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Introduction. In Newtonian mechanics, the equations of motion of three

bodies of mass m¡ and position (x\y\zl), i = 1,2,3 are given by the differential

system

x1 = m2(x2 -x1)/r12 + m3(x3-x1)/r13 = F\x,y,z),

(1.1) x2 = m1(x1-x2)/r12 + m3(x3-x2)/r23 = F2(x,y,z),

x3 = myix1- x3)/r13 + m2(x2 - x3)/r23 = F3ix,y,z),

with similar equations for y\ z\ i = 1,2,3, where

(1.2) x   - ix\x2,x3),   y = iy\y2,y3),  z = 'z\z2,z3),

w   = d2w\dt2.

First integrals of this system resulting from conservation of linear momentum,

angular momentum, and energy are well known. Moreover, the use of these

integrals has led to a number of explicit reductions of (1.1) from order eighteen

to order six. (A complete bibliography of the earlier methods of reduction can be

found in [1, Chapter 2]; more recent methods are those of Whittaker [2, pp.

339-351], Wintner [3, pp. 306-319], and Wintner and van Kampen [4].)

The fact that the first integrals of linear and angular momentum are due to the

invariance of a Newtonian system under the Galilean group is also well known;

this invariance has been used in one form or another in most of the more recent

reductions, usually in the form of contact transformations. In this paper, it will

be shown that the entire reduction of (1.1) is the result of its invariance under

continuous transformation groups, and also that the use of these groups will,

for practical purposes, give no further reduction of the system. In order to dem-

onstrate the equivalence of the reductions, the necessary coordinate changes

will be patterned on those given by Whittaker; similar results could be obtained

by following any of the classical methods.

We will begin with a brief review of the theory of continuous transformation
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groups as applied to differential equations. The summation convention will be

used throughout.

1. Standard treatments of the theory of transformation groups can be found

in [5], [6], and [7]; the application to differential equations is developed in

[7, Chapter 12], [8] and [9]; [10] contains an elementary exposition for the

case of two variables.

Definition 1.1. Let G be a Lie group with identity element e, and M"adif-

ferentiable manifold. Let T : M" xG-» M" be a differentiate map from an open

neighborhood of M" x e (in the differentiable manifold M" x G) into M". Then

T is a local Lie transformation group (LLTG) if (1)

(1.3) TlT(x,gx),g2] = T(x,g2gx) wherever defined;

(2) for each compact subset K of M" there is a neighborhood NK of e in G such

that, for fixed g in NK, the map

(1-4) Tg:x->T(x,g)

is a homeomorphism of K onto some subset Kg of M".

Note: We identify two such local Lie transformation groups if they coincide

on some neighborhood of M" x e in M" x G. If the map T is defined, and satisfies

(1.3), for all gin G and x in M", then Fis a global Lie transformation group. In this

paper all transformation groups are assumed to be local. In the case in which

G = .Rr(real r-dimensional space), g = (a1,a2,---,ar), a'real, and e = (0,0, -",0);

in this case T is called an r-parameter transformation group. Every such group

can be generated by r one-parameter groups.

Since a local transformation group is described by a Lie group, for each LLTG

there is associated a unique Lie algebra L, called in this case an infinitesimal

transformation group. L is a finite-dimensional subalgebra of L(M"), the algebra

of all differentiable vectorfields on M". If M" has local coordinates (i,x1,x2,---,xn_1),

and T is a one-parameter LLTG,

T(t,a)  = T(t,x,a),
(1.5) a real,

T(x\a)=  i?(t,x,a),

then the corresponding Lie algebra is generated by the basis element

(1-6) u = h(t,x)Dt+fJ(t,x)DxJ,

h(t, x) = Dax(t, x, a) | a m o,     fit, X) - D„i'(t, x, a) | a = o,

x = (xSxV-sx"-1), Dw= 8/dw.

Since any r-parameter LLTG is generated by one-parameter groups, L will always

where

(1.7)



1965] A REDUCTION OF THE THREE BODY PROBLEM 23

have a basis consisting of elements of the form (1.6). Moreover, in the neigh-

borhood of a point in LiM") at which it does not vanish, (1.6) can, by a proper

change of coordinates, be reduced to the form

(1.8) ü = Dx„.

