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1. Introduction. Throughout this paper the symbols G2, F4, E6, £7 denote

compact simply connected forms of these exceptional Lie groups. Spin(n) is the

universal covering group of SO(n). There are inclusions G2 <= Spin 8 <= F4 <= £6

given by Jacobson [13]. We also use the inclusion £6 c E1 described using rep-

resentations given by Tits [16] for the Lie algebras of these groups. Qp denotes the

ring of rational numbers whose denominators are powers of the prime p. The

following isomorphisms are obtained for j — 0:

(1.1) «/Spin 8) ® Q3 x injiG2) ® «/Spin 8 / G2)) ® Q3,

(1.2) nJ+ ,(F4/ Spin 8) ® Q3 « inj+ ,(F4 / G2) © Tt/Spin 8/ G2)) ® Q3,

(1.3) n/E6) 0 Q2 « (7r/F4) © tt/£6 / F4)) ® Q2,

(1.4) nJ+ .(£7/£6) ® g2 * inj+ ,(£7/F4) © 7r/£6/F4)) ® Q2.

(1.1) was stated without proof by Harris [8]. The proofs of (1.1), (1.2), (1.3), (1.4)

are given in §§3, 4, 5, 6 respectively. §2 contains a discussion of results of

Jacobson and Tits as they relate to the inclusions mentioned earlier. Actually,

in §5, the proof of the following theorem, which implies (1.3), is given:

Theorem 1.5. Let G be a compact, connected, simply connected Lie group,

a:G-*G an automorphism of period 2, K the identity component of the fixed

point set of a. Assume the map H*iG; #)-> H*iK; R) induced by inclusion is

an epimorphism. Then for all i the sequence 0 -> n¡(K) -> n¡(G) -» n¡(G / K) -* 0 is

exact and split when tensored with Q2. The splitting is given by the map

q:G¡K^G,q(gK) = gej(g)-1,geG.

Theorem 1.5 applies to the following pairs (G,K): (SU(2n + 1), SO(2n + 1)),

(SU(2n), Sp(n)), (Spin (2n), Spin (2n - 1)) and (£6,F4). In each of the first three

cases, the result was given by Harris [8], and the splitting for (£6,F4) was given

by Harris provided the primes 2 and 3 are neglected. The proof of this theorem is
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based on a suggestion of Harris (see [8]). The idea for using Poincaré duality is

from the work of Araki [1]. In [8], Harris obtains a similar result, except that

primes p for which G has p-torsion must also be neglected. In [1], Araki obtains

the conclusion of 1.5 under the hypothesis that rank G = rank K + rank G/K.

Araki's hypothesis implies that H*(G ; R) -* H*(K ; R) is an epimorphism. It is

to be emphasized that the proof of 1.5 does not depend on the classification of

symmetric spaces.

In §7, it is shown that by combining (1.4) with similar results of Harris, and using

the classification of symmetric spaces, the following theorem is obtained :

Theorem 1.6. Let G,K,a satisfy the hypotheses of Theorem 1.5. In addition,

assume G is simple. Then there exists a simple group L, containing G, such that

the sequence 0-» 7i:J + 1(L/G)->7iy+1(L/K)->7r;(G/K)->0 is exact and split

when tensored with Q2. The splitting is given by the Bott suspension map (see

[6]) itj(G jK) ^nzj+y(L¡G). Moreover, rank L— rank G ^ 1 and either L\G or

L\M is a symmetric space, where M is locally isomorphic to GX^1.

Theorem 1.6 applies to the following triples (L, G, K) : (SO(4n), SU(2n),

Spin)), (Sp(2n + 1), SU(2n +1), SO(2n + 1)), Spin (2b +1), (Spin(2n), Spin(2n -1))

and (£7,£6,£4). The results in the first three cases were obtained by Harris [8].

The results of this paper are contained in the author's doctoral dissertation.

The author wishes to thank Professor Bruno Harris of Brown University for

suggesting these problems and for his advice and criticism throughout the prepara-

tion of the manuscript. These results were announced in the Notices of the American

Mathematical Society, abstracts 63T-53, January 1963, and 64T-173, February 1964.

2. Descriptions of the groups and algebras. Representations of G2, F4 and £6

are given by Jacobson [13]. Denote by Jf the nonassociative algebra of Cayley

numbers. This is an 8-dimensional real vector space. It can be described by naming

generators l,i,j,l subject to the relations i2 =j2 = l2= — 1, y = — ji, il = —li,

jl= — Ij. A basis is given by l,i,j,ij,l,il,jl,(ij)l. The subalgebra generated by

1, i,j is the algebra of quaternions. Every Cayley number is uniquely expressible

in the form a + bl, a, b quaternions. For quaternion a, a = a0 + ayi + a2j + a3ij, a¡

real, define ä = a0 — axi — a2j — a3ij, and for x = a + bleCff define x = ä — bl.

The norm of x e Jf is given by N(x) = xx = xx and is a real number. The associated

bilinear form N(x, v) = (xy + yx) / 2 is nondegenerate and the basis mentioned

above is orthonormal. Also

(2.1) N(xy) = N(x) N(y),     x,yeX.

Let M% be the exceptional Jordan algebra of 3 by 3 hermitian matrices with

coefficients in ¿f; an element AeM% is a 3 by 3 Cayley matrix with Ä" = A.

Multiplication in M% is given by A • B = (AB + BA)/2, where juxtaposition

denotes usual matrix multiplication. Thus, if A e Ml, we may write
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(2.2) A =

cty    a     b

ä     ct2   c

.  b     c     ct3 j

a¡ real,    a,b,ce Jf.

