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1. Introduction. The asymptotic behavior of the solutions of the nth order

nonhomogeneous differentia] equation

(l.i) yi9)+f(tty,yil\"'ty^-iy)-'hit)

will be considered. Conditions will be established in order that the solutions of (1.1)

essentially behave asymptotically as those of j>(n)= h(t). The part of the forcing

function h(t) which is dominant for large values of t will be called the primary

part of the forcing term. The forcing functions considered here will, generally,

have primary part tmeb', m and b teal. Sufficient conditions on fand h in order to

guarantee the existence of solutions of (1.1) for large values of / will be tacitly

assumed.

In [1, §§3.7 and 3.11], Cesari discusses known asymptotic results for equation

(1.1) when the equation is linear and the primary part of h(t) is a constant. Recent

results on the asymptotic behavior of the solutions of a homogeneous equation

are given in [2]-[4], [6], [7].

§2 of this paper is concerned with integrable forcing terms; that is,

\xh(t)dt is finite. The results of the remainder of the paper are developed for

h(t) of the form

h(t) = H(t)tmeb' + R(t),

where lim,_œH(r) = A # 0, and R(t) = o(tmeit) as t approaches infinity. The main

results give sufficient and in some instances, also necessary conditions for the

solutions of the equation (1.1) to possess an asymptotic behavior of the type

y(t)/a(t) ~ k / 0, where a(t) is determined by a primitive of h(t).

The following theorem due to Viswanatham [5] as utilized by Waltman [6], [7]

is useful here.

Theorem 1.1. If y(t) = p + j'Tf(s,y(s))ds, where f(t,y) is continuous and

monotonie increasing in y in the region R defined by \t — T\<a; \y—p\< b
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where a and b are positive real numbers; then y(t) — z(t) where z(t) is the maximal

solution of the differential equation z' =f(t,z) through (T,p)for t _ T.

An inequality which will be used in the following results is given in

Lemma 1.1.   Let ai = 0, b¡ — 0, r¡>0, and r = max,-r,  where  i = 1,2,•••,«.

If b¡> I for some i, then

Z atbV£ ÍZ  fl|] [Z  b,
i = i u = i     J  L¡ = i

2.  Integrable forcing terms.   The differential  equation (1.1)  is  considered

subject to the following set of hypotheses.

<2.i) |/(i,y,y(1),",y0'-1))| = Z g¡it)\y™\«,

n-l

z
i=0

where(2.1.1) r¡ > 0,   i = 0,1,—,n - I;

(2.1.2) gft) are continuous, i = 0,1, ••-,« — 1.

(2.2) f  | hit) | dt < oo.

The inequality in (2.1) need hold only for large values of t.

Theorem 2.1.   //  conditions   (2.1)   and   (2.2)   above   are   satisfied,   and

{00í(n~i"1)rigi(í)áí < oo, i = 0,1, ••-,« - 1, then there exist solutions y(t) of (1.1)

which have the asymptotic behavior y(,)(f)/f"_'-1 ~ a¡ # 0,  i = 0,l,---,n — I.

Proof. It will be established that the asymptotic condition is applicable to a

given solution y(t) of (1.1) provided the initial conditions of the solution satisfy a

certain inequality.

Integrating (1.1) « — fc times, yields for t _ t0 _ 1,

/'>(<)=      O0 + 0yt+-+0n_k_yt"-k-1

C (f-sY1-1-1

Í
1)!

'    (í-s)"-*-1

|f0    (n-fc-1)!

From this, the inequality

y(k)it)

f(s,yis),~',/-l>is))ds.

\tn-k-l

may be obtained, where]

úAk + Bk  fl/ís.yís),-,/-1^))!^
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A = [So + - + ̂ -»-iC**1]^*1"" + (n_¿_1)!  J" |*(s)| d5,

179

Bk =
(n-k-1)1 '

(2.4)

From (2.1), we have

y»\t)
ïAk+Bkrni\»-i-»>%(s)\-^

Jto  i = o 's
(n-t-l

for all k = 0,l,--,n — 1. Thus, using Lemma 1.1,

ds

"£   |y<*>(0

* = o
(B-t-l ^♦•lE^HErW*

where

and

n-l

A=   2Z   Ak,
k = 0

n-l

B=    2   B„
* = o

r  =   max r¡.

