N is

convex, (i, z) e N. Hence

j:
||F(s + í,í,x1)|p-|F(s + í,í,x2)|p| ds

^J" p{|F(s + í,í,x1)|"-1 + |F(s + t,t,x2)\p-1}

■\\F(s + t,t,xx)\-\F(s + t,t,x2)\\ds

/• CO

áJo   fp{|F(s + í,í,x1)|p-1+|F(s + í,í,x2)|"-1}|<I)(s + t,í,z)||x1-x2|iís.

It thus follows that

| W(t,xx)- W(i,x2)| g2pk|xj -x2|

proving that W(t,x) is locally Lipschitzian on D*.

Finally, define on Dn,

(4.11) V(t, x) = U(t, x) + W(t, x)



44 AARON STRAUSS [July

and we see that V immediately satisfies (i), (ii) and (iv) of Definition 2.10. Since

V(t,x) ^ U(t,x), V is positive definite. Also

V(t, Fit, t0, x0)) = Uit0, x0) + Wit, Fit, t0, Xo))

so that

-jt Vit,Fit, t0, x0)) = - | Fit, t0, x0)\",

by (4.10). Hence by Lemma 3.1b,

V(EXit,x)=-\x\",

completing the proof of Theorem 4.5.

An interesting special case occurs when/ is bounded, i.e., when there is a con-

stant fe > 0 such that | /((, x) | z% k on DM. For this case, Wit, x) itself is the desired

Liapunov function. To prove this, we need only show that Wit,x) is positive

definite. Now

pt + s

|F(s + r,r,x)-x| z% |/(«,F(w,t,x))|du zi ks,

hence 0 g s g |x|(2fc)_1 implies |F(s + t,t,x)\ ^ 2"1 |x|. Therefore

f|x|(2k)-i

Wit,x)\> |F(s + í,í,x)|pds^(4k)_1 |x|f|p+i

Corollary 4.6. Suppose the assumptions of Theorem 4.5 hold. If f is in-

dependent of t or periodic in t then the corresponding Liapunov function can be

chosen independent of t or periodic in t, respectively.

Proof. Let m < M. Then/ is bounded on Dm and the function

/»CO

Wit,x)=       \Fis + t,t,x)\"ds

satisfies We 3?(E), Wm(t,x) = — |x|p. Let co be the period of/ in the periodic

case and let co be arbitrary in the autonomous case. Then

F(s + t + co, t + co, x) = F(s + t,t,x)

for all s ^ 0, hence

ÍOO\F(s + t + co,t + co,x)\" ds
o

/• oo

|F(s + /,i,x)|pds

=  Wit,x),

proving Corollary 4.6.
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Example 4.7. Consider the scalar equation

(4.12) X'=-^X3

for which

Fit, t0,x0) = x0[x0(r - t0) + 1]"1/2

and

^-F(í,í0,x0)= [x2(í - í0) + I]"3/2-

Then x = 0 is stable for (4.12). Fix M, 0 < M < + co. Then

\Fit + to,to,Xo)\=it + \x0\-2rll2z%it + M-2)-112

for í ^ 0,  (r0, x0) e DM. Furthermore, if | x01 5: n > 0,

I  d
jx-Fit + t0,t0,xo) l\x0\2t+iy3'2z%[n2t+ir3'2.

Thus all the hypotheses of Theorem 4.5 are satisfied for p > 2. Hence, for p > 2

F(i,x) =J" His -t) + | x|-2r1/2]"ds = 2(p - 2T11 x|"-2.

Thus VeC1 on D%, in fact, by Lemma 3.1c,

*Wi,*) = [2(sgnx)|x|p-3] [-2-1(sgnx)|x|3] = -|x|p

for x i= 0 as we would expect. If x = 0, F(£)(r,0) = 0 by definition. If p ^ 3,

F(f,x) is locally Lipschitzian on DM. But if 2 < p < 3, then F(i,x) is actually

not Lipschitzian in any neighborhood of x = 0. Note also that

J-F(f,io,0) = liiLp

on [0, co). This is the significance of requiring the local Lipschitz condition on

Dm only (in Definition 2.9) and not on DM.

Consider the systems

(L) x'  = ¿(i)x,

iPL) x'  = Ait)x + git,x),

where Ait) is continuous on [0, oo), g is sufficiently smooth for local existence

and uniqueness, and git, 0) s 0 for t ^ 0.

Theorem 4.8. Suppose x = 0 is Lp-stable for iL)for some p > 0. Let

(4.13) |X-1(0|'|g(f,.x)||.rri->0     as |*|-»0,
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uniformly on the set 0 ;£ t < oo, where X(t) is a fundamental matrix for (L).

Then x = 0is L" -stable for (PL).

Proof. Choose V(t,x) satisfying (4.4), (4.5), and (4.6) of Theorem 4.4.

