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A class of recursively enumerable sets may be classified either as an object in

itself — the range of a two-place function in the obvious way — or by means of

the corresponding set of indices. The latter approach is not only more precise but

also, as we show below, provides an alternative method for solving certain problems

on recursively enumerable sets and their degrees of unsolvability. The main result

of the present paper is the computation, for every recursively enumerable degree a,

of the degree (in fact, isomorphism-type) of the index-set corresponding to the

recursively enumerable sets of degree a: its degree is a(3). It follows from a

theorem of Sacks [10] that the degrees of such index-sets are exactly those which

are ^ 0<3) and recursively enumerable in 0(3). In particular, this proves Rogers'

conjecture [9] that the index-set corresponding to 0(1) is of degree 0<4); partial

results on this problem have been obtained by Rogers [9] and by Lacombe

(unpublished). The most interesting immediate consequence of our result is a

different proof of Sacks' theorem [11] that the recursively enumerable degrees

are dense.

We refer the reader to Kleene [5] and Sacks [10] for our basic terminology

and notation. A useful summary of many results which connect degrees with the

arithmetical hierarchy is presented in [9], which is a good background to the

present paper since without it the latter would not exist. For an assortment of

results on classes of recursively enumerable sets the reader is referred to [2].

If e is a number and A is a set, then we define the partial function 0^ by setting :

®Ain)=UipyTiie,n,y));

we differ superficially from [5] by setting (7(0) = 2. Also, for each e and s we

define:

ne R' = í3y)y¿sT,íe,n,y);

if, for each e, we now let Re be the union of R°,Rl, •■•, then R0,R,,--, is an

enumeration of all recursively enumerable sets. If S is any recursively enumerable

set, then each number e such that Re = S is called an index of S.
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Definition 1.   The index-set Gísé) of a class sé of sets is defined by:

e e Gísé) = Reesé.

In particular, the index-set Gia) corresponding to a degree a is defined by:

e e Gia) = Re is of degree a.

Finally, we shall use the following convention: for any function y, we say that

lims}>(s) exists if and only if there is a number z and a number s* such that y(s) = z

for all s > s*, in which case lims y(s) = z.

In the first section of the paper we compute upper bounds for the degrees of

index-sets, and in the second section we prove Lacombe's result in the course of

showing the existence of a certain representation needed for the main theorem. In

the third section we give a new proof of Rogers' results; whereas Rogers adapted

Friedberg's construction [4], the proof we give is direct and provides an alternative

solution of Post's problem as well as an exact classification of the index-sets

corresponding to all many-one degrees. The main theorem is contained in the

fourth section and it may be useful here to indicate how we deduce from it that the

recursively enumerable degrees are dense (in other words, if a and b are recursively

enumerable degrees such that a < b, then there is a recursively enumerable degree c

such that a <c <b). We show in §1 that there is a predicate ro of degree £ a

such that for all e:

eeGía) = í3r)ís)í3t)r0íe,r,s,t).

The main step in our classification of G(f>) then consists of showing that if T

is any predicate of degree ;£ b, then there is a recursive function y such that for

all e : Ryie) is of degree ce such that a^ce^b and

yíe)eGíb)^í3r)ís)í3t)ríe,r,s,t).

Suppose then we consider the case when T = T0 and let y0 be the corresponding

recursive function. By the fixed-point theorem (which can be found, for ex-

ample, in [13]) there is a number e* such that Re, = Ryoie^, and it follows

immediately that y0(e*) # G(a) and To(e*) t Gib) so that the degree ce. of Ryo(e.)

is such that a < c> < 6. Notice that we have not been forced to arrange

that a < ce. and ce* < b simultaneously ; this is done instead for us by the fixed

point theorem. We still have troubles using this approach, but they are clearer and

so rather easier to overcome. A much simpler example of this procedure is used in §3

to provide an alternative solution to Post's problem (which is the particular case

of the density-problem when a = 0 and b = 0(1) but the advantages of it are

only really felt in the general case. For, in §4 we need to be capable of handling sets

of degree up to 0(4), whereas in §3 we only deal with sets of degree up to 0(3).

The classification of the set G(0U)) constituted a major part of the author's
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doctoral dissertation (Manchester, 1963) written under the direction of Dr.

Robin Gandy. At an early stage in the work, the author announced a false result

to a meeting of the Association of Symbolic Logic (Leeds, 1962), and he is grateful

to Professor Georg Kreisel for informing him of Lacombe's result which it

contradicted.

1. Computing upper bounds. We first need some discussion on the classification

of index-sets. A special case of a set P being recursive in a set Q is that of P being

many-one reducible to Q, in other words there is a recursive function </> such that

neP = cpiri)e Q for all n. P and Q are said to be of the same many-one degree if

they are many-one reducible to each other. A more specialised case still is when P

is one-one reducible to Q, in other words when the function 4> above is one-one.

These concepts were introduced by Post [8]. It has been proved by Myhill [7]

that if P and Q are one-one reducible to each other then they are recursively

isomorphic, in other words there is a one-one recursive function ranging over

the natural numbers which maps P onto Q. Hence a classification within the

arithmetical hierarchy by means of one-one reducibility is in a sense the best

possible. However, for any set P and class sé of sets it is easy to show that if P is

many-one reducible to GCse) then P is one-one reducible to G(j/) ; a proof may

be found on p. 133 of [9]. It is usually unnecessary, therefore, to distinguish

between one-one and many-one reducibility when dealing with index-sets.

Definition 2. For each degree a and number n, £„(«) is the class of all sets

expressible by a predicate form with n alternating quantifiers the first of which is

existential and n„(a) is the class of all sets expressible by a predicate form with n

alternating quantifiers the first of which is universal, where in each case the scope

of the quantifiers is of degree i£ a. We shall refer to E„(0) and n„(0) simply as

£„ and H„ for all n.