It should be observed that the above inequality does not hold if

|yo(o/ín"i_1|<i

for all i = 0,1,---,n — 1 and all large values of t. However, if this is the case,

E"»o|j,(i)(0/<*~,~1| is bounded and this is the conclusion which is ultimately

desired.

Applying Theorem 1.1 to the above inequality, we obtain as the associated

differential equation

(2.5) z' = B2   <*•-'-l*gl(tf.
¡ = o

The solutions of (2.5) are given by

pt      n-l

(2.6) z = Aexp      B2   !<,~'"1*«(i) ds,      r = l;
Jto       i = 0

(2.7) z1-'= A1-'+ (I - r)    Í B "2    s^'^'g^s) ds,      r # 1.
Jto        » = 0

If 0 < r — 1, then z(t) is bounded independent of initial conditions since the
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integrals in (2.6) and (2.7) are convergent. If r > 1, any solution z(f) as given in

(2.7) will be bounded provided

Al~r>ir-1)   f°°B   Z   ¿"-''""giis) ds.
Jto ¡ = 0

Since z(r0) = A, this corresponds to an appropriate choice of initial conditions

for the solutions of (1.1). For such a choice of initial conditions, any solution

y(i) of (1.1) may be continued to all t — t0. This follows from the fact that

"i   \/k\t)lf-k'1\^zit),
k=0

where z(i) is bounded.

From (2.3), with fc = « — 1, we obtain the equation

y("-1)(i) = cn_1 4-   ¡'his)ds-   i'fis,yis),-,/'-1\s))ds.
Jto Jto

Noting that Jt™ his) ds converges and that the integral /,"/(>, yis), ■■-,y(n~1 \s)) ds

is majorized by the integral j£ I.?I¿s(n~i~1)rígiis)ds, it is clear that lim^y'"-0

is finite, say «„_,. Therefore, by L'Hospital's Rule, lim(_00y(')(f)/i',-,~1

exists for all i = 0,1, •••,« — 1. It remains to show these limits may be chosen

different from zero. Clearly, it suffices to show a„_t may be chosen distinct from

zero.

Select A > 0 and t0 sufficiently large such that

|» ao        n— 1

A1'r>'r-l) B   Z   s(n-'~1)rig;(s)rfs.
Jto r = 0

This condition on A guarantees that Z,To | y(,)(t)/f"-,_11 is bounded for all r.

Choose ty so that for 0 < e < A,

| J" his)ds-j™fis,yis),-,/"-%)) ds < e.

The solution j(0 of (1.1) having the initial conditions

yd) =y(1)(ty) - - - y(n-2\ty) = 0, jr*-1^) = A,

has the desired type of asymptotic behavior.

Remark 2.1. For 0 < r ^ 1, the proof as given in the above theorem shows

all solutions y(i) of (1.1) have the asymptotic behavior y(,)(í)/í"-'-1 ~ a¡. This

follows from the fact that z(i), a solution of (2.5), is always bounded independent

of initial conditions.

In the next theorem, a special case of equation (1.1) will be considered. The

differential equation which will be considered is
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(2.8) /">+ 2  gi(t)[yw(t)r = h(t).
¡ = o

Conditions (2.1.1) and (2.1.2) will still be imposed. Further restrictions which

will be imposed are

(2.9) r¡ = ujwi where u¡ and w¡ ate odd integers,       i = 0,1, •••,n — 1.

(2.10) If gi(t) is not identically zero, then lim,^00tp'g¡(t) = c¡ # 0

for some p¡ and all i = 0,1, —,n — 1. Furthermore, it is

required that the signs of the c¡ agree for all i = 0,1, •■•,n — 1

where g¡(t) is not identically zero.

Theorem 2.2. Let conditions (2.1.1), (2.1.2), (2.9), and (2.10) be satisfied.

A necessary and sufficient condition for some solution y(t) of (2.8) to have the

asymptotic behavior yo(í)/t"~,_1 ~ a¡ / 0 is that p¡ > r¡(n — i — 1) + 1 for all

¿ = 0,1,•••,» — 1 where g^t) is not identically zero.

Proof. Since (2.8) is a special case of the equation (1.1) of Theorem 2.1, the

sufficiency of the condition follows provided ja't(''~'~i)rigi(t) dt < co. This

follows immediately from (2.10).