A LLTG T can be extended to transformation groups of the associated line-

element bundle and curvature line-element bundle of M". The corresponding

Lie algebras V and L", called respectively the first- and second-extended Lie

algebras of L, have basis elements of the following form (corresponding to (1.6))

u'  = hit,x)Dt + fJ(t,x)Dxi + g\t,x,p)Dpl,

u"  = hit,x)Dt +fJit,x)DxJ + g\t,x,p)Dpj+ kJit,x,p,r)DrJ,

where (indicating partial differentiation with a variable subscript)

(1.10)        gJit,x,p)  = (//- htPJ) + ifik - hxkpJ)pk,

kj(f, x,p,r)= ifjkxmp kp » - hxkxmpkpmpJ) + 2ifU - »w-v

(1.11)
+ (ft - Kp3) - 2ihxkpk+ hty + ifJxk - hxkPJ)rk.

Definition 1.2. Let M" be a differentiable manifold with local coordinates

(i,xV">xn_1). A first-order differential equation

(1.12) dx¡dt = Fit,x)

is a cross-section from an open set U of M" into LiM"). A second-order differential

equation

(1.13) d2x/df2 = G(r,x,p)

is a cross-section from an open set 9 of LiM") into KiM"). If 9 = p^iU) (the

projection map), then we say that (1.13) is defined over U.

Definition 1.3. A first-order differential equation is said to be invariant under

a local one-parameter transformation group T with infinitesimal generator u if,

for each diffeomorphism of an open set Uy of M" onto an open set U2 of M"

(both contained in Í7) defined by T, the induced map T of L(6y) onto L(92)

carries the cross-section p = F(t, x) above 9y onto the corresponding cross-section

above 92. If T is given explicitly by (1.5), then (1.12) is invariant under T if

d^\dx = F(t,£) for all a. This will be true if and only if u'[p — F(r,x)] = 0 when

evaluated on the cross-section p = F(t, x).

This definition has an obvious extension to the case of an r-parameter trans-

formation group, in which case the equation u'[p — F(t,x)~] = 0 must hold for

each element of a basis for L. A similar definition applies to (1.13), and in this

case invariance is had if and only if u"\r — G(f,x,p)] = 0 when evaluated on the

çross-section r = G(t,x,p) (cf. [9, p. 18]).
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The following theorems, on solutions of differential equations through the use

of local transformation groups, are stated only for first-order equations; any

differential equation involving higher derivatives can, by addition of variables,

be reduced to such a first-order system. Also, all solutions are assumed to be local :

in a suitably restricted neighborhood in which both the differential equation and

the LLTG are defined.

Theorem 1.1. Let (1.12) be a first-order differential equation defined on an

open subset of R", and suppose (1.12) is invariant under a LLTG T with Lie

algebra L. If

(a) dimL = n — 1,

(b) L is a solvable Lie algebra,

(c) line elements of (1.12) are nowhere tangent to an integral curve of T,

then solutions o/(1.12) can be obtained by quadrature.

Details of the proof can be found in [7, pp. 449-451], and in [9, pp. 75-77].

The essential steps are these :

(1) A base can be chosen for L in such a way that (ux,---,u„_s) is an ideal

in (ux,---,u„_s+1), s = 1,•••,« —2; the corresponding LLTGT„_S is normal

in T8_i+1.

(2) m„ can be reduced to normal form ü„ = Dx„ by a proper change of coordi-

nates ; then u„ = ü„.

(3) ün[p — F(i,x)~] = FXn(t,x) = 0, so that (omitting the bars in the new co-

ordinates) (1.12) becomes

(a) dx'/dt       = Ft{t,x1,—,x*~2),     i = 1,••-,» — 2,

(1.14)
(b) dx-'^dt  = F"-1(t,x1,-,xn-2).

In this new form for the equation, (a) is a system or order n — 2; when this has

been solved, (b) can be solved by quadrature.

(4) It is not true in general that the process just described can be repeated

(i.e., that u„_2 can be reduced to normal form without reintroducing x„ into the

system) ; however, because of condition (b) these same steps can be applied to

(1.14) (a); because of condition (a), the process can be continued with successive

coordinate changes until, at the (n — l)st step, the system has the form

(1.15) dx1ldt = F1(t).

This can be solved by quadrature; then, reversing the procedure, the remaining

solutions can be obtained by a process which alternates coordinate changes with

quadratures.