Clearly Ml is a 27-dimensional real vector space.

Define e. = diag (1,0,0), e2 = diag (0,1,0), e3 = diag (0,0,1), and for a e ¿f,

define atj, i # j, i,j = 1,2,3, to be the 3 by 3 matrix whose only nonzero entries

are a in the (i,f) position and ä in the 0', ¿) position. Then (2.2) may be written

3

(2.3) A =  zZ   a.i£i + ay2 + bx3 + c23\
i = l

The trace of an element of off is twice its real part, i.e. Tia) = a + ä,ae JT.

The trace and norm of an element A e M%, written as in (2.3), are defined, re-

spectively, by

(2.4) T(¿) =   I   a„
i=l

(2.5) NiA) = a,a2a3 + Tiaicb)) - a,N(c) - a2N(5) - a3N(a).

Multiplication in M3 is characterized by the formulas:

(2.6) e( • au = — a,j = atj • eJt

(2.7) afj = Nia) (ef + Ef),

(2.8) 2a0- • bjk = iab)ik,    i,j, k unequal,

and by the fact that e¡ are orthogonal idempotents.

Jacobson [13, III] has shown that the group of norm-preserving linear trans-

formation of M3 is a compact form of £6, and [13, II] that the group of all

automorphisms of the Jordan algebra M3 is the compact F4. In the same series of

papers, it is shown that

(2.9) {i e F4 : í(e¡) = e¡, i = 1,2,3} x Spin 8,

(2.10) {íeF4:í(liJ.) = lip i¿j, i,; = 1,2,3,   í(e¡) = e¡,í = 1,2,3} x G2.

Moreover, if e is a primitive idempotent, that is, an idempotent which is not the

sum of two orthogonal idempotents (equivalently, T(e) = 1), then

(2.11) {teF4: i(e) = e} x Spin 9.

We now proceed to describe the compact Lie algebra S1 and its subalgebras

<f6 and &r4 (compact forms) using the work of J. Tits [16].

Let ^ be the complex simple 3-dimensional Lie algebra. <W has basis {e,f,h}
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over the complex numbers, C, with multiplication given by [eh] = 2e, [/«] = — 2/,

[e/] = h. The compact real form of <&, henceforth denoted by Y, has real basis

{ih, e+f, i(e -f)}, i = (- 1)1/2. If ( , ) denotes the Killing form of &, one

computes that (h, h) = 8, (e,f) = - 4, (e, h) = (/, h) = (e, e) = (/,/) = 0. Following

[16], the compact Lie algebra Sn is

(2.12) S1 = S>(M83) 0 (Y ® M^)

where @>(M%) is the Lie algebra of derivations of Aff, @(M%) = &A, and where the

multiplication in Sn is given by

(2.13) [d,y®a] = y®d(a),

(2.14) \y®a,y'®a'] =-2 Ü',/) <«,«'>+ |>/]®aa',

for y,y'eY, deSi(M%), a,a'eMs3. The symbol (a,a'} denotes the inner

derivation of M3 defined by

(2.15) {a,a'y(a") = a(a'a")-a'(aa"),     a"eM%.

We have noted that @(M%) = &\ (see paragraph preceding (2.9)). Tits has

shown that the subalgebra

(2.16) ^(M*)©-^-®M^(0)

is isomorphic to the compact S6. Here M\(f)) denotes the set of elements of trace

zero in M|. Observe that \ (ih/2, ih/2) = — 1, so the multiplication described in

(2.14) applied to an element of (2.16) is

(2.17) f-y®a,-y®a'l = --<a,a'>.

If Ra: M|->M| denotes right multiplication by a eMf, then <a,a'>= -[RaRa- ],

for

~[Ra,Ra'](a")  =   -(a"RaRa. - a"Ra.Ra)

=  -((a"a)a'-(a"a')a)

= a(a'a")-a'(aa")= <a,a'>(a").

Jacobson [12, p. 145] has described the Lie algebra S6 by

(2.18) ê6 = 2>(M¡) ®{Ra:ae M83(0)}.

The representations (2.16) and (2.18) are isomorphic under the identification of

in/2® a with Ra, because of (2.17) and the remarks following it.
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Of course, ^(M3) © (¿n [2 ® M3) is the direct sum of S6 with a 1-dimensional

subalgebra.

Later, in §6, we will see that these inclusions S?4 <= g6 <= g7 give rise to in-

clusions F4 c £6 c £7 of the simply connected Lie groups.

3. The fibration G2 -> Spin 8 -> Spin 8/G2. In this section we prove (1.1).

Recall, from §2, that F4 is the group of all automorphisms of M3, and that

Spin 8 =  {x e F4 : T(e,) = e¡, ¿ = 1,2,3},

G2 = {xe Spin 8: t(1,7) = li}, i ¿j, i,j = 1,2,3}.

Let n: M38-» M? be defined by n(e.) = ei+1, n(a¡7) = ai+1 J+1, i ¿j, i,j = 1,2,3

(addition of subscripts modulo 3), and extend linearly. Define a: Spin8 -* Spin 8

by o(x) = nxn"', teSpin 8. Then o is an automorphism of Spin 8, and since

n3 = identity of M3, er has order 3. Moreover, the fixed set of a is exactly the

subgroup G2.

Define a map <¡r:Spin 8/G2-*Spin 8 by q(xG2) = xo(x)~1, re Spin 8. Let

p: Spin 8 -> Spin 8 / G2 be the natural projection and j : G2 -» Spin 8 the inclusion.