Then

V{PL)(t,x) = lim sup /i_1{F(í + /i,x + h[A(t)x + g(/,x)]) - V(t,x)}
h->0*

^ lim sup h"1 {V(t + h,x + h\_A(t)x + g(t,x)\)-V(t+h,x + hA(t)x)}

+ lim sup /f'{F(i + h, x + hA(t)x) - V(t,x)}
h->0 +

S Um suph~1{k3(\x + h[A(t)x + g(r,x)]| p-1 + |x + ^(t)x|p_1)

■\X~\t + h)\»\hg(t,x)\} + V,L)(t,x)

<; 2fc3|x|p-1|X-1(0|PU(í,x)|-|x|p

=   -|x|p(l-2/c3|Z-1(0|p|g(t,x)||x|-1).

Hence Ve £C(PL) such that V(PL)(t,x) ̂  - 2~11 x |" on DM¡, where 0 < Mx ^ M,

and My is such that j x | < My implies  | X-1(i) |"|g(r,x) 11 x j"1 ^ (4fe3r1 .

An application of Theorem 4.1 now establishes Theorem 4.8.

Example 4.9. Consider on [l,oo), the systems

x'  =  -(3i)_1x,

(4.14) , ,„ x_,' y' - -(30 ly,

x'  =  -(3i)_1x,

(4-15) y'  =  -(3t)-1y + t-xxß.

A fundamental matrix for (4.14) is

rl/3 (j

\ o     r113 J

that is, (4.14) has the solutions x(i) = Cyt~113, y(t) = c2i~113 and hence the zero

solution of (4.14) is Lp-stable for p > 3. Let a < 1 and choose ß such that

1 < ß < A — 3a. Let y = 3a + ß — A. Then there is a solution of (4.15) given by

x(t) = CyC113, y\t) = rll3(c2 - 3c{y-ir*13).

A simple calculation shows that y(i) £ L'on [1, oo) for 3 < q < 3(y + T)~ \ hence

it is not true that the zero solution of (4.15) is Lp-stable for p > 3. Therefore

condition (4.13) in Theorem 4.8 cannot be weakened to either of the following

two conditions :
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I X~l0) | "| giUx) 11x|~' -> 0 as | x| -> 0 for each fixed t ̂  0,1

|^_1(0|r |^(i»*)| |x|_1 ->0 as jx | ->0, uniformly on the set 0 zi t < oo ,

where

r<inf|p:  I   I AYí)lp di < oo'{p--[\x(t)\

Finally, we remark that since two fundamental matrices, Xy(t) and X2(t), for

(L) are related by Xy(t) = X2(t)C, where C is a constant, nonsingular matrix,

the validity of (4.13) is independent of the choice of the fundamental matrix for

(L).

5. Lp-stability in the large. If/is defined in all of Dœ, then it is reasonable

to ask whether the integral (2.1) exists for all initial values (t0,x0)eDœ, that is,

whether x = 0 is Lp-stable in the large. In this section we establish necessary

and sufficient conditions for this to occur.

The first theorem, which has significance elsewhere, is basic to the development

of this section.

Theorem 5.1. Let f(t,x) be continuous and locally Lipschitzian on Dœ.

Then the solution F(t,t0,x0) of (E) can be continued to [r0, oo) for every

(t0,x0)eDao if and only if there exists a nonnegative, mildly unbounded scalar

function V(t,x) defined on Dm satisfying (i), (ii), (iv) and (v) of Definition (2.10).

Furthermore, this function V(t,x) is positive definite if an only if the zero solu-

tion of (E) is stable.

Proof. Assume there is such a function and suppose that for some (f0, x0) e DM,

F(t, t0, x0) cannot be continued to [i0, oo). Then there is a number T > t0 such

that ¡F(i, i0,x0)| -> oo as t-*T". Since V is mildly unbounded we may choose t

so close to T that F(s,F(t, i0,x0)) > V(t0,x0) uniformly on the set Oz^sz^T

and so that r0 < t < T. In particular then, F(t, F(t, f0, x0)) > F(i0, x0), a [contradiction

because

F(í,F(í,í0,x0))^F(to,Xo)

for all i0 z% t < T by the nonpositive nature of V,EX.

Conversely, suppose that the solution F(i, t0,x0) exists on [r0, oo) for every

(t0, x0) e Dx. For each integer m, let cbjix) be a continuously differentiable function

of x such that

{1     if | x | ^ m,

0     if | x | ^ m + 1.

Then consider the equation

(EJ x' = </>m(*)/(t,x)
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whose solution we denote by Fr,(t, t0, x0). Then Fm(t, t0, x0) exists on all of [0, oo)

for every (i0,x0)eDœ, because if |x0| ja m + 1, then Fm(t,t0,x0) = x0. Define,

fox(t,x)eDœ,

Vm(t,x) = \Fm(0,t,x)\.

Then Fm(i,0) = 0 for t ^ 0, Vm(t,x) is continuous and locally Lipschitzian on

Dœ. If (i,x)eDm, let h > 0 be so small that (t + h, F(t + h,t,x))eDm. In Dm,

(Em) is the same as (E), hence

Vm(t + h, F(t + h, t, x)) = Vm(t + h, Fm(t + h, t, x))

= \Fm(0,t + h,Fm(t + h,t,x))\

= \FJP,t,x)\

= Vm(t,x).