Even though the conditions of Theorem 1.1 are not satisfied, some reduction

of (1.12) may be possible, as is indicated by the following theorems.
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Theorem 1.2. Assume the condition of Theorem 1.1, except that condition

(b) is replaced by

(b') 0 = L0cz Lyczz L2cz ■•■ ezz Ls = Lisa series of ideals in L, with L¡ maximal

inLi+1.

If L¡ has dimension p¡, then, by a change of coordinates, (1.12) can be reduced

to a collection of differential equations of orders

(Ps - Ps-i), (Ps-i - Ps-2),--,ip2 - PlXPl-

Proof. [7, pp. 451^156].

Theorem 1.3. Assume the conditions of Theorem 1.1, except that condition

(a) is replaced by

(a')   dimL = r   (r < n — 1).

Then (1.12) can be reduced to a system of order n — r—l; when this system

has been solved, the remaining solutions o/(1.12) can be obtained by quadrature.

Proof. The steps indicated in the proof of Theorem 1.1 may be followed without

change, except that a complete reduction is not possible because of the dimension

of L. After r changes of coordinates, the LLTG has been exhausted, and the

remaining system has dimension n — r—l.

Even though the group is not solvable, a variant of Theorem 1.3 may be used

if certain special conditions are satisfied :

Theorem 1.4. Assume that (1.12) is invariant under a LLTG T, of dimension

r, and that L0 is an ideal in the corresponding Lie algebra L, while L — L0 = Ly

is a subalgebra of L {not necessarily an ideal). Then, if Ly is solvable, Theorem

1.3 may be applied, using Ly as the Lie algebra. The system remaining after

this reduction is still invariant under LQ.

Proof. As pointed out in the proof of Theorem 1.1, the essential condition

for a stepwise reduction is the existence of normal subgroups (or ideals in the

algebra). Since Ly is a subalgebra, it can be treated as an algebra, ignoring L0 ;

on the other hand, since L0 is an ideal in L, any change of coordinates reducing

L, to normal form will not affect a later reduction using L0. This will be clear

in the reduction which follows, where Theorem 1.4 will be used extensively.

2. In discussing the reduction of (1.1) by the use of Lie groups, the first task

is to determine the maximal LLTG (or, equivalently, the maximum number

of independent local one-parameter groups) which leave (1.1) invariant. For

convenience in computation, we make the change of variables

(2.1) xi+3 = y,     xi+6 =z\     i = 1,2,3.

A local Lie group G leaves (1.1) invariant if and only if, for each element u of L

(the Lie algebra corresponding to G), it is true that
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(2.2) u" [r; - Ff(x)] = 0

in some neighborhood of a point P on the surface r' = F'(x) at which u is defined

and does not vanish. In the ten-dimensional space with coordinates (r,x), u and

u" axe given by (1.6), (1.9); note that for the system (1.1) in which F'(x) is inde-

pendent of pJ, i,j = l,--,9,

(2.3) u'^r'- Ff(x)] = k\t,x,p, r) - u[F'(x)].

To determine the Lie algebra L which leaves (1.1) invariant, we regard h and the

/' as unknown functions in (2.2), and replace the F' by their known values. From

(2.3) we have immediately

fxixmpkpm-hxkxmpkpmpi + 2(fxkt- hxktpl)pk +/;' - httpl

{2A) -2(hxkpk + ht)r{ + (fxk-hxkpi)rk-fJFixj = 0,      i = l,-,9,

in a suitably defined neighborhood of P. Substituting F'(x) for r', computing FxJ>

and collecting terms as coefficients of the masses, we have

(2.5) Mo(i,x,p) + MÎ(r,x,p)m1+MJ(i,x,p)m2 + M3(t,x,p)m3=0,     i = l,-,9,

where

(2.6) Mo ^fxïxmpkpm-hxkxmpkpmpi + 2(fxkt-hxktp')pk+fit-hupi,

M\  = {& - h^'x1 - x2)lr32 + (fl - Kip'Xx1 - x3)¡r3X3

(2.7) + (fl - fc.sp1)^4 - x5)lr3X2 + (fx\ - hep'Xx* - x6)lr\3

+ (fl - WXx7 - xs)lr3X2 + (fl - h^p'Xx7 - x9)/r?3,

(2.8)