Theorem 3.1.   The exact homotopy sequence of the fiber space

G2->Spin8-»Spin8/G2

is split when tensored by Q3. The splitting is given by the map

<z:Spin8/G2->Spin8

and we obtain ^^isomorphisms

Tt/Spin 8) ta n/G2) ® re/Spin 8 / G2),     / ^ 0.

Proof.   We compute the composition

p*q * : 7t/Spin 8 / G2) ̂  7i/Spin 8 / G2).

To do this, we use the fact that there is a homeomorphism Spin 8/G2 -» S7 X^7.

Here we consider S7 as the unit 7-sphere of Cayley numbers of norm 1. The

homeomorphism is defined by sending tG2, te Spin 8 into the pair iu,v), where

u,v are Cayley numbers determined by t(112) = u12, t(113) = vl3. See Jacobson

[13, II, p. 93].
Since a leaves G2 point wise fixed, it induces a map

o-:Spin8/G2-»Spin8/G2.

We identify Spin 8 / G2 with S7 X^7as above and compute a. In fact, if x e Spin 8

is such that tG2 corresponds to the pair iu,v) in S7XS 7, then

<l2s) = <2(121-113)) = 2t(112) -t(113) = 2w12i;13=(öi;)23.
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Hence

<Kr)(li2) = WTif'iTi,)

= w<l3i)

= mt(113)

=    tj(Vy3) = V2y   = Vy2,

and by similar calculation

<<*) (lia) » (0»)i3-

Thus if G2 corresponds to (m,d)6S7XS7, o"(t)G2 corresponds to the pair

(ü,ÖM)eS7 XS7, and a: S7 XS7 -> S7 XS7 given by

a(u,v) = (v,vu).

Since ü is the multiplicative inverse of v, if we identify n^S1 XS1) with

^lj(S1)@^lj(S',), it follows that the induced map <7#: rc/S7 XS7)->^(S7 XS7)

is given by

(3.2) ff ,((o, ß)) = (-ß,-ß + a),    a,ße tt/S7).

We now compute p**,*. From the definition, if x e Spin 8,

pq (xG2) = xa(x)~1G2.

Let T= pq. To simplify the notation, let K = Spin 8, and H = G2. We have a

multiplication

p-.K/HXKIH^K/H

defined by p(kyH,k2H) = k1a(ky)~1k2H. One easily verifies that

(a) p(eif, kH) = fcff, e the identity of K, k e K,

(b) p(kH,a(kH)) = kH,

(c) T(kH) = p(kH,eH).

Identifying w/X ¡HXK/H) with jr/K / H) © rc/K / H) we obtain

(a)' p*(0,a) = a,

(b)' pif(a,aif(a)) = a,

(c)'  T,(a) = p*(a, 0), a e b/K/ H).

Therefore,

T*(a) = p*(a,0) = p+(a,o-*(a)-o-+(a))

= /i*((a9ff*(o))-(0,<r*(a))

= p^a.ff^aJJ-p^O.o-^fl))

= a-o-+(a), ae7t/K/W).

Therefore if a, ß e rc/S7), we have
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T*((a,j3)) = (a,jS)-rj,(a,/9

= ia,ß)-i-ß,-ß + ot) = ia + ß,2ß-a).

To complete the proof of Theorem 3.1, tensor the exact homotopy sequence of the

fiber space G2 -> Spin 8-> Spin 8/G2 with Q3. Exactness is preserved, since

Q3 has no torsion. Since division by 3 is now permissible, we may define

the map

S: ntf1 XS7) ® Q3 -+ jt.ïS7 XS7) ® Q3

by S(y,ô) = ((2y - $)¡3, (y + e)¡3), y, Ôen,(S7). Then

T*S(a,ß) = T„((2y - ó) ¡3, (y + <5)/3) = (y, S),

and

ST*(a,ß)  =  S(a + ß,2ß - a)  = ((2a + 2ß - 2ß + a)/2, 3)3/3)  = (a.p1).

Hence T* is an automorphism after tensoring by Q3. Thus the sequence splits, and

3.1 is proved.

4. The fibration Spin 8/G2 —> FJG2 -» F4/Spin 8. In this section it is shown

that the exact homotopy sequence of the fiber space Spin 8/G2-»F4/ G2-+FJSpin 8

is split when tensored by Q3, thereby proving (1.2). We retain the notation of the

preceding sections, and we continue to describe these groups in terms of M3.

We begin by considering the set of all 3 by 3 matrices with Cayley coefficients,

together with addition and ordinary matrix multiplication. This is a nonassociative

algebra si over the real numbers. If A is a 3 by 3 real nonsingular matrix, the

mapping si ^ si defined by B-> ABA'1, Be si, is an automorphism of the

algebra si. The product ABA ~1 is unambiguous since A has real coefficients.

If t is an automorphism of the Cayley numbers, x leaves the subalgebra of real

numbers pointwise fixed. Hence if B = (b¡f) e si, the map B -> x(B) = (xibu)) is

an automorphism of si and if A has real coefficients, xiABA-1) = AxiB)A " \ Also

note that if Ae 0(3), Be Ml then ABA_1eMl, and the map B-+ABA'1 is an

automorphism of the Jordan algebra M\.