Clearly, if a < b then S„(a) c I„(6) and n„(a) c n„(6) for all n. Hence, in

particular, if a is a recursively enumerable degree then E„ <= L„(a) c E„+1 for all

n > 0, since 2„(0(1)) = Z„+1 by Post's theorem (see [5]) for all n > 0. Also, it

follows from well-known results in [5] that, for all n, the degree of each element

of 2„+1(a) is recursively enumerable in a(n) and so g a(n+1). By the hierarchy-

theorem [5], X„(a) d: n„(a) and n„(a) 4: I„(a) for all a and all n > 0. In fact,

t is shown in [5] that, for each a and n > 0, there exists an element S of £„(a)

such that a set belongs to S„(a) if and only if it is one-one reducible to S (it follows

immediately that £ plays a similar role for n„(a)) ; of course, there are infinitely

many such elements of S„(a), but by Myhill's theorem they are unique up to

recursive isomorphism. The procedure for classifying an index-set G is then to

show that G belongs to a particular £„(a) or n„(a) and afterwards attempt to

prove that every element of that class is one-one reducible to G. The major

difficulty may be expected to lie in the latter part of the classification, in other

words in obtaining optimum lower bounds. Upper bounds are usually compar-
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atively straightforward using, if necessary, what Rogers calls the Tarski-

Kuratowski algorithm. This consists of defining the set G under consideration in

prenex form in the lower predicate calculus, in such a way that the scope of the

quantifiers is a predicate whose degree is bounded in some useful way, and then

collapsing like quantifiers (in all the cases considered by Rogers, the scope is most

usefully chosen to be recursive but this is unsatisfactory for our present purposes).

As this can only be done in finitely many ways given the original defining predicate,

a minimal classification may be obtained relative to that predicate. We shall

now prove two lemmas, the first of which provides an upper bound for all index-

sets corresponding to many-one degrees. Our use of the Tarski-Kuratowski

algorithm is very straightforward and so we not use the special symbolism in-

troduced for this purpose in [9].

Lemma 1.    If sé is any many-one degree, then G(j</)eE3.

Proof. If sé contains no recursively enumerable set then Gísé) is the null set

and trivially belongs to E3. Orherwise, let A be a recursively enumerable set

belonging to sé. Then we may immediately write:

e e Gisé) s (3/) (lg) in) [(3y)T1(/, n, y)&(3y)T1(g, n, y)

&íz)ÍT,íf,n,x) ^ineRe= Uiz)eA))

&íz)ÍT,íg, n,z)^ineA= L/(z) 6 Rejj].

Now, by removing -> and by standard contraction we deduce that there is a

recursive predicate A such that:

eeGisé) s (3/)(3g)(n)(p)(3q)A(/,g,n,p,o,e).

It easily follows that Gise)ezZ3.

The next lemma provides upper bounds for all index-sets which correspond to

degrees.

Lemma  2.   // a is any degree, then Gia) e E3(a).

Proof. If a is not a recursively enumerable degree then G(a) is the null set and

trivially belongs to E3(a). Otherwise, let A be a recursively enumerable set of degree

a. We may immediately write:

e e Gia) = Re is recursive in A &A is recursive in Re.

Since two recursively enumerable sets are recursive in each other if and only if

their complements are recursively enumerable in each other, it follows that :

e e Gia) = (3/)Í3g)in) [(n e Re a í3y)TA,íf, n,y))&

(n eÄ = í3z)TR,'íg, n,z))].
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The next step is not so obvious:

e e Gia) m (3/) Qg) in) [in e Re s (3y)Tf(/, n, y))

&íneA = í3s)í3z)2ÚsÍTVig,n,z)

& íuUXu i K -* i3v)TAif, u, v))))].

Now, by removing = and by standard contraction it will be found that there is a

predicate A, expressible in both two-quantifier forms with a scope which is recursive

in A, such that:

eeGía) = í3f)í3g)ín)Aíf,g,n,e).

It easily follows that Gia)el,3ia).

It remains now to compute lower bounds for the degrees of the index-sets in

which we are interested. In the next section we introduce a system of representation

which we shall need for this purpose.

2. Representations for E3 and S3(a). Before we describe these representations,

there is one point which needs a little discussion. As we have already mentioned,

our procedure for computing lower bounds in each case involves showing that a

certain set S is many-one reducible to the index-set Gísé) of a given class sé.

Suppose we say that a sequence {Ck} of recursively enumerable sets is itself

recursively enumerable if there is a recursive function y such that Ck = Ryik) for

all k (some discussion and alternative definitions may be found in [2] and [14]).

Then our task is to show that there is a recursively enumerable sequence {Ck}

such that for all k : k e S = Ck e sé. In each case, it is possible to compute an index

of the corresponding function y but, since it would be very tedious, we shall (as is

usual) be content merely to describe an effective enumeration of {Ck}.

The following lemma provides the most useful representation for S3 ; we shall

use it in §3.

Lemma 3. i/ SeE3, then there is a uniformly recursively enumerable

sequence {Lkj} such that for all k:

keS = (3e)(/)/èe (Lfc; is infinite),

k$S = íe)ÍLke is finite).

Proof.    Since S e S3 there is a recursive predicate F such that for all k :

keS = (3e) (u) (3u)r(/c, e, u, v).

We first define a uniformly recursively enumerable sequence {SkJ} by setting:

xeSke = Íu)ugxí3v)rík, e, u, v).
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It can be seen that for all k:

keS =í3e)ÍSke is infinite).

We now obtain the required sequence {LkJ} by setting

£fce  =   [_J   Skf
fee

for all k and e.

If Se~L3, M is a recursively enumerable set and

Mk = {2e • 3* | e e M y x e Lke}

for all k, where {Lkj} is the sequence corresponding to S whose existence is shown

in Lemma 3, then it is not difficult to prove that for all k:

keS-*Mk is recursive,

k £ S -* M is recursive in Mk.

It easily follows by letting M be of degree 0(1)that every element of n3 is one-one

reducible to G(0(1)); this was first proved by Lacombe, We shall not give a more

detailed proof of Lacombe's result here, since it is entirely superseded by the

exact classification obtained in the next section and in any case we follow a similar

but more general line of reasoning in the proof of Lemma 4. Incidentally, notice

that Lacombe's result does not remain true if 0(1) is replaced by an arbitrary

recursively enumerable degree. For, not only is G(0) an element of Z3, but by a

theorem in [10] (originally due to Friedberg) there is a recursively enumerable

degree a such that 0<a<0(1) and a(1) = 0(1), whence it easily follows that

X3(a) = L3 and so Gia)el,3.