Mi = [ - 2(hxkpk + ht) + (fl - hxlpx)-\(x2 - xl)lr\2

+ C/x* - Ktp'Kx2 - xl)¡r\3 + (fl - K.p'Xx5 - x4)/r12

+ (fl - hx*p ̂ (x5 - x6)/r33 + (fj, - Kip'Xx8 - x7)/r?2

+ (fl - K^)(xS - x9)lr323 + (f1 -f2)\r\2 + 3(x2-xl)W¡r\2,

(2.9)
r3r13

M¡  = [ - 2(hxkpk + ht) + (fl - h^p1)-] (x3 - x1)/^

+ (fl - h^p'Xx3 - x2)/r323 + (fl - K.p^x6 - x4)/r3

+ (fl - K^)(x6 - xs)lr323 + (fl - hxy)(x9 - x7)/r33

+ (fl-K.pl)(x9 - x)lrU+if% -f3)lrf3 + 3(x3- x1)^,

(2.10)   W= W(f,t) = (f1-f2)(x1-x2) + (f4-f5)(x*-x5) + (f7-f8)(x1-x8),
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(2.11) Y = Yif,t)=if1-f3)ixl-x3) + (f-/6)(x4- x6)+(/7-/9)(x7- x9),

with similar expressions for M¿,j = 2,3, •■•,9 ; k = 1,2,3.

Since my,m2,m3 are nonzero constants, it follows from (2.5) that M) = 0,

i = 1,2, -",9 ; j = 0,1,2,3. In particular M¿ = 0, so that, from (2.5) (since the

p' are independent coordinates)

(a)      /.{ = 0,      ib)fxJt=0,    iïj,     (c)   2fxH-htt = 0,

(2.12) (d)   /k» = 0,    i#y, (e)  fxixi-2hxh = 0,

if)   hxSxk = 0, i,j,k = 1,2, -,9.

From (2.12), (a), (b), (d),

(2.13) /'(r.x) = p\xl)t + a''(x;) + cjx * i,j = 1,2,-,9,

where p' and a1 are functions of x' alone, and cj are constants. Since f\t,x)

is analytic,/^ ""f&x'i so tnat> frorn (2-12), (d), (e),

(2.14) hxJt = 0,

or h(r,x) = A(t) — dpi', where the d,- are constants. Moreover, from (e) and (2.13),

p'xtxi = <xxtxi = 0, so that

(2.15) pl = b'x14- c\o ;     ce'= c¡x'+ c\y   (no summation)

which, with (c), gives 2b' = À„, or

(2.16) l=b't2   +   dyot +  dyy.

It is immediate that b' = bJ = b, and we then have

(2.17) h = djXJ + dy0t +dyy +bt2,

(2.18) f* = c)xJ + c\0t  + c[y + bx't,

where c), d¡ and b are all constants, i,j = 1,2, •••,9.

Using these values for h and/' in M'y, M2, and M3, and collecting terms as

coefficients of the independent variables x', x'pJ, we have, from M\,

(2.19) c\ = c\ = c¡ = c¡ = cl = cl = 0 ;   d2 = d3 = d5 = d6 = d8 = d9 = 0,

while, from M2

(2.20) c¡ = c¡ = cl = cl = c2, = c¡ = 0 ;   dy = d3 = d4 = d6 = d1 = d9 = 0.

Repeating this substitution for M%, M\, M2, M3, M7, M2, M|, we have

f  = cix1 + c'4x4 + c\x7   + clot + c'yy   + bx't,    i   = 1,4,7,

fJ = c{x2 + c{x5 + cJ8x8  + c{0t + c[y   + bx't,   j = 2,5,8,

(2.21) ^ = c^3 + c^ + c,^9 + cjoî + c^   + fc^^   fc _ 3 6 ^

h      =    bt2        +     dy0t     +    dyy.
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When these values are substituted into M'2, M'3, a similar calculation gives

b = 0,

cxx  = cxx = cxx = Kx, cx0 = cx0= cx0= K¿,

cll - cll - cll — a2j c10 — c10 — c10 — ^5»

(2.22) cxx  = cxx= cxx =  A3,      c10 = c10 = c10 = A6,

_ r1 -- - r2   -    - r3   -   cA   --   r5   --   r6   -■   KC4 —  — C5 —  — Cg —  Cj —    C2    —    C3     — A.7,

-c1  -   -c2  -   -c3   -   r1   --   r8   -   c9   -   KC-j    — Lg —     Cg    —    CX     —    C2     —    C3     — JVg,

-r1   -    -r8   -    - r9   -   rA    - -   r5       - r6    -■    Kc4 —    C5 —    C6    —    Cj     —    Cg  — Cg  — ÍV9 ,

¿n = ^10> (2/3)i/10 = c/   = Ku,     i = 1, •••,9.