Thus VmtE)(t, x) = 0 on the set £>„, (but not necessarily on DJ. Since <bm = <b„ on

DmnDn, Vm=Vn on DmnD„. Define on Dx

V(t,x) =  lim Vm(t,x).
m-»co

Then it immediately follows that F(i,0) = 0 for t Ï: 0, F(i,x) is continuous and

locally Lipschitzian on D^, and F(£)(/,x)s0 on Dffi, because in any bounded

subset N of Do,, F(i, x) = Vm(t, x) on N for n sufficiently large.

Suppose that V(t,x) is not mildly unbounded. Then for some T> 0, it is not

true that for every M > 0, there exists Q > 0 such that V(t, x) ^ M for all | x | = Q

and te[0,T]. Hence there exists M > 0, and sequences {x„}, {tn}, |x„| = n — 1,

r„e[0,T]  such that  V(tn,x„)<M. Thus, since (r„, x„) e D„,

V(tn,xn) = Vn(tn,xn) = |F„(0,in,xn)| < M

for every n. Now by continuous dependence on initial values and global existence

of solutions of (E), there exists N = N(T,M) > 0 such that |F(f,0,x)| < N for all

| x | < M, t e [0, F]. Thus, if n > N, F(t, 0, x) = Fn(t, 0, x) for all | x | < M, í e [0, T].

Let n^N + 1. Then

F(i, 0, F„(0, r„, x„)) e= F„(i, 0, F„(0, t„, xj)

and therefore \F„(t,0,Fn(0,t„,x„))\ <N for all re[0,T]. But at t = t„, this in-

equality states that | x„ | < TV, a contradiction because | xB j = n — 1 ^ JV. Hence

V(t,x) is mildly unbounded.

To prove the last assertion observe that if the function V(t, x) defined above is

positive definite, then the zero solution of (E) is stable by Lemma 3.2. Conversely,

let x = 0 be stable for (E). Let e > 0 and choose ô > 0 such that | x| < 5 implies

|F(i,0,x)| < e for / ^ 0. Let m > e. Then clearly x = 0 is stable for (Em); also,
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F(f,x) = |Fm(0,i,x)| on Dm. Let |x| ^ e. Suppose there is some r0 ^ 0 such that

|Fm(0,i0,x)|<<5. Then

(5.1) |Fm(i,0,Fm(0,ro,x))| = | F't, 0, Fm(0, i0, x)) | < e

for all f^O, by stability. But t = t0, (5.1) becomes |x| <£, a contradiction.

Hence | x| =t e implies F(f,x) ^ <5 for all t ^ 0, thus F(i, x) is positive definite

and the proof is complete.

If/X(i,x) is continuous, then we can choose F so that Vxit,x) is continuous,

merely by using the square of the Euclidean norm in the construction in place of

the absolute value norm.

Corresponding  to  Theorem  4.1,  we  have

Theorem 5.2. Let Ve S£{E) such that V(E)(t,x)z% — c\x\p on D^ for some

c> 0, p > 0. Then x = 0 is Lp-stable in the large.

The proof follows that of Theorem 4.1, because, since Fis mildly unbounded,

(t,F(t,t0,Xo))eDœ for all r ^ f0 and every (r^XoieD«,.

For linear systems, Lp-stability implies Lp-stability in the large. Furthermore,

(4.4) implies that the Liapunov function constructed by (4.3) is mildly unbounded.

Hence Theorem 4.4 is already a converse theorem for Testability in the large.

The analogue of Theorem 4.5 is

Theorem 5.3. Let f(t,x) and fx(t,x) be continuous on DM. Let x = 0 be

uniformly Lp-stable in the large. Suppose further that for every closed subset

Q of D*, there exists a function \j/Q(t)eLpon the interval [0, oo) such that

| <5(i + i0, f0, x0) | ^ \I/Q(t) for (t0, xQ) eQ,       t ^ 0.

Then  there exists on Dx a function Ve^C(E) such that V,E)(t,x)= — |x|p.

Proof. Construct U by Theorem 5.1. Because x = 0 is stable, U is actually

positive definite. Hence U e ¿f(E) and we form the desired function V by

V(t, x) = W(t, x) + U(t, x) as before, completing the proof.

Three final remarks are in order. First, a careful examination of the proof of

Theorem 4.8 shows that this theorem does not have an "Lp-stable in the large"

analogue. Second, Theorem 5.1 can be used to generalize the standard "asymptotic

stability in the large" theorems; that is, the condition F(r,x)-»oo as |x|-»oo

uniformly in t on the set 0 z% t < oo (Fis radially unbounded) may be replaced by

the weaker condition that Fis mildly unbounded, see [1], [4], [5]. Finally, many

of these results can be extended to the case where (E) is replaced by a functional

differential equation of the form

(F) x'(0 =/(i, x(i + 9)),       -hz%9z%0,

where h > 0, see [5, Chapter 6].
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