The next lemma provides the representation for 23(a) that we shall use in §4.

Let us say that a sequence {SXi,xj} is uniformly of degree ^ a if the predicate A,

where Aix,xu---,xn) = xeSXI  Xn for all x,x,,---,x„, is of degree S a.

Lemma 4. If a is a recursively enumerable degree and s e £3(a), then there is

a uniformly recursively enumerable sequence {Lkj} which is uniformly of degree

;S a and such that for all k, Lki and LkJ are disjoint if i # y, and

ke S -» (3e) ÍLke is of degree a & ij)j<e ÍLkj is recursive)),

k $ S -> (e)ÍLke is recursive).  .

Proof. Let A be a fixed recursively enumerable set of degree a, and for each

s let A" be the finite subset of A enumerated up to stage s in some fixed recursive

enumeration of A. Since Se E3(a), there is a number c such that for all k:

keS = (3e) (u) (3u)Tf (c, k,e,u, v).

Let us define a uniformly recursively enumerable sequence {Skji} by setting:
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x e Skeu s iv)vgxi3s)sèxTA3ic, k, e, u, v).

We first claim that {SkJi} is uniformly of degree 5Í a. For, since A is recursively

enumerable, the predicate A, where Aik,e,u,v,x) = i3s)s^xTA\c,k,e,u,v) for all

k,e,u,v and x, is recursive in A. Our second claim is that for all k:

keS = (Be)(u)ÍSkeu is finite).

To prove this, suppose first that keS. Then there is a number e such that for all u

there exist numbers vu and s„ such that T3" (c,k,e,u,vu) is true for all s 2: s„.

If for each u, we set x„ = max(yu, s„) then it easily follows that if x ^ x„ then

x $ Skeu, and so Skeu is finite. Suppose on thel other hand that k $ S. Then it is

fairly clear that for each e there is a number u such that x e Skeu for all x, which

completes the proof of our second claim. Now, for each k,e and y, we define:

Skey = U      Skeu-
u¿y

Clearly, {SkJI} is uniformly recursively enumerable, uniformly of degree ^ a and

such that for all k:

keS = i3e)íy)ÍSkey is finite),

fc*S = (e)(3y)(u)Bà,(x)(xeSL).

Finally, for each k and e, we set :

Lke={T-y-5x\yeAyxeS*key}.

It is clear that {Lkj} is uniformly recursively enumerable, uniformly of degree

^ a and such that for all k, Lki and L^- are disjoint if i #/ Now suppose that

k$S. Then, for each e, there is a number y such that if u Siy, then 2e • 3" • 5xeLke

for all x, if m < y and « e .4, then 2e- 3 "• 5 xe Lke for all x and if u < y and u$A,

then 2e • 3" • 5*e Lte for only finitely many x. It easily follows that Lke is recursive

(though not uniformly so) for all e. Suppose on the other hand that keS. Then

there is a least number e such that for all y:

ytA=í3x)í2e-y-5xÍLke).

It follows that A is recursive in Lke and so, as {Lkj} is uniformly of degree ^ a, Lke

is of degree a. Clearly, by our remarks in the case k$S, if j < e, then LkJ is recursive,

which completes the proof of this lemma.

The rest of the paper will be mainly devoted to proving (by means of these

representations) that the upper bounds computed in §1 are in fact the best possible.

3. Many-one degrees and Post's problem. Let 0 be the class of all recursive

sets excluding the empty set and its complement) and JT be the class of all creative

sets. It was shown by Rogers [9] that both G(á?) and G(jf ) are of the highest
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recursive isomorphism type possible for elements of E3 ; in this section we shall

extend his result to Gísé) where sé is any many-one degree that contains an

infinite recursively enumerable set whose complement is nonempty. Since we

have proved in Lemma 1 that Gísé) e E3, it remains to prove the following theorem.

Theorem 1. If SeZ3 and sé is any many-one degree that contains an

infinite recursively enumerable set whose complement is nonempty, then S is

one-one reducible to Gísé).

Proof. It is easy to show (and well-known) that 0 is a many-one degree

satisfying the conditions of the theorem, but the case when sé = 0 has already

been accounted for by Rogers so we shall assume that sé # 0. Let A be an

arbitrary fixed infinite recursively enumerable set belonging to sé. We shall define

a uniformly recursively enumerable sequence {Bk} such that, if keS, then Bk

differs from A by a finite set and, if k £ S, then A is not recursive in Bk. Instead of

directly enforcing that A is not recursive in Bk we shall arrange that a simple set H

of the same degree as A is not recursive in Bk ; this shortens the proof. The existence

of such a simple set is known from Dekker's work [1]. We cannot use H throughout

the proof instead of A since we cannot in general assume that sé contains a simple set.

Let {Lkj} be a sequence of the sort shown to correspond to S in Lemma 3, and

for all k,j and s let Lskj be the finite subset of LkJ enumerated up to stage s in the

recursive enumeration of the sequence {Lkj} induced by a fixed recursive enu-

meration of the sequence {Skj} in Lemma 3. Let Xkj be the greatest element of

LskJ and, if Lkj is finite, let Xkj be the largest element of Lkj. Then if k e S, there is a

number ek such that if e < ek then limsA|e exists and is equal to Xke, and if e 5ï ek

then linyl^ does not exist. On the other hand, if k $ S, then lims2¿ exists and is

equal to kke for all e. Notice also that if /^ e, then kkf ^ Äke for all k,e and s.

We shall define Bk stage by stage simultaneously with some functions and

sets which are necessary for its definition. For each s, let As and Hsbe the finite

subsets of A and H that have been enumerated up to stage s in some fixed recursive

enumerations of A and H. Also, we shall let Bk denote the finite set of numbers

which have been put into Bk through our procedure (below) up to stage s. First, we

define Bk to be the null set. Then for all k, e, n and s we set :

e°(e,n)   = 0,

f nyy<sTB,Ke,n,y)  if(3y)^sTf-(e,n,y),
6*    ie,n)   =   1

( 0   otherwise,

6lie,n) =  Uieskie,n)).