Thus we are left with eleven arbitrary constants, renamed KX,--,KXX. The

functions/' and h of (1.6) must then be of the following form, if the LLTG T is to

leave (1.1) invariant:

f1 = Kx + K^t + K^x1 - K7x4- K8x7,

f2 = Kx+ K4t + Kxxx2 - X7x5 - K8x8,

f3 = Kx+ K4t + Kxxx3 - K-,x6 - K8x9,

f4 = K2+ K5t + K-jX1 + Kxxx4 + Kgx1,

f5  = K2+ K5t + K7x2 + Kxxx5 + K9x8,

(2.23) f = K2 + K5t + K7x3 + Kxxx6 + K9x9,

f1 = K3+ K6t + Kgx1 - Kgx4 + Kxxx7 ,

f8 = K3+ K6t + K8x2 - Kgx5 + Kxxx8 ,

f9  = K3+ K6t + K8x3 - Kgx6 + Kxxx9 ,

h = (3¡2)Kxxt    + Kxo.

Every element u of the Lie algebra L satisfying (2.23) is thus a member of the

eleven-dimensional Lie algebra with the following base, obtained by letting

Ki = l,Kj = 0,j*i,i = l,-,ll:

ux: Dxi + DX2 + Dx3,       u4 :   tDxi + tDx2 + tDx¡,

u2: DX4 + Dx5 + DX6,       u5:   tDx4 + tDx5 + tDx6,

u3: Dxt + Dx<¡ + DX9,       u6:   tD¿, + tDx% + tDx9,

(2.24) u7: -x*Dxi - x5Dx2 - x6Dx, + xxDx< + x2Dx, + x3Dx<,

u8: -x1Dxl - x8Dx2 - x9Dx, + x1Dx-, + x2Dxs + x3Dx9

ug: - xyDx4- x8Dxs - x9Dx6 + x4Dx7 + x5Dx8 + x6Dx9

u10: Dt, uxx: (3/2)tD, +xJDxj (summation).
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Since condition (2.2) is necessary and sufficient, it follows that the eleven-

parameter group G whose Lie algebra L is generated by (2.24) is the largest LLTG

leaving (1.1) invariant. We now wish to use this group to obtain a reduction of

(1.1); to do this, it will be more convenient to return to the (x,y,z) coordinates

(2.1), and to write (1.1) as a first-order system

dx'/dt =  p\        dy'/dt = q\     dz^dt = r\      i =  1,2,3,

(2.25)
dp'¡dt = F\x,y,z),    dq'ldt = Fi+3(x,y,z),   dr'fdt = Fi+6(x,y,z),

where the F' are defined as in (1.1), and the p'^',^ are new variables, defined

by (2.25X1 ). In these variables, the base for the Lie algebra becomes

Uy : Dxi + Dx2 + Dx3,

u2 : Dyl  + Dy2  + Dy3,

u3: D2i  + DZ2  + Dz3,

w4: tDx¡ + tDx2+ tDxi+ Dpl  + DP2  + Dp3,

u5: tDyl + tDy2 + tDy3 4- Dql  + Dq2  + Dq3,

(2.26)       u6: tDzl + tDz2 + tDz3 + Drl  + Dr2  + Dr3,

u-, : y'Dx¡ - xlDyi + q'Dpi — p'Dqi        (summation),

m8: z'D^ - y'Dz¡ + r'Dqt - q%t,

ug: xlDzt - z'Dx, + p'D,, - r'Dpt,

"io : Dt,

Uyy: 3tD,+ 2xiDxt + 2y'Dyl + 2ziDz, - plDpt - qlDql - r'D,,.

Since the dimension of L is less than the order of the equation (2.25), a complete

solution is not possible, even locally, by the reduction theorems in §1. Moreover

«7, u8, and ug generate a simple three-dimensional subalgebra of L, so that the

algebra is not solvable, and Theorem 1.3 does not apply. However, we can use

Theorem 1.4. For an examination of the Lie products will show that the sub-

algebra Ly generated by u7, w8, u9, u10, and wu is normal in L, and that the

remaining base elements ut, u2, u3, u4, us, and u6 generate a solvable (actually

abelian) algebra L2. Ignoring Ly, a reduction of (2.25) can be obtained using

Theorem 1.3 and L2. Once again, we assume that we are considering solutions

(t) The attempt to determine the maximal LLTG leaving (2.25) invariant leads to a dif-

ferential system as difficult to solve as (2.25) itself, unless we assume that, in u, (1.6), the f are

independent of p', q', r1; in this case the result is identical with (2.24), or, more exactly, with

(2.26), which is of the form «' (1.9).
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(or reductions) in the neighborhood of a point P at which both the system (2.25)

and the algebra (2.26) are defined.