In order to prove the converse, suppose some solution y(t) of (2.8) has the

asymptotic behavior y°(t)/t"_,_1 ~ a¡ # 0, and for some j where g¡(t) is not

identically zero, pj ^ r,(n — j — 1) + 1. By hypothesis, r¡ is odd, i = 0,1, • ■ •, n — 1 ;

thus if y(i) is a solution of (2.8), — y(t) satisfies equation (2.8) with h(t) replaced

by hy(t) = — h(t). Since hy(t) is integrable if and only if n(r) is integrable, the

nature of the forcing term is similar with respect to the property of being inte-

grable. Thus, we may assume that y(t) is eventually positive and consequently

a¡> 0, i = 0,1,—, n-l.

Select constants A and C in the following manner : 0 < A < a¡ for all

i = 0,l,--,n — 1; 0<C<|c,| for all i = 0,l,--,n — 1 such that g¡(t) is not

identically zero. Choose e > 0 and satisfying the inequalities 0 < A < a¡ — e and

0 < C < | C; | — e with i as above. There exist Ta¡>e and TCu, such that if t = Taut

then

(2.11) y(í)(í)/ín~i"1>íJi-£>/l,       i = 0,1, •••n-l;

and if t = TCitt then

(2.12) f'\gi(t)\>\ci\-e>C

for all i = 0,1, •••,!» — 1 where g¡(t) is not identically zero.

From (2.8), for t ^ T= max(T„.)£, TC.J, consider

(2.13) yn)+ 2   gk(t)[yik\t)J" -h(t)    =2  g/OLVW'
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The fc-index set consists of those fc whose associated pk have the property that

Pk > rkin — fc — 1) 4- 1. The ./-index set contains those j whose associated p¡

satisfy the inequality pj = rf(n —j — l) + l. By assumption, the ./-index set is

nonempty so that the right side of (2.13) is different from zero. In the Z,- sum,

the g ¿it) may be assumed positive since they are all positive or all negative.

Therefore,

Z gjit)[ya\t)T\ =  Zt>>gjit)\Çj$[Yf*''-'-1>->'

> CArnT-(n-q-1)-p- >o,

where q is in the j'-index set.

Using the above inequality in (2.13) yields the inequality

y(n)+ Zgfc(0[yw(0P-»(0>o.
k

Thus, y(n)4- ZfcgtO) [y(k\t)Jk - hit) is of one sign for all large t. Suppose it is

positive for t = T, then

{2.14) y(B) +   Z gkit)[yWit)Jk - hit)   > Ci4,«ir"("~,~l)-p«.

Integration of (2.14) gives the inequality

s

/-»>(()- /-«(T)    +     Z       Ç gkis)[/%)r ds   - Ç   his) ds
k    Jt Jt

(2.15)

>CAr    f /,-*,-«-|>-Nfs.

For any fc, rkin — k — 1) — pk < — 1, thus

< M        srk("-*-1)-'"'ds<oo.

Therefore, the integrals on the left in (2.15) are finite as t approaches infinity

Now, if r¿n - q - 1) - pq > - 1,

|" sr.(n-4-l)-p   ¿s

(2.16)      Jt

=   [riin-q-l)-p9+iy1[tr^n-q-1)-p +1 - r«i"-,_1)"'»+l ];

if r (n - « - 1) - p = - 1,
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(2.17) f sr-i"-',-1)-p  ds = In t- In T.

Substitution of (2.16) or (2.17), the choice determined by the value of

rq(n - q - 1) - pq, into (2.15) leads to lim,_,xj>("-1)(r) = co. However, this

contradicts the hypothesis that lim,_00j(n~1)(i) = aB_t.

If the expression y(n)+ Y,kgk(t) [yik)(t)Jk - h(t) is negative for t = T, an

inequality similar to (2.14) is obtained. Proceeding with an analogous argument as

above leads to a similar contradiction and the theorem is proved.

Remark 2.2. A simple example shows that the theorem cannot be proved,

even in the linear case, when the signs of the c¡ ate different. The differential

equation

y"-y' + t~1y = 0

has y(t) = t as a solution ; however, the condition in the theorem is violated.