It can be seen that if 0*k(n) is defined for all n then ®Be %n) = lims0£(e, n) for all n.

Hence, H is recursive in Bk only if there is a number e such that for all

n: ne H s lims0£(e, n) = 0 and n$H = lims0j*(e, it) » 1. (Notice that since we are
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letting [7(0) = 2, 0£(e, n) takes the values 0 and 1 only if 4(e, n) > 0.) We shall

arrange that if k $ S then there is no such number e. For this we need the sets

Fke and numbers %ske defined for each k,e and s by:

it 6FI s Que, n) = 1 & im)m< M(e, m) - 1 - m # ÍF),

t£ = max{£tr(/,m)|/^ e& r ^ s& meF^}.

Now, for each s, if there is a number e such that /Ltse rg z ^ t£,, then we say that

z is restrained from Bk by e at stage s. Finally, we let Bsk+1 consist of Bk together

with those elements of As which are not restrained from Bk at stage s. This com-

pletes the construction.

Let k be a fixed element of S, so that Lke is finite for all e. It follows that there

is a stage se such that Xske = Xke for all s ^ se, and every element of Bk less than Xke

belongs to BkSe. We may now define for each e a recursively enumerable set Fe by

setting:

neFe = i3s)s>SeineFske).

We cannot (and need not) in general suppose that {Fe} is uniformly recursively

enumerable.

Lemma  5.   For each e, if neFe, then ©f"(n) = l.

Proof. Fix e and n. If neFe, then there is a stage s' > se such that neFke

and so of course Qskie,n) = 1. Therefore, ek\e,n) > 0 as C/(0) = 2. Suppose now

that s ^ s'. Then xske ̂ efcs(e, n) so that as s ^ s' > se no number ^ s*k\e, n) enters

Bfc as stage s. By induction it follows that Qsk(e, n) = 6k\e, n) = 1, and so

0f(n) = limAV,n) = l.

Lemma   6.   Fe is finite for all e.

Proof. Fe is recursively enumerable and so (as H is simple) cannot be an

infinite subset of H. Consider then a number e for which there is a number n*

such that n* eH n Fe. By Lemma 5 there is a stage s* > se such that n* e Hs

and 0fc(e, n*) = 1 for all s > s*. It follows that if s > s* then Fke contains no

numbers exceeding n* and so the only elements of Fe which exceed n* are those

which belong to Fke for some s such that se< s ^ s*. There are only finitely many

such numbers and so in this case Fe again cannot be infinite, which proves the

lemma.

Lemma 7.   For each e, Ofk is not the representing function of H.

Proof. Suppose, for the sake of a reductio ad absurdum, that there is a number

e such that 0 f" is the representing function of H. Now, Fe is a finite subset of H

by Lemmas 5 and 6 but H is infinite since H is simple. So let ñ be an element of H

which does not belong to Fe. Since ñeff there must be a stage s > se such that
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Qlíe, ñ) = 1 for all s > s, whence as ñ £ Fe there must at every stage s > s be a

number n < ñ such that 0£(e, n) = 1 and n e Hs. Since lims 0¿(e, n) exists for all n it

easily follows that there is an element n of H such that Of"(n) = 1, which

contradicts our initial assumption.

This completes our proof that if k $ S then H is not recursive in Bk, and so A is

not recursive in Bk; it follows immediately that Bk$sé if k$S.

Now let k be a fixed element of S. In this case there is a number ek such that

Lke is finite if e < ek and Lke is infinite if e ^ et. It follows that if e < ek then Fe is

finite (the proof of this is exactly the same as that for all e when k e S).

Lemma  8.    // Lke is finite, then lims xke exists.

Proof. If Lke is finite, then Lkf is finite for all/< e (this follows from the way

we defined {Lkj} in Lemma 3). Hence, Ff is finite for all/í£ e by Lemma 6. Also

if n e F{ then limset(/, n) exists by Lemma 5. It easily follows that lims ike exists.

It follows from Lemma 8 that only finitely many numbers are restrained from

Bk by numbers e < ek. Let the largest such number be nk. Then, if n e A with

n > nk, there will be a stage s such that neAs, Xke> n for all e 2; ek and so

n e Bk. Hence, Bk differs from A by a finite set and so Bk belongs to sé. But this

means that we have proved that for all k:

keS = Bkesé.

The theorem follows immediately now from our remarks in §1 and §2.

Theorem 2. If sé is any many-one degree that contains an infinite recursively

enumerable set whose complement is nonempty, then the degree of Gísé) is

0(3).  Also  G0OeE3-n3.

Proof. It follows from Lemma 1 that the degree of Gísé) is ^ 0(3) and it

follows from Theorem 1 that the degree of Gísé) is ^ 0(3). The rest follows from

remarks in  §1.

In fact, we have proved that if sé', and sé2 are any two many-one degrees which

satisfy the conditions of the theorem then Gísé,) and G(sé2) are recursively

isomorphic and of the highest isomorphism-type possible for elements of 23.

Notice that it also follows from the proof of Theorem 1 that if a is any recursively

enumerable degree then every element of 23 is one-one reducible to Gia) so that

G(a)^n3. One consequence of this is that G(0(1)) is not recursively isomorphic

to (and so certainly not equal to) G(0), which was proved by Rogers and (if proved

directly as above) provides an alternative method for solving Post's problem.

This solution can be made fully effective by observing that as G(0)e£3, it follows

from Theorem 1 that there is a recursive function y such that for all

k:keGÍ0) = yík)eGÍ0(1)).
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By the fixed-point theorem there is a number k* such that Rk* = Ry(k*y and it is

clear that then k* 4 G(0) and k* $ G(0(1>) so that Rk* is neither recursive nor of

degree 0(1). In fact, of course, it follows from Theorem 1 that if A is any non-

recursive recursively enumerable set then there is a nonrecursive recursively

enumerable set in which A is not recursive. In the next section, however, we

shall prove much stronger results than these.