The reduction using L2 is well known : it is simply the reduction due to conser-

vation of linear momentum. Specifically, the three basis elements «,, u2, and u3

can be reduced to normal form (1.8)

(2.27) üy = Dx3, ü2 = Dy3, ü3 = Di3

by the change of coordinates which moves the origin of the space to the point

(x3,y3,23):

-1    __       1 3 -2   __       2 3 -3    _       3
•V ^^        »A* »r\       a *\ ^^        »V *\       * vV ""        r\       %

(2.28) j1 = v1 - y3,     f = y2 - y3,       f = y3,

z1 = z'-z3,       z"2 = z2-z\ z"3 = z3.

In these coordinates, the remaining base elements of L2 become

y4 =  tDx3 + Dpi + Dp2 + Dp3,

(2.29) w5 = tD-y3 + Dqí + Dq2 + Dq3,

ü6 = tD¡3 + Dri + D,2 + D,3.

By the change of coordinates (2.28), the variables x 3, y3, z3 have been eliminated

from (2.25); therefore the terms in Dx3, Dy3, Df3 and their counterparts in the

extended algebra play no part in the invariance of the remaining fifteenth-order

equation, and may be omitted in (2.29). Then a change of coordinates similar

to (2.28):

^1 «1 „3 ;2 „2        „3 -3 „3
P      =   P    - P   , P      =   P    - P   , p      =   P   ,

(2.30) q'^q'-q3,       q2 =  q2 - q3, q3  =  q3,

f1  - r1-/-3,       f2 = r2-r3, f3 = r3,

will reduce (2.29) to normal form :

(2.31) «4 = Dp3, us = D¡¡3, ÏÏ6 = Df3,

which means that the variables p3, q3, and f3 have also been eliminated, and

(2.25) has been reduced to a system of order twelve, together with six other

equations which can be solved by quadrature when a solution has been found

for the remaining differential system. Explicitly, dropping the accents on the

new variables, and omitting the equations which can be solved by quadrature,

dx'ldt   = p', dy'/dt = ql,        dr'/dt = rl,    i = 1,2,

(2.32) dpl¡dt  = Fl-F3,     dq/dt=F*-F6,     dr'/dt = F1 - F9,

dp2ldt   = F2 - F3,     dq2\dt = F5 - F6,     dr2\dt = F8 - F9,
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where

r 12 = [(V-xV+iy'-yy + ^-z2)2]

(2.33)

r13   = i(xl)2+(y1)2+(z1)2ri\

r33  = [(*2)2 + (y2)2 + (z2)2]3'2,

F1 = mx(x2-x1)/rX2-m3x1lrX3,

F2 = mx(xl -x2)\rX2-mx2\r23,

F3 = m^VisF m2x2\r23,

with similar expressions for F', i = 4, •■•,9.

In order to demonstrate the equivalence of the remaining reduction to that

of Whittaker, we make the further change of variables, (corresponding to a trans-

formation to the center of mass), not strictly needed for the reduction by means

of transformation groups:

p1 = mxpl — m^mrf1 + m2p2)\m,

(2-34) _2 2 / 1    , 2x,
p   = m2p  —m2(mxp  +m2p)jm,

with similar equations for q\ f', i = 1,2, where m = mx + m2 + m3.  In these

coordinates, (2.32) becomes, omitting bars,

dx^dt = (l/mx + l/m3)p1 + (l/m3)p2,

dx2\dt = (llm2 + llm3)p2 + (llm3)p\

dp1¡dt = — m1m3x1/''i3 + mxm2(x2 — x x)/r12,

dp2\dt = —m2m3x2lrX3 + mxm2(x1—x2)lr12,

(2.35)

with, again, similar expressions for dy'/dt, dq'/dt, dzl/dt, dr'jdt, i = 1,2.