Let t e G2. Then there is an automorphism / of the Cayley numbers such that

(Z   <xiei + ay2 + b23 + Cy3 I  = Z   a^ +/(a)12 +fib)23 +/(c)13
\j=i /     i=i

(see Jacobson [13,11]). Thus, if Be Ml, B = (èy), then t(B) = ifibtf)), so t is of

the form described above. Hence we may state the

Lemma 4.1.   If A e 0(3), B e M¡, then ABA'1 e Ml and xiABA'1) =AxiB)A~K
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Proposition 4.2.    There is a l-parameter subgroup ip of F4 such that

(a) i¡/(l) = n, i.e., i¡/(l)x\¡/(í) ~1 = c(x), xeSpin 8,

(b) i¡/(t)x = xi¡/(t),xeG2,teR.

Proof.    First note that n is given by n(B) = ABA   \ Be Ml where

e SO(3).A =

0 0   1

1 0   0

0   1   0   J

There is a l-parameter subgroup cp(t) of SO(3) such that cb(l) = A. (Every point

of a compact connected Lie group lies on a l-parameter subgroup.) Define

ib(t): M3-*M¡ by ib(t)(B) = </>(í) B</>(0 ~ *• From the preceding remarks, \j/ is a

subgroup of F4. Since ib(l)(B)=ABA~~1, 1^(1) = n and (a) is satisfied. If xe G2, then

for all BeM\, \¡/(t)x(B) = cb(t)x(B) cb (t)'1 which equals, by (4.1),

x(cb(t)Bcj)(t)~1) = xil/(t)(B). Hence, for all x e G2, and all real t, ib(t)x = xi¡/(t), and

(b) is satisfied.

Having proved the existence of a l-parameter subgroup i¡/ of F4 such that

(a) ib(l)x\¡i(l) " ' = a(x), x e Spin 8, and

(b) \¡/(t)x = xib(t), xeG2,t real,

we can construct a map F: s(Spin 8/G2) -* F4/Spin 8. Here s(Spin 8/G2) denotes

the suspension of Spin 8/G2, i.e., the space obtained from (Spin 8/G2) x [0,1]

by collapsing (Spin 8/G2) x 1 and (Spin 8/G2) x 0 to points. F is defined by

F(xG2, t) = x\b(t) Spin 8. Following Harris [8], if £ denotes the composition

Ti/Spin 8/G2)-»7r,-+i(s(Spin 8/G2)) ->F*7i;J + 1(F4/Spin 8), where the first map

is ordinary suspension, and if d is the boundary operator of the homotopy sequence

of the fibration, d: nJ+¡(F4ISpin 8) -» rc/Spin 8/G2), then T% = dE, where, as in

the preceding section, T=pq.

But in §3, we saw that after tensoring with Q3, T* is an automorphism of

jTy(Spin 8 / G2), hence £ provides an inverse to ô and the exact homotopy sequence

a

•■•-»Wi/+1(F4/G2)-»iti+1(F4/Spin8)-»n/Spin8/C2)-»...

is split when tensored with Q3.

Finally, we remark that F4 is, in a sense, the smallest group containing Spin 8

in which a becomes inner (in the sense of (4.2)). Evidently, if G is a Lie group, and

Spin 8 cz G <= F4, then G is contained in a maximal subgroup of maximal rank of

F4. These subgroups are known by [5] to be SU(2) x Sp(3). Spin 9 and

SU(3) x SU(3). The first and last are impossible for dimension reasons, and it is

not difficult to check directly that a does not become inner in any representation of

Spin 9 of the form (2.11).

5. The fibration F4^>E6~* £6 / F4. Throughout this section, let G denote a

compact, connected, simply connected Lie group, a: G^>G an automorphism of
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order 2, K the identity component of the fixed point set of er. We will give a proof

of Theorem 1.5, and we show that this theorem applies to the pair (£6,F4). For

the proof of (1.5) we use certain results of Harris [8] which we summarize here.

Theorem 5.1 (Harris). Let G,a, K be as above. AssumeH*iG; R) -* H*(K;R)

is an epimorphism. Then primitive generators x¡ may be chosen for H*(G;R).

so that o*ix) = + x¡. Let U be the subalgebra generated by the x¡ left fixed by

<j*, and let V be the subalgebra generated by the other xfs. Then:

(a) H*(G; R)xU®Vas algebra,

(b) if i: K->G is inclusion, i* maps U isomorphically onto H*(K; R) and is

zero on the positive degree elements of V,

(c) if q: GjK -» G is the map q(gK) = go(g)-1 then q* maps Visomorphically

onto H*(GIK; R) and is zero on the positive degree elements of U,

(d) if 1: G^GjK is projection, then im I* = V and I* is 1-1; moreover

l*q*: H*(G; R) -> H*(G; R) is given by l*q*(x) = x — cr*(x), x primitive,

(e) H*(G¡K; R) has generators yy,---,y, such that a*(y) = — y¡ and

q*l*(yi) = 2yi, ¿=l,-,r.

Using (5.1), we proceed to show that the map Iq : G / K -> G / K is an isomorphism

in homology with coefficients Q2. Once this is accomplished, an application of the

J. H. C. Whitehead theorem (see Serre [14, p. 276]), yields that

l^:nj(GIK)^nj(GIK)

is a ^-isomorphism and hence q# gives the splitting described in (1.5).

Proof of (1.5). From (5.1.e), H*(G¡K; R) = A(ylt ••-,)•,), an exterior algebra

on generators y¡ of odd degree such that

<r*iy¡)= -yt, i = l,-,t,
and

q*l*(yy-yt) = 2'yy-yt.

Applying Poincaré duality to the simply-connected compact orientable manifold

G¡K, we obtain H\G/K;Z) x H0(G/K;Z) x Z.