4. The main result and the density-problem. We shall now compute the

isomorphism type of G'b) for every recursively enumerable degree b. In order to

obtain this result alone a slightly simpler construction would be sufficient, but we

shall also be deriving Sacks' theorem that the recursively enumerable degrees are

dense; since all the hard work is necessarily done in the process of classification,

this should cause no confusion. We showed in Lemma 2 that G(b) e £3(ft) and so it

remains to prove the following theorem.

Theorem 3. If b is any recursively enumerable degree and SeS3(A), then S

is one-one reducible to Gib).

Proof. It has already been proved (by Rogers) that every element of S3 is one-

one reducible to G(0) and so we shall assume that b # 0. Let a then be an arbitrary

recursively enumerable degree < b, and let A and B be fixed recursively enumerable

sets whose degrees are a and b. Our only purpose in introducing a and A into the

construction is to derive the theorem of Sacks mentioned above. We shall define a

uniformly recursively enumerable sequence {Ck} such that A is recursive in Ck

for all k, and such that, if k e S, then Ck is of degree b and, if k $ S, then B is not

recursive in Ck. For convenience, we shall assume that B is a recursively enumerable

set whose complement is retraceable. The existence of such a set in any recursively

enumerable degree follows from Dekker's work [1] and is proved in [3]; the

property that B now has which is useful here is that B is recursive in every infinite

subset of B (this is also proved in [3]; further discussion of recursively enumerable

sets with retraceable complements may be found in [14]). It follows that B has no

infinite subset which is recursively enumerable in A, since otherwise it would have

an infinite subset which is recursive in A and in which B is not recursive.

Let {Lkj} be a sequence of the sort shown to correspond to S in Lemma 4, and

for all k,j and s let Lskj be the finite subset of LkJ enumerated up to stage s in some

fixed recursive enumeration of the sequence {Lkj}. For each k, we shall define Ck

to be of the form A0 u Ck0 U Ck, u •••, where

A0 = {T+x\xeA}

and Cke c Lke for all e; clearly, A is recursive in Ck as A0 is disjoint from the

sequence {Lkj}. We shall also arrange that, if keS and ë is then the least e such

that Lke is of degree b, then Ck C\ Lk^ is finite, and if fe 4 S, then Ck r\ Lke is finite

for all e. This should help to explain some of the definitions below. Our problem
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is to transform the representation {Lkj} in such a way that B is recursive in Ck if

and only if keS. We do this by extending and combining the methods of the

previous section with an essentially combinatorial procedure for dealing with

situations in which a certain partial recursive functional may interfere infinitely

often with an opposed requirement of lower priority; this happens when the

functional is itself disturbed by an opposed requirement of higher priority such as,

in the present case, the requirement that A0 c Ck (at any rate, when A0 is not

recursive). Different methods have been introduced by Sacks for tackling this

sort of situation, notably in [11] to prove that the recursively enumerable degrees

are dense.

One again, we shall define Ck stage by stage simultaneously with some functions

and sets which are necessary for its definition. For each s, let A0S and Bsbe the

finite subsets of A0 and B that have been enumerated up to stage s in some fixed

recursive enumerations of A0 and B. Also, we shall let Csk denote the finite set of

numbers which have been put into Ck through our procedure up to stage s. First,

we let C°be the null set, and then for all k,e,n and s we set:

4(e>n) = °>

f W,i.T?fc. n, y) if (3y),SsT?*(e, n, y),
Bk+1ie,n) = \

I 0 otherwise,

6lie,n) =  Ui4ie,n)).

Obviously, if 0ek(n) is defined for all n, then 0gk(n) = lims 0¿(e, n) for all n. Hence,

B is recursive in Ck only if there is a number e such that lims 6kie, n) exists for all n

and describes the representing function of B. (Notice once again that since we are

letting [/(0) = 2, dlie, n) takes the values 0 and 1 only when skie, n) > 0.) We shall

arrange that if fe 4 S then there is no such number e. To this end we define a set

Fke for each k,e and s by:

neFl = 6lie,n)

= 1 & (m)m<„[0£(e, m) = 1 -> (m ¿ Bs y (3r),i<rSs(£¿(e, m) # zrk  \e,m)))].

Now, for each fe, e and s, and for every n e F£*l we say that a number z ^ ssk+ x(e, n),

which does not belong to Csk, begins to be restrained from Ck by @e through n

at stage s -1- 1 if at stage s it has not restrained from Ck by @f for any/ < e (through

any number) or by &e through any number :g n ; such a number then ceases to be

restrained from Ck by 0e through n at a later stage s' + 1 if and only if

ekie,n) = ek+\e,n) but Esk+\e,n) # skie,n). Finally, we let Csk+i consist of Csk

together with all elements of As0+ \ and (for each e) all elements of L*k* ' which are

not restrained from Ck by &f for any /^ e at stage s + 1. This completes the

definition of Ck.
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Let k be a fixed element of S. It is clear from the definition of Ck that Ck n Lke

is finite unless infinitely many elements of Lke are permanently withheld from Ck

through our system of restraints. In order to make this more precise, let us define a

sequence {De} by setting:

zeDe = (3s)(r)r>s(3/)/áe(3m)

(zis restrained from Ck by <5)f through m at stage r).

Then our assertion is that Ck C\ Lke is finite if De is finite for all e. Now, we shall

prove (amongst other things) that De is finite for all e. Let P° be the null set for all e.

Then for each e and s we set :

nePse+1 m n6FL+1&(z)^Er.(e,n)([ze^l0-*ze^]

&(/%■ <J> g LkJ ̂ izeCskyze Djj]

&[0)/<4(zeion£1y)-»(z6C|Vz6D._1 V z is re-

strained from Ck by 0e through n or through some

number m <n such that meP*+1 at stage s 4-1)]).

Finally, we define Pe for each e by:

nePe = (35)(neP:).