This system is still invariant under the subalgebra Lx with basis elements

u7,u8,u9,u10,uxx.A straightforward computation will show that these five basis

elements have the same form (2.24) in the new coordinates (i.e., after the change

of coordinates (2.28), (2.30), (2.34)) that they had in the original ones. Once again,

the invariance of (2.35) under Lx is not affected by omitting those terms in Dx¡,

Dy3, Dz¡, Dp3, Dq3, and Dr,, and their corresponding terms in the extended

algebra.

The basis elements u7, u8, ug generate a simple subalgebra L3 in Lx, while

L4 = LX — L3 is an ideal in Lx generated by uxo and uxx. Using Theorem 1.4

once again, we now consider only the subalgebra L3.

Since L3 is simple, a normalization is not possible. However, the transfor-

mation to the "invariable plane" also reduces L3 to a desirable form. For if
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x¡' = icjdrf-icyidy,

y" = i — CyC2\cd)x' + id¡c)y' - ic2c3lcd)z',

z1' = icy¡c)xi + icjc)/ + ic3lc)z\

(2.36) i,      r   ij\ t    /   ij\ i ' = 1.2,P   = {cild)p-icy¡d)r,

q1' = i- Cyc2\cd)pl + id\c)q' - ic2c3\cd)r\

r" = icylcrf + icJcW+icJcy,

where

Cy   = myiyyry - qxZy) + m2iy2r2 - q2z2),

c2  =  myizypy - x^J + m2(z2p2 - x2r2),

(2.37) c3  = my(xyqy - pyyf) + m2(x2q2 - p2y2) ,

c = Í(cy)2 + (c2)2+ic3)2]m,

d = [(C,)2 + (C3)2]1/2,

then

w7  = ic3cld)yl'Dxí.-x1'Dyl. + q1'Dpi,-pi'Dqi.

+ y2'Dx2. - x2'Dy2. + q2'Dp2, - p2'Dq2-,

(2.38) = (c3c/d2)y;

"s = (cycld2)Y,

ü9 = O,

where we assume Cy, c3, c, and d to be expressed in the new coordinates, (note

that (2.35) is unchanged in form by the coordinate change (2.36)). Thus one of the

three basis elements has been reduced to zero and, in fact, the other two are

linearly dependent. For dcx\dt = dc2\dt = dc3\dt = 0, as can be shown by deriving

(2.37) with respect to f, and using (2.35). Therefore cx, c2, c3, c, and d are all

constant functions of t, and ö7 and w8 differ only by a constant factor. Moreover,

if in the new coordinates (2.36) we again let

(2.39) c, = myiy1 'r1' -quzu + y2'r2' - q2'z2')

with c2, c3, c and dsimilarly derived from (2.37), a straightforward substitution

will show that ey = c2 = 0, while c3 = c = â, a constant.

The remaining generator w7 is reduced to normal form by the change of co-

ordinates corresponding to the "elimination of the node":
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v = arc tan a/b, t  = arctand/c',

{' = (xlb + y'a)ld', rf = z'cfd',

N  =   2Zi-pia(xib + yia)ld'2 + qib(xib+lya)ld'2

(2.40) i = 1 -c"bpiztld'2-ac"qiz'ld'2l
2

1=1 (lld')(p'z'a - q'z'b + r'z'c"),
i=i

E'  = (p'b + q'aW, i = 1,2,

H' = ( - p'ac" + q'bc" + rxd'2)\c'd',

where

a = z1y2-z2y1,      b = z1x2-z2x1,      c" = x2y1 - xly\

(2.41) d'  = (a2 + b2)1'2,     c' - (a2 + b2 + c"2)"2,

and where the accents are omitted in the old coordinates. Thus

(2.42) ii7 =  -(cc3¡d2)Dv = Dv.

Moreover, (2.39) becomes, in the new coordinates (2.40),

2

cx  = csctcscv  S (^'fl'sin2v - i/'s'sin2 v)
i=i

+ fsint sinv cosv — N sin2 v cost = 0,

2

(2.43) c2  = csctcscv  Z (n'z' - Ç'h') sinv cosv
¡=i

+ /sim sin2 v + N sinv cosv cost = 0,

c3  - N,

which immediately gives

/    = 0,

2

(2.44) AT cos i =   £ (£'H* - t/a'),
i = l

N = c      (a constant).