Let a be a generator of H"(G/K; Z). Then a® 1 generates

H\G¡K; R) x H\G¡K; Z) ® R.

Let q*l*(a) = doc, deZ. Then if I: R-*R is the identity map,

(4*/*®/)(a®l) = d(a®l).

But we know that (q*l* ®I)(yy-yt) = 2'yy-yt and a.®l = ryy-y„ some

r elR, hence q*l*(ot ® 1) = q*l*(ryL ■■■ yt) = r2'yy ■■■ y, = 2'oc® 1. Thus,

q*l*(oi) = 2'a.

Next consider q*l*: H*(G/K;Q2)-+H*(G/K;Q2). Since division by 2 is

possible, q*l* is an automorphism in dimension n.
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Using the fact that real homology and cohomology are dual vector spaces, the

above arguments hold for homology as well, and we obtain that

l^:Hn(G¡K;Q2)^Hn(G¡K;Q2)

is an automorphism.

Let utt be a generator of Hn(G / K ; Q2). The Poincaré duality isomorphism

H'(G¡K; Q2) -> Hn_¡(G/K; Q2) is given by x -* u„ O x. We show that l+q^ is an

automorphism with coefficients Q2.

Let f=lq. Recall the formula f*(a) n fo =fjf(a n/^fo)), aeH^GjK;Q2),

beH*(G/K;Q2). (See Hilton-Wylie [10 p. 155].) We have /*(«„) = 2'u„. Take

a = 2~'u„ in the formula. Then

2-'/>n)nfo= 2~%ium n/*(fo))
i.e.,

«nnfo= 2-'/*(«„ n/*(fo)).

From Poincaré duality, m„ n fo (and hence 2'u„ n b) ranges over H*(G¡K; Q2) as fo

takes on values in H*(G/K; Q2). Therefore/* is onto. It is known that a map of a

finitely generated module over a Noetherian ring onto itself is necessarily 1-1.

Hence/* is an automorphism. An application of the J. H.C. Whitehead theorem

completes the proof of (1.5).

Next we show that (1.5) applies to the pair (£6,£4) and hence that (1.3) holds.

To do this we establish the following

Proposition 5.2. Let G be a compact, connected, simple Lie group, A(G) the

automorphism group of G, 1(G) the subgroup of inner automorphisms. If

A(G)/I(G)xZ2

and aeA(G) is of order 2 and not inner, and if the exterior algebra H*(G; R)

has generators x2k.-y, at least one k¡ odd, then

(a) o*(x2kl-y) = x2kl.y, if k¡ even.

(b) o*(x2kl.y)= -x2k¡.y, ifk¡odd.

Proof. Let BG be the classifying space of G. Then H*(BG;R) is a polynomial

algebra on generators y¡, deg yt = 2fc¡, which suspend to the x¡. Let Tbe a maximal

torus of G, and let a e 1(G) such that aocr: T-* T. Since a* is the identity on

cohomology, we obtain induced maps a*: H*(BG; R) -» H*(BG; R) and

o*:H*(BT; R)-> H*(BT; R). There is an inclusion Brcßc which induces

a monomorphism H*(BG; R)^>H*(BT; R). But H*(BT; R) is a polynomial algebra

on generators zi,---,zl (1= rank G), deg z¡=2. Hence the generators of H*(BG; R)

axe homogeneous polynomials P¡ of degree k} in the z's.

Since c has order 2, we may assume that cr*(z¡) = ± z¡, i = 1, ■•■, I. Consider the

map y: T-* T, y(t) = t ~\ te T. Let 'S be the complexification of the Lie algebra
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of G. Then the Lie algebra ^~ of T (complexified) is a Cartan subalgebra of &,

and the map induced by y on if is y(h) = —h,he3~.

Jacobson [12, p. 127] shows that the automorphism 7: $~ -*$~ extends to an

automorphism of order 2 of ^. Thus, passing to the compact Lie groups, the

automorphism y: T-> Textends to an automorphism y of order 2, y: G-» G.

On H*iBT;R),y*izi)=-zt, t-1,»»»,/. Hence on H*iBG;R),y*Pj = - P}

if and only if k¡ is odd. But there is an odd kj, hence y is not the identity on

H*iG; R), hence y is not inner. Thus by the hypothesis, y = xoex,xeIiG). Hence

y* = a*, so if kj is odd, cr*(x2í¡j._1) = y*ix2kj-y), and if k¡ is even,

a  ix2kj-l) = x2kj-l-

This proves (5.2).

Finally we point out that by Theorem 4, Jacobson [12, p. 281], £6 has only one

outer automorphism (up to inner automorphisms), thus £6 satisfies the hypotheses

of (5.2). But H*iE6; R) = A(x3,x9,x11,x15,x17,x23) (see [4]), so if ex is the

involution of £6 having F4 as fixed point set, er*ix9) = — x9 and o-*(x17) = — x17

since 9=4-2 + 1 and 17 = 4 • 4 + 1.

The following result of Harris [8] completes the proof.

Proposition 5.3 (Harris). If G is a compact, connected, simply connected

Lie group, er: G -» G an automorphism of order 2, K the identity component of

the fixed point set of er, we may write H*iG; R) = U ®V, where U and V are

subalgebras such that ex* is the identity on U ando* multiplies the generators of

V by — 1. Moreover, if V contains a nonzero element whose degree equals the

dimension of G\K, then the map H*(G; R)-> H*(K; R) induced by inclusion is

an epimorphism.