3. Forcing terms with primary part tm,m > —1. In this section, differential

equation (1.1) is considered with condition (2.1) imposed.Further hypotheses which

will be required are

(3.1) If g¡(t) is not identically zero then lim,_,a.tp'g¡(0 = c¡ # 0 for some p¡.

(3.2) h(t) = hm(t)tm + Rm(t)

where (3.2.1) m > — 1;

(3.2.2) h(f) is continuous for t ^ r0;

(3.2.3) limt^œhn(t) = bm¥=0;

(3.2.4) RJf) = o(f) as t -* oo.

Again, the inequality in (2.1) need hold only for all large values of t.

Theorem 3.1. If conditions (2.1), (3.1), and (3.2) are satisfied; and for each

i = 0,1,—,H - 1, r¡ =1, Pi> r¡(m + n - i) - m, then all solutions y(t) of (1.1)

have the asymptotic behavior y(i)(t)ltm+n~i ~ a¡ / 0, i = 0,1,—,n— 1. If r¡ > 1

for some i, i = 0,1,•■-,« — 1, and the above conditions hold, then there exist

solutions y(t) of (1.1) which have the asymptotic behavior >'(,)(/)/ím+n_' ~ a¡ # 0,

for all i = 0,1,••■,« — 1.

Proof.   From (2.3), dividing by f+n~k, gives the equation

££i = [90 + 6yt +... + cw1t"-*-iy-m-"

(3-3) + **-m-n£((^^ *M äs
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If rj = 1 for all i = 0,l,»-,n — 1, then it will be shown that yw(í)/ím+""*is

bounded. If rf > 1 for some i, it will be necessary to select proper initial conditions

for y(i) in order to show the existence of a bound for y(k)it)¡tm+"~k.

The first term on the right in (3.3) is bounded since m > — 1. L'Hospital's Rule

for evaluating indeterminant forms may be applied « — fc times to the second

term in (3.3); this yields the result

i™    r(/~5?"   ,., his)ds¡tm+n'k = 7-£=!—7---r * 0.
i-*«  Jio (» - k - 1)! im + n-k)-im + l)

Thus, the second term on the right in (3.3) is bounded for all large t. Let Ck > 0 be

an upper bound on the absolute value of these two terms in (3.3); suppose this

bound is valid for ( _ Tk. Note that the Ck depend upon the initial conditions of

the particular solution in question. For e > 0, by virtue of (3.1), there exists an Lk

such that if t = Lk then tPkgkit) <ck + e = dk. From (3.3), with T= maxk(r0, Tk, Lk),

we have

ywit)

fm + n — k
= Ck + Bk(   Z   s'-'('»+»-í)-p¡-'"-i

Jt ¡ = o

ywis)
ds,

where Bk = Z"=ö dJin — k — 1)!, fc = 0,1, •••, n — 1. Therefore,

n-l

z
k = 0

yw(0

fm + n — k sc+Bí[Ís'"""""""]íi\^\h
with

and

n-l

C =   Z   Ck,
k = 0

B-l

B=   Z   Bk,
k=0

r =   max r¡.

Again, the above inequality need not hold if the inequality |y(i)(í)/ím+" l\ < 1

for all i = 0,1, ••■,« — 1; however, the objective is to show that

í  i
¡=o

m+n-l

is bounded and y(i) which possess the above property clearly satisfy this condition.

The differential equation associated with the above integral inequality (see

Theorem 1.1) is

»-i
z

i = 0

:' = B  Z    ("('"+»-o--"-i-Pizr>

The solutions of the above differential equation are given by
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r=V,
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<3.4), z(i) = Cexp f B 2   t«*»+«-0-«-i-#y^
Jr     i=o

(3.5) z(ty-r=Cl-r+(l-r)( B "x   sr,0tt+n-i)-m-1-'"ds,       r¿l.
Jt      ¡ = o

If r _^ 1, then all solutions z(i) as given in (3.4) or (3.5) are bounded since the

integrals in both expressions are convergent as t approaches infinity. If r > 1, in

order to determine boundedness of the solutions as given by (3.5), C and r0 must

be properly chosen in order to guarantee the boundedness of z(t). For such z(t),

it follows from Theorem 1.1 that

y(i\t)lf = z(0 û D.