Clearly, P0 is recursively enumerable in A and if e > 0 and D,- is finite for all j < e

then, as LkJ is recursive for ally < e, Pe is recursively enumerable in A. We cannot

(and need not) in general suppose that {Pe} is uniformly recursively enumerable

in A, since we cannot assume that the sequence {Lkj} is uniformly recursive.

Lemma  9.   For each e, if nePe, then ©^"(n) = 1.

Proof. Let e be fixed. If n e Pe then there is a stage s such that n e Pes. We

claim that, for any n and s, if nePse, then e£(e,n) = ££(e,n) for all r > s; clearly,

since ne PI implies that neFke and so 0£(e,n) = l, it then follows that

®cek(n) = 1. We shall prove our claim by induction on n with s fixed but arbitrary.

Suppose then that our claim is true for this fixed s and all m < n ; suppose also

that f 2; s and 4(e, n) = ek(e, n) for all r such that s ^ r ^ f. We wish to prove

that Efk+1ie,n) = E'kie,n). Notice that e£(e,n)>0, since 0t(e,n) = l implies that

skie,n)>0, and so 4+1(e,n) can only differ from erkie,n) if some number

z ^ erkie, n) is put into Ck at stage f. We now show, assuming our induction hypothe-

sis, that this is impossible. First, if z ^ e£(e, n) and z e .40, then z e .¿ê- x (since

ejfe, n) = 4(e, n) and n e P*) so that z e C¡¡!- x and z does not actually enter Ck at

stage r. Secondly, if z :g e£(e, n) and zeLkf for some /<e, then zeC£_1 or

z e D/) so that again z does not enter Ck at stage r. Lastly, if z 5¡ £¿(e, n) and

ze^í0 nLfcf for all f <e, then one of the following cases holds: (i) zeCsk~l,

(ii) zeDe ,, (iii) z is restrained from Ck by 0e through n at stage s, (iv) z is re-
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strained from Ck by 0e through some element m < n of PJ at stage s. If either (i)

or (ii) holds, then it is clear that z does not enter Ck at stage r. If (iii) holds, then z

is restrained from Ck by 0e through n at stage r, since e£(e, n) does not change as r

varies from s to f, and lastly, if (iv) holds, then z is restrained from Ck by 0e by

some element m < n of P* at stage r, since our induction hypothesis implies that

e£(e, m) does not change as r varies from s to r. Therefore, no number z < erk (e, n)

enters Q at stage r, and so e¿+1(e, «) = erk(e,n). This concludes the proof of our

claim and hence of the lemma.

The following lemma embodies the combinatorial principle that we mentioned

earlier. We say that a number is permanently restrained from Ck by 0e through

n if there is a stage after which it is always restrained from Ck by Qe through n ;

clearly, such a number is an element of De.

Lemma 10. For each e, if zeDe, then either there is a number n such that z

is permanently restrainedfrom Ck by &e through n or (in the case e > 0) z e De_,.

Proof. Suppose, for the sake of a reductio ad absurdum, that the lemma is

false. Then there is a number z which belongs to De but does not belong to De_, and

is not permanently restrained from Ck by 0e through any number. It follows that,

at infinitely many stages, z begins to be restrained from Ck by 0e through some

number (not necessarily always the same number). There are two cases to consider:

Case 1. z is restrained from Ck by 0e through only finitely many numbers. In

this case there is at least one number through which z is restrained from Ck by 0e

infinitely often; let ñ be the greatest such number. Then there is a stage s such

that at no later stage is z restrained from Ck by 0e through any number n > ».

On the other hand, there are infinitely many stages at which z is neither restrained

from Ck by Qj, for any j < e, nor restrained from Ck by 0e through any number

n :£ «, since there are infinitely many stages at which z begins to be restrained from

Q by 0e through ñ. It follows that there are infinitely many stages succeeding

stage s at which z is not restrained from Ck by 0,, for any j ^ e, and so z does not

belong to De. We conclude that Case 1 cannot occur.

Case 2. z is restrained from Ck by 0e through infinitely many different

numbers. It follows that there are numbers n0,nu—, and stages s0,s,,---, such

that, for each i, z begins to be restrained from Ck by &e through ni at stage s¡ but

at no previous stage was restrained from Ck by 0e through any number exceeding

n¡. Then, in particular, z is not restrained from Ck by &j for any j ;S e at stage

S| — 1, for each i. We conclude that Case 2 also cannot occur. Since either Case 1

or Case 2 must occur if the lemma is false, this contradiction proves the lemma.

It follows immediately from Lemma 10 that if z e De then there exist numbers

j, n such that j Si e and z is permanently restrained from Ck by &j through n. We

shall now prove that, for each e, Pe and De are finite, and &cek is not the representing

function of B. This follows from the next three lemmas.
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Lemma   11.   P0 is finite and, for each e > 0, if De-, is finite, then Pe is finite.

Proof. As we have observed above, P0 is recursively enumerable in A and, if

e > 0 and De_, is finite, Pe is recursively enumerable in A. Therefore, as B has

been chosen to be a recursively enumerable set whose complement is retraceable, Pe

cannot be an infinite subset of B, for the reasons given at the beginning of the

proof of the present theorem. Consider now a number e for which there is a number

n* such that n*eB(~\Pe. By Lemma 9 there is a stage s* such that n*eBs,

6skie,n*) = 1 and eskie,n*) = Ek\e,n*) for all 5 S; s*. It follows that if s ^ s* then

Fske contains no numbers exceeding both n* and s*. Consequently, Pe again cannot

be infinite, which proves the lemma.

There is a simple observation that we shall need in the proof of each of the next

two lemmas. This is that if there exist numbers which are permanently restrained

from Ck by 0e through n then there is a stage s such that 6kie, n) = 1 and

£kie,n) = £kie,n) for all r>s, and so ©«"(n) = 1.

Lemma 12. For each e, if Pe is finite and the set {«!©£*(") = 1} is infinite,

then there is an element m of B such that ©^"(m) = 1.

Proof. We shall prove that if {n | ©£"(«) = 1} is an infinite subset of Ë then

{n\ ©ek(n) = 1} <= Pe and so Pe is infinite; the lemma clearly follows from this.