Recall that ex*(x9) = — x9 and cr*(x17) = — x17, x9, x17 generators of

H*(E6; R). Taking U =A(x3,xu,x15,x23) and F=A(x9,x17) and noting that

dim x9x17 = 26 = dim £6/F4, an application of (5.3) shows that (£6,F4) satisfies

the hypotheses of (1.5).

6. The fibration £6 /F4 -* £7 / F4 -> £7 / £6. The purpose of this section is to

establish (1.4). To do this we show that the homotopy exact sequence of the

fibration £6/F4->£7/F4->£7/£6 is split when tensored with Q2. The splitting

is given by the Bott suspension map E:n}LE6lF4)-^nj+1(E1 /£6). We begin

with some general remarks.

Let K <= G <= L be compact connected Lie groups. Let a be an automorphism

of period 2 of G such that K is the identity component of the fixed point set of ex.

Harris [8] has shown that the Bott suspension map £: îtj(G/X)-+îtj-+1(L/G)

may be constructed as follows : Let v be a 1-parameter subgroup of L such that

(i) vH)gviï)~x = aig), ge G, (ii)  vit)k = kvit),  keK,  teR.  Let

s:njiGIK)^nJ+yisiGlK))
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be the ordinary suspension. Define F: s(G¡K)-> L\G by F(gK,t) = gv(t)G,

geG,teR. Then £ is the composition F*s : jt/G/K)-* nj+ y(L¡G). It is also shown

in [8] that if l:G-+G¡K is the projection and q:G\K^G is the map

q(gK) = ga(g)'"1', geG, then the composition l*q*: iij(G/K)-> iij(G/K) is the

same as the composition ôE:itj(GI K)-+tzj(GI K), d the boundary map,

ô:izJ+y(LIG)-*itj(GIK), in the homotopy exact sequence of the fibration

GIK-+L/K-+LJG. Thus £ serves as an inverse to B in the homotopy sequence

of G ¡K -* L/K -*■ L\ G if and only if q* serves as an inverse to /* in the homotopy

sequence of K-^G^G\K.

Since we have shown in §5 that q* gives a splitting of the homotopy sequence

F4-*£6-* E6\F4, when tensored with ß2, the above remarks make it clear that

(1.4) will be proved if we can establish

Proposition 6.1. There exists a l-parameter subgroup v of E-, such that

(i) y(l)gp(l)-1 = a(g), geE6, where a is the automorphism of E6 having F4 as

fixed point set, and (ii) v(t)k — kv(t), keF4, teR.

The proof of the existence of such a v proceeds as follows. Let S1 be the compact

Lie algebra described by (2.12), <f6 the subalgebra given by (2.16) and !F4 the

subalgebra of <?6 consisting of all derivations of M%. Then £F 4 czg(¡cz$1 are all

compact real forms. There is an automorphism <r : «f 6 -► <?6 defined by

(ih        \              ih
d + — ® a j = d-r-®a,     de & 4, a e M ?(0).

The fixed set of o is ár4, and o has period 2. We will define an automorphism

v: Sn -* «?7, v = exp adx,xa certain element of <f7, such that v restricted to S6 is

a. We will show that x may be chosen such that [x^4] = 0. The exponential map

Exp :S1^*E1 will be used to transfer these data to the simply connected Lie

groups F4 c: £6 c E-, (we will establish these inclusions later). Taking v(t)

= Exp tx, teR, vie will obtain the desired one-parameter subgroup, (i) is satisfied

since v\<o6 = ct, hence the inner automorphism g^>(Expx)g(Expx)~1, geE-,,

coincides with a on £6, and (ii) follows from [x3P4] = 0. We proceed with the details.

Proposition 6.2.   Let   x = ((e +f)n\2)%le Y® M38<= Sn, I   the   identity

matrix. Then

(i) [x&4] = 0 and

(ii) a is the restriction of the automorphism exp ad x of S1 to the subalgebra <?6.

Proof of 6.2. If d e &4, [xd] = [((e + f)n¡2)) ® /, d] = - ((e + f)n / 2)) ® d(I)
by (2.13), and d(I) = 0 since d is a derivation. Hence (i) is established. To prove (ii),

recall from  §2, that

[ih,e+f]    =  -2i(e-f),

[i(e-f),e+f]  = 2ift
and that
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iih,e+f) = 0,

(i(e-f),e+f) = 0,

hence if a e M%, using formula (2.14) we obtain

(adx)2t_1(¿n®a) = ( - l)V*_1¿(e -/)® a,

(ad x)2k(ih ® a) = (-l)kn2kih®a.

Therefore

,   x /** Ä   \ 'h   (,      n2     n* \
(expadx) ly-®a)  = y 11 - y, + 47 ~  - J ® ß

-^y^(7r-3T+5--...j®a

Since [x^"4] = 0, (exp ad x)d = d,de 1F4. Hence exp ad x = a and (ii) is proved,

and this completes the proof of 6.2.

Next we establish inclusions F4 <= £6 <= £7 of the simply connected forms.

Let £7 denote the adjoint group of S7 and E'6 the connected subgroup of £7

corresponding to the subalgebra ade.7(<f 6) of adr#7 (die adjoint Lie algebra). We have

the commutative diagram:

E'6\<=E1czGL(g1;R)

t       t Î exp

ads,(S6)<iz adgn^ gl(Sn;R).

X    î Î

Proposition 6.3.   E'6 is the simply connected form of this group.

Proof of 6.3. It suffices to show that the center of E'6 contains a nontrivial

element, since the center of the simply connected £6 is Z3. Let

z = — ® diag (X,X, - 2X),    X = 4n/3.