Because of (2.42), the variable v has been eliminated from the system, and can be

obtained by quadrature ; (2.44) gives values for the variables I, t, and N in terms

of the remaining variables. Thus, the succession of coordinate changes which

reduces the simple group to a "normal" form has at the same time reduced the

order of the differential equation by four. It now is of order eight, and is given

explicitly by
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di1 ¡dt   = (1/rn, + l/m,)-1 + (l/m3)E2 + Ar,1,

de ¡dt   = (l/m2 + l/m3)H2 + (l/m^E1 + An2,

drfldt   = (1/m. + l\m3)Hx + (l\m3)H2 - ¿É1 ,1

dn2\dt   = (l/m2 + l/m3)//2+(l/m3)//' -^2,

dS1/*   = AHl - Bn2 - mym3eipy + m.m^2 - ?)¡pí2,

dH2/dí  = AH2 + Bní-m2m3eiP2 + niym2ie-ct2)lpy2,

dHx¡dt =   - A-.1 - C[(l/m2 + l/m3y - (l/m3>j2] + B£2

- mym3rf\py + my>n2ir\2 - nx)¡pl2,

dH2¡dt =   -AE2- C[(l/m. + l/m3>/2 - (l/m3)^] - B?

- m2m3n2¡p2 + mxm2(i]x - n2)\px2,

where

A   = 2R-2l(ll2mx + ll2m3)(n2)2 + (ll2m2 + ll2m3)(ni)2-n1n2lm3]P,

B   =2R-\(ll2mx + ll2m3)(t,2)2 + (ll2m2 + ll2m3)(r,í)2-nyn2lm3](N2-P2),

C   =   -R~2(N2-P2),

R   = nxe-n2V,
(2.46)1

P   = fí^-HV-f/^2-SV,

Px  =  K1)2 + Oí1)2]3'2 .

P2 = [(a2+o?2)2]3/2,

Pu- [«'-O' + Oi1-*2)2]3'2.

There still remains the two-parameter LLTG whose algebra L4 has as basis

w10 and «u. After the changes of coordinates (2.36), (2.40), these two basis

elements have the following form :

«io  " Dt>

(2.47) 2
uyy  = 3tD, + NDN + IDj + I i2Q°+2nÍ,?-HiHD¡-&§).

i=l

The system (2.45) is no longer invariant under this two-parameter group since,

by introducing the constant N, it is no longer homogeneous, and does not admit

Uyy. However, if we consider N as a variable for the moment (so that the system

is of order nine, with the added equation

(2.48) dNjdt = 0
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which is again homogeneous), then this new system is invariant under the group

with Lie algebra generated by (2.47).

Since the algebra L4 is solvable, Theorem 1.3 can be used to obtain the final

reduction. Of the two basis elements, u10 is already in normal form, and indicates

only that the differential equation is autonomous. So far as this author knows,

uxx (or the corresponding one-parameter group) has never been used in the

reduction of the three body problem. If the reduction by the use of transformation

groups is to reflect the classical reductions, then uxx must correspond to the

conservation of energy; but there is no apparent reason why this should be so,

especially since uxx has time (f) as an explicit variable, and, on the other hand,

conservation of energy does not demand homogeneity. However, the use of the

energy constant, given in terms of the original variables by

h = (1/2)   I l(pJ)2 + (q')2 + (iJ)2Hmj - m2m3\r'23

(2.49) J   1

-mxm3\r'x3-mxm2\r'X2,

(where r¡¡ = [(x! — xJ)2 + (yl — yJ)2 + (z1 — z')2~\112), does reduce uxx to normal

form. For if

t' = th3'2, n2'= n2h,

(250) «*'  = -lftQogh)?, 3"=(S'r2A,        i=l,2,

I;2'   = eh, H" = (HT2h,        i = 1,2,

n1'   = rfh, N' = N2h,

then, in these new variables,

(2.51) üxx  = DiU «10 = h~3'2D,.

The normal form of Hxx shows that ¿j1 has been eliminated, and the system reduced

to order eight. Since both N and h axe both constants, N' is a constant, which

reduces the system to order seven. Finally, since h is a constant, ¿710 is still in

normal form and can be used to reduce the system to order six, a reduction which

will not be given explicitly.

We are thus able, by the use of the eleven-parameter Lie group whose Lie

algebra has as basis (2.24), to obtain a reduction of the differential equation (1.1)

from order eighteen to order six, which corresponds exactly with the classical

reductions. Since (2.24) is maximal, no further reduction is possible by this method.

The author would like to thank Daniel C. Lewis, Jr. for his help in the prep-

aration of this paper, and the referee for his many helpful suggestions leading

to its revision.
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