Let us suppose then that {n 10^k(«) = 1} <= B. We claim that if ®cekin) = 1 then

there is a stage such that n e Pse at every later stage 5. We shall prove this by in-

duction on n, so suppose that ñ is fixed and that if ñ > 0 then our claim is true

for n < ñ. First, there is a stage s0 such that ñeFke for all s^s0. For, otherwise,

there would be a number m < ñ such that meB, ekie, m) = ej|(e, m) and 9kie, m)

= 0£(e, m) = \ for all s 5; ñ, which clearly contradicts our assumption that

{n\ ©£*(") = 1} <= 5. Secondly, there is a stage s, ^ s0 such that e£(e, n) — eskíe, ñ)

for all s^s,, as otherwise &cekíñ) would not be defined. Now, we wish to show

that there is a stage s2^s, such that if z ̂  lims askíe, ñ) and s^s2 then the following

three statements are true:

(1) zeAo^zeAo*,

(2) ij)j<e (z e Lkj ->izeCskyze Dj)),

(3) (/);<<. (ze^0nZ¡y)-»(zeCjt V zeDe„, y z is restrained from Ck by @c

through ñ or some element n < ñ of P/+ \ at stage s 4-1).

Since there is a stage after which (1) and (2) always hold, the only nontrivial

case is (3). Suppose then that zeCk,zeA0 and z e LkJ for all/ < e. If z is restrained

from Ct by @e through ñ at some stage after stage s,, then z is permanently

restrained from Ck by &e through ñ. Let us suppose then that z is not restrained

from Ck by @e through n at any stage after stage s,. It follows that at each stage

after stage s, there is either a number; < e such that z is restrained from Ck by ©,-

or there is a number n < ñ such that z is restrained from Ck by Qe through n. If

z$De-„ then there are infinitely many stages at which z is restrained from Ck
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by 0e through some number n < ñ. We deduce, by essentially the argument

under Case 1 in Lemma 10, that there is a number n < ñ such that z is permanently

restrained from Ck by 0e through n. But then 0^"(n) = 1, by the remark which

precedes this lemma, and therefore, by our induction hypothesis, there is a stage

such that ne PI at every later stage s. We may now conclude that there is a stage

such that ñ e Pe at every later stage s, and this completes the proof of the lemma.

Lemma 13.    For each e, if Pe is finite, then De is finite.

Proof. By Lemma 10 it is sufficient to prove that only finitely many numbers

are permanently restrained from Ck by 0e. Certainly, only finitely many numbers

are permanently restrained from Ck by 0e through any particular number n,

since there must then be a stage after which e£(e, n) does not change as s increases.

It remains to prove that 0e permanently restrains numbers from Ck through only

finitely many n. Suppose, for reductio ad absurdum, that 0e permanently restrains

numbers from Ck through infinitely many n. Then {n | <S)cekiri) = 1} is infinite, by

the remark that precedes Lemma 12, and so by Lemma 12 itself there is an element

n* of B such that &ce"in*) = 1. It follows as in Lemma 11 that there is a stage s*

such that if s ^ s* then Fke contains no number exceeding both n* and s*. But

then &e only restrains numbers from Ck through finitely many n, so that our

supposition is absurd. This proves the lemma.

It follows from Lemmas 11 and 13 that Pe and De are finite for all e, and then

from Lemma 12 that B is not recursive in Ck. This concludes the discussion of Ck

for feeS.

Now let k be a fixed element of S. In this case there is a least number e such

that Lke is of degree b and LkJ is recursive for all J < e. It follows, by the reasoning

contained in Lemmas 11,12 and 13, that P¡ and Dj are finite for all j ^ e. Hence,

Lke n Ck differs from Lke by a finite set and so is of degree b. But Lke n Ck is

recursive in Ck, as the sequence {Lkj} is disjoint, and so Ck is of degree ^ b.

In order to complete the proof of the theorem we need only prove the following

lemma.

Lemma  14.   For all fe, Ck is recursive in B.

Proof. We need only prove that Ck is recursively enumerable in B. Let k be

fixed but arbitrary. If a number is neither of the form 2 "■ 3" • 5" nor of the form

7* then it belongs to Ck; the set of all these numbers is recursive. If a number is

of the form T+1, then it belongs to Ck if and only ii xeA; the set of all such

numbers is recursive in A and so certainly recursive in B. Therefore, in order to

prove the lemma we have to show that the set {2e■ 3"• 5"|2e • 3" • 5"eCk} is

recursively enumerable in B. It is clear from the construction and from the defi-

nition of {Lkj} in Lemma 4 that for all e, u and v.

2e ■ 3" • 5veCk e (2e • 3" ■ 5veLke y 2e • 3" • 5"eDj).
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Since {Lkj} is uniformly of degree ^ b by Lemma 4, it remains to show that the

sequence {De} is uniformly recursively enumerable in B. By Lemma 10 we know

that for all e and z:

zeDe^í3f)fSeí3n)   (zetf/B),

where Hf„ is the set of all numbers which are permanently restrained from Ck by

Qf through n. Obviously, it is sufficient to show that the sequence {H¡n} is uni-

formly recursively enumerable in B. Now, if zeHfn, then there is a stage p such

that z is restrained from CK by &f through n at every stage q < p. This can only

be so if e\(f, n) = e'k\j, n) for all q < p, and hence there is a stage s> p such that

y e Ck = y e Csk for all y gL ekif, n). In fact, it follows from the construction and

the proof of Lemma 9 that we may write :

z e Hfn = (3s) [z is restrained from Ck by 0y through n at stage s

& iyhstUfriiiy eAo-^yeA^ci U)j<fiy eLkJ ->

(yeCÎV (3/)iaj(3m)(yeHim)))& 0);è/(yeLw-

(y e C£ V y is restrained from Ck by 0r through n at stage

s V (3m)m<n(y e Hfm) V (3i)« f(3m)iy e HJ)))].