Then zeS6. We will show that exp ad z is a nontrivial element in the center of

£6. Let Y' <= T be the subspace spanned by e+f, i(e — f). We first compute the

eigenvalues of ad z acting on Sn. To do this, consider the complexification of Sn.

Then ad z acting on <f 7 ® C has the complexified form of the subspaces

(6.4) 2(M%3)®((ih\2)®M%),   e®Ml    f®M83

as invariant subspaces. For from (2.13), (2.14) and (2.17),
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(ad z) (d + (ih/2) ® a) = (ih/2) ® d(y) - <a,y},

(ad z) (e ® a) = [e, ih / 2] ® a v = ie® ay,

(ad z) (/® a) = [f, ih ¡2] ® ay = - ¿/® ay,

where  v = diag (X, X, — 21), d e Jr4, aeM3? We propose to show

Lemma 6.5.    The eigenvalues of exp ad z acting on Sn ®C are as follows:

(a) on (®(Ml)®(ih¡2)®M\)®C, all eigenvalues are 1,

(b) on (e®Ml)®C, all eigenvalues are exp 4ni¡3,

(c) on (f® M3) ® C, all eigenvalues are exp 2ni/3. Hence exp ad z acrs as the

identity on £^(M 3) © (¿n / 2) ® M3)® C, as multiplication by exp 4ni¡3 on

(e®Mf)®C and as multiplication by exp 27t¿/3 on (/®M3)®C.

Proof of 6.5. If p is an eigenvalue of ad z acting on S-, ® C, then p corresponds

to an eigenvector in one of the invariant subspaces (6.4). If (ad z) (d + (¿n/2) ® m)

= p(d + (¿n/2) ®m), de SF4, me Ml, then (¿n/2) ® d(y) - im, y)

= p(d + (¿n/2)®m) so d(y) = pm and — (m,y) = d, from which we obtain

- <»», y >(y) = pdOO = p2m.
Thus — m(yy) + y(my) = p2m. But yy = /L2(e1 + e2 + 4e3), and if m is written

in the form of (2.3),

3

m = Z oifii + al2 + bi3 + c23,    a¡ real, a,b,c Cayley,
i = l

then

my = X(ayEy + ct2e2 - 2a3e3 + a,2 - ib13 - ic23)

(using (2.6)-(2.8)), hence

y(my) = X2(alE, + <x2e2 + 4a3e3 + a12 + — b13 + — c23J ,

miyy) = X2lotyEy + a2e2 + 4a3e3 + a12 + — bi3 + — c23\,

and therefore

- <m,y>iy) = W - -j) (ois + c23) = p2m.

It follows that ( — 9/4)A2 = p2, and therefore that p = ± 2ni. The eigenvalues of

exp ad z are obtained by exponentiating, hence 6.5(a) is proved.

If (ad z) iAe ®m) = pAe ®m,O^AeC,0^meMl then

¿,4e ® my = pAe ® m,

and by writing m in the form of (2.3), and using (2.6)-(2.8) as above, we obtain
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iAx(ayey+a2e2-2a3e3 + ai2-\by3-Lc^

= pA(ayBy + a2e2 + a3e3 + ai2 + fo13 + c23).

Since one of a„ a,b,c # 0, we have either

iX = p,     — 2iX = p     or —— iX = p,

hence p = 4ni\3, — 8ni¡3 or — 2ni¡3. This proves 6.5(b)

Part (c) of 6.5 is proved in the same way.

Next we observe that the subspaces (6.4) are invariant under elements of ad^7^6.

This follows immediately from (2.13) and (2.14). Thus the transformation

ad (d + (ihj2)® m), de¿F4,meM\{0), has matrix representation

■  A  0   0  ■

0   B   0      ,

.  0   0   C .

where A, B, C are square matrices representing the action of ad(d + (ih/2) ® m) on

the subspaces (6.4). Thus exp ad (d + (ih / 2) ® m) has matrix

'  exp ,4        0 0

0 exp B      0

.0 0       exp C  _

and from 6.5, exp ad z commutes with all such elements of £7, i.e. with all elements

of E'6. Thus exp ad z e Z(E'6), is not the identity, and has order 3. This completes

the proof of 6.3.

Finally if £7 is not simply connected, the inclusion EJ <= £7 can be lifted to an

inclusion E'6 cz £7j where £7 is the simply connected form. We obtain

£4 <= £6 « £6 <= E7.

This, together with the remarks at the beginning of this section, yields the proof

of 6.1, hence the isomorphisms (1.4) are established.

7. Proof of Theorem 1.6. In this section we prove Theorem 1.6 by making use

of É. Cartan's classification of symmetric spaces. To begin, we recall that Harris

[8] has proved this result for the following pairs (G, K) :

(SU2n+1, S02n+1)  with L=Sp2„+1,

(SU2„, Sp„) with L= S04„,

(Spin2n, Spin2„_i) with L= Spin2n+I,

and by the main result (1.4) of the last section, the theorem holds for the pair

(E6,F4) withL=£7.
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The fact that in each of the above cases the inequality rank L — rank G 5¡ 1 holds

is easily checked. Moreover,

Sp2n+l/»^2n+l> S04n/C/2»»

Spin2n+1/Spin2„,       E7/E6x S1,

are symmetric spaces, and Uk x SUk x S1, hence in each of these cases LjG or

L\ M is a symmetric space, where M is locally isomorphic toGxS1. This shows

that (1.6) is satisfied for these pairs iG,K).

Now the pairs (G, K), where K is the identity component of the fixed point set

of an involution o of C, are classified by É. Cartan (see Helgason [9, p. 354]).