Clearly, H00 is recursively enumerable in B and, since the sequence {Lkj} is uni-

formly recursive in B, it may be seen that in fact there is a recursive function ij/

such that for all /. n and z:

ze/7/n = (3y)TfOK/,H),z,y);

the existence of computations of the values of ip may be verified by induction

over the recursive well-ordering -< (of all ordered pairs) defined by

if u»i)<if 2^2) =f, <f2 V ifi =/2& m, < m2),

observing that every descending sequence in this ordering is finite. It follows that

{Hfn} is uniformly recursively enumerable in B and so Ck is recursively enumerable

in B. This completes the proof of the lemma.

We have now proved that if fe e S then Ck is of degree b. In other words, we

have finally proved that S is one-one reducible to G(/>), which completes the proof

of the theorem.

Theorem 4. // b is any recursively enumerable degree, then the degree of

Gib) is b(3\ Also G(fc)eS3(fe) - n3(fc).

Proof. It follows from Lemma 2 that the degree of G(i) is :£ é(3) and it follows

Theorem 3 that the degree of G(ft) is ^ b(3\ The rest again follows from remarks

Ml.
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In fact, we have proved that G(ft) is of the highest isomorphism-type possible

for elements of £3(ft). In particular, since £4 = S3(0(1)) we have proved Rogers'

conjecture [9] that G(0(1)) is of the highest isomorphism-type possible for elements

ofS4.

Theorem 5. If a and b are recursively enumerable degrees such that a < b,

then Gia) is one-one reducible to Gib).

Proof. Since a < b, it follows from Lemma 2 that Gia) e £3(ft) and so by

Theorem 3 is one-one reducible to G(ft).

The next theorem provides a sample of the results which follow from Theorem 3

and Sacks' work on the jump operator [10].

Theorem 6. (i) If c ^ 0(3) and c is recursively enumerable in 0(3), then

there is a recursively enumerable degree b such that c is the degree of G(b).

(ii) There is a recursively enumerable degree b such that 0 < b < 0(1)and G(b)

is of the highest isomorphism-type possible for elements of Z3. (iii) There is a

recursively enumerable degree b such that 0 < ft < 0(1) and Gib) is of the highest

isomorphism-type possible for elements of E4.

The most interesting corollary of Theorem 3, however, is that the recursively

enumerable degrees are dense:

Theorem 7. If a and b are recursively enumerable degrees such that a < ft,

then there is a recursively enumerable degree c such that a < c < ft. ÍSacks [11].)

Proof. Gia) is one-one reducible to G(ft) by Theorem 5, and so there is a

recursive function y such that for all e:

eeG(a) = y(e)eG(ft).

Moreover, the proof of Theorem 3 shows that y can be arranged so that Ry(e) is

of degree between a and ft for all e. By the fixed-point theorem there is a number

e* such that Re. = Rï(e«). Gia) and G(ft) are disjoint since a < ft, so it follows

that the degree c of Re* lies strictly between a and ft.

We note that the proof of Theorem 7 is fully effective, since the fixed-point

theorem enables us to actually compute e* from indices of A and B (fixed recur-

sively enumerable sets of degrees a and ft respectively, as in the proof of Theorem

3). In this connection it is worth mentioning that a different and more effective

proof of another theorem of Sacks can be obtained using this indirect method,

namely the theorem that if 0 < a < 0(1) then there is a recursively enumerable

degree c such that a\ c. Sacks' original proof of the latter result (which may be

found for example in [10]) suffers from the minor defect that two recursively

enumerable sets are produced one of which has the desired property but we do not

(in a sense) know which one it is; the alternative proof (various extensions of
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which will appear in [16]) does not suffer from this defect although of course it is

more difficult. It in fact seems strange that such a lot of extra work is necessary to

overcome a relatively minor defect; whichever approach we use it appears to be

unavoidable. One natural question that this raises, since the fully effective proofs

of these two theorems of Sacks have so much in common and since there exists a

much easier but less effective proof of one of them, is whether there is a much

simpler but less effective proof of the other, in other words of Theorem 7. We

cannot at present answer this question but an affirmative answer would be in-

teresting. Lastly, we note that with little extra trouble it is possible to prove the

following extension of Theorem 7 : if a and ft are recursively enumerable degrees

such that a < ft and a > 0, then there is a recursively enumerable degree c such

that a uc < ft and a | c. This may be proved using the methods of [11] or those

that we have used above.

Sacks has proved, for example in [12] and §6 of [10], a number of theorems

which assert, given a recursively enumerable degree a such that 0 < a, the exis-

tence of a recursively enumerable degree c which has a preassigned property (for

example, in [12], c is the degree of a maximal set) and is such that a :gc. The

indirect approach which we used to derive Theorem 7 provides a uniform method

for strengthening most of these theorems to assert that, if 0< a < 0(1), then

the corresponding recursively enumerable degree c can be arranged to be such that

a\ c. For example, we can prove:

(i) If a < 0(1) and a0 < a, < ••• is an infinite ascending sequence of simul-

taneously recursively enumerable degrees each < a, then there is a recursively

enumerable degree c such that a0< a, < ■■■ < c and a | c.

(ii) If 0 < a < 0(1)and ft is a degree which is Sï 0(1)and recursively enumerable

in 0(1), then there is a recursively enumerable degree c such that c(1)= ft and

a | c.

(iii) If0<a<0(1), then there is a degree c which contains a maximal set

and is such that a | c.

Martin [6] has proved the pleasing theorem that a recursively enumerable

degree c is the degree of a maximal set if and only if c(1)= 0(2), so in fact (iii) is a

consequence of (ii). Incidentally, it is relatively easy to derive an exact classi-

fication of the index-sets corresponding to the classes of all maximal sets and all

hyperhypersimple sets (see [14] for definitions): both of these sets are of the

highest isomorphism-type possible for elements of n4. (We recall that Rogers

[9] proved that the index-sets corresponding to the classes of all simple sets and

all hypersimple sets are each of the highest isomorphism-type possible for elements

of n3.) The proofs of these and other results will appear in [16]. Finally, another

application of some of the present techniques is contained in [15], where we

prove that there are two incomparable recursively enumerable degrees whose

greatest lower bound is 0.
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