In addition to those mentioned above, we have the pairs iG,K) listed in the

following table (7.1). (We drop the assumption of simple connectedness for the

purposes of the table.)

Table 7.1

G K rank   G rank   K

1 SU2„ S02n 2n-l n

2 SUp+?        SiUp xUq)        p + q-l       p + q-l
3 SOp+g        SOp x SO„        r + s r + s ip = 2r,q= 2s)

4 r + s r + s (p = 2r, q = 2s + 1)

5 r + s r + s (p = 2r +1, q = 2s)

6 r+s+lr+s (p = 2r+l,q=2s+l)

7 S02„ Un n n

8 Sp„ Un n n

9 Spp+, Spp x Sp,, p + q p + q

10 £6 Sp4 6 4

11 £6 SU6 x SU2 6 5 + 1

12 £6 SO10 x S1 6 5 + 1

13 £7 SU8 7 7

14 £7 SO,2xSU2 7 6 + 1

15 £7 E6x S1 7 6+1

16 £8 S016 8 8

17 £8 £7 x SU2 8 7+1

18 F4 Sp3 x SU2 4 3 + 1

19 F4 S09 4 4

20 G2 SU2 x SU2      2 1 + 1

Observe that the case (Spin2„, Spin2„_.) is listed as type 6 in the table where

r = n-l, s = 0, (hence p + q = (2r + 1) + (2s + 1) = 2(n - 1) + 1 + 1 = 2n),

and SOt is a point.
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Proposition 7.2. The only pairs(G,K)satisfying the hypotheses of Theorem

1.6 are:

(SU2n+1)S02n+1),    (SU2n,Spn),   (Spin2ri,Spin2ll_1),    (£6,F4).

To prove this we use the following:

Lemma 7.3. // K has maximal rank in G, then H*(G; R)-+H*(K; R)

induced by inclusion, is not an epimorphism.

Proof of 7.3. If K has maximal rank in G, the Euler-Poincaré characteristic

xiGjK) is positive. (See Hopf-Samelson [11].) If H*(G; R)^H*(K; R) is onto,

then by Harris' result (Theorem 5.1(c)), GjK would have the homology of a

product of odd spheres. Since #(odd sphere) = 0, x(G/.K) = 0, a contradiction.

In the table (7.1) we have noted the ranks of G and K. All but the following

pairs are therefore eliminated by (7.3):

(a) (SU2n,S02n);

(b) (S02p+1 + 2s+1,S02r+1 x S02s+1)       (r,s#0);

(c) (£6)Sp4).

To complete the proof of (7.2) we show that in each of the cases (a)-(c), the map

H*(G; R)-> H*(K; R) is not an epimorphism. (Equivalently, HJJK; R) -* H+(G;R)

is not 1-1.)

The real cohomology of the simple groups is known (see Borel [3], Borel and

Chevalley [4]).

Recall that H*(E6;R) = A(x3, x9, x11; x15,x17, x23) and ff*(Sp4; R)

= A(x3,x7,x11,x15), hence the inclusion Sp4 <= E6 cannot be 1-1 in homology,

for H*iE6 ; R) contains nothing in degree 7. This eliminates (c).

Similarly, if r, s ¥= 0,

•"*(SC'2(r + s+l); R) = A(X3,X7, ■■■,X4(r + s+1)_5, Y2(r + s+yy_y),

H#(S02r+ y-,R)= A ix3,x7,-,x4r-y),

hence H+iS02r+y xS02s+1;R) has two independent generators in degree 3.

Thus the inclusion S02r+1 x S02s+1 ->S02(r+s+1) is not 1-1 in homology. This

eliminates (b).

Finally, recall that HJSU2b;R) = A(x3,xs,—,*,«,,_,) and H#(S02„; R)

= A(w3,w7,"-,w4b_5,j'2b-i). Let a be the automorphism of SU2„ with S02„ as

fixed point set.

If n = 2k, then Hit(S02n; R) has two generators of degree 2n — 1 = 4k — 1.

Thus, the inclusion ¿: S02n->SU2n is not 1-1 in homology.

If n = 2k + 1, and ¿*: íí*(SU2„; R)-> H*(S02„; R) is an epimorphism, then by

Harris' result (5.1), fi*(SU2:.; R) x U ® V, U the subalgebra generated by those x¡

such that ex*(x) = x¡, and F the subalgebra generated by those x¡ such that

ex*(x) = — x(. Moreover, ¿* is zero on the positive degree elements of Fand maps

U isomorphically onto Jî*(S02n ; R).
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From Jacobson [12, p. 281], ¿(SU2„)//(SU2n) = Z2, and a is of order 2 and

not inner. Hence (5.2) applies to SU2n, and we see that if deg x¡ = 4fc¡ + 1, then

o-*(x¡) = - x¡.

Now deg y2n-y =4k + l, and i* is onto, so y4k+1 = y2n_y = i*(tx4k+1 + d),

teR,d decomposable. Since i*(d) = y4k+ y — ti*(x4k+1) is primitive and decompos-

able, we have i*(d) = 0. Thus i*(tx4k+1) = y4k+i. But o-*(x4k+1) = - x4k+1, by

the remark of the preceding paragraph, hence

°*(y*k+i) = °*i*(tx4k+1) = i*a*(tx4k+1) = - i*(tx4k+y) = - y4k+1,

a contradiction, since a* is the identity on H*(S02„: R). Thus i* is not onto, and

case (a) is eliminated.

The proof of Theorem 1.6 is therefore complete.
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