It remains to show that lim,_,0O>>w(0/rm+" * = ak ^ 0 for all solutions y(t) of (1.1)

which satisfy the previous inequality. As remarked before, m > — 1 gives

lim[0o + ö1í + - + 0B_1í^-1]/ím+,, = 0;(3.6)

and

<3J) s ££-*-»>>"""-'-i (m + n-fc)."(m + l)

To evaluate the limit of the third term in (3.3), consider

'"" £ |^1)T/(^(S)'"^(B"1,(S)) ds

# o.

-m-l

=   (B-fc-1)

û    2ZdkD?r

ft n-l

T       2  s"gi
■  Jt ¡=o

is)
y"(s)

jm+n—i
sr,(n. + «-¡)-Pi  ds

tjr*(m+n-l)-pi( + l _ j<rk(m + n-k)-pk+ 1 '

rk(m + n-k)-pk + l

+   2í/;D^rm-1[lní-lnT],
j

where the 2t sum has as an index set those k such that pk ̂  rk(m + n — k) + 1 ;

and the 2/ summation is summed over those j where p¡ = rfm + n—j) +1.

Using the hypotheses that pk > rk(m + n — fe) — m in the 2* term and m > — 1

in the  2y sum, we obtain

(3.8) lim^--"-" f ',[~ T \lffryto'-"'yi"~lX'))à* = °-
r-»oo Jt \n — k— i).

Combining the results of (3.6), (3.7), and (3.8) in (3.3), yields

lim/k)(t)ltm+n-k = ak*0.
t-*te
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This concludes the proof of the theorem.

In the following theorem a partial converse of Theorem 3.1 is given for the

differential equation (2.8).

Theorem 3.2.   Let the hypotheses (2.1.1), (2.1.2), (2.9), (2.10), and (3.2) be

satisfied. If any solution y(i) of (2.8) has the asymptotic behavior

yytHt)Jf>*'-t„ai + 0, i = 0,1,-.»,« - 1,

then p¡ = rtim + n — i) — m for all i = 0,1, »»»,n — 1.

Proof.   Suppose p} < rjim + n—j) — m for some j where j = 0,1, •••, n — 1.

Write (2.8) in the form

(3.9) yw(i) 4- Z   gkit)[ymit)T - h(t) = - Z g/t^W'.
J

In (3.9), the Zt ( Z¿) sum ranges over those fc (;') whose associated pk (pf) satisfy

the inequality pk — rk(m + n — k) — m (pj < rj(m + n —j) — m). By hypothesis,

the ./-index set is nonempty.

Dividing (3.9) by tm and taking the limit as / approaches infinity yields the

equation

r-»oo

where

lim y(B)/r 4- Z ckakrkpk - bm = - Z   c;a/Jlim t   M**»-J>—¿>j
j !-»oo

0   if pk > rk(m + n — k) — m,r 0   it pk > rk(m + n-k)-

Pk = 1
I 1   if pk = rk(m + n — fc) —m.

Since Pj < rf(m + n—j) — m, and Cjü'f are all of the same sign, lim,_œy(,l)/î"

= 4- oo. This contradicts

a„-n-l
lim y_1)/ím+1 = lim y(n)/(m 4- l)tn.

Remark 3.1. The previous theorem may be improved slightly. Suppose for

some j's, pj = rjim + n —j) — m, where j is in the set 0,1, •••, n — 1. From the

differential equation (2.8),

? "    _   «(f) y,       pk     ,.    F y     (Q T" rk(m+r,-k)-pk-m

ír_l¡rT f     '    g*V>   [(m+n-*J    '

— Z  tPiz (t)\ ^ fA»**-n-Pi-»
I tm+n~J \

where the fc-index set consists of those fc such that pk > rk(m + n — fc) — m and

the /-index set consists of those j such that p¡ = rf(m + n — j) — m. Therefore,
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lim yw¡tm = bm - 2   cjay,
r-»co j

and necessarily

(3.10) an.y =lim/n-1)/im+1 = (bm- 2   ey/)/(m + 1).
r-»oo \ j I

But,

a0 = limy(í)/ím+n=   lim yml(m + n)-(m + n - k +l)tm+"-k
Í-.QO Í-.00

therefore,

afc = (m + n)---(m + n — fc + l)a0,       k = 0,l,---,n — 1.

Using this result in (3.10), we obtain the equation

(3 11) (m +n)(m+ n-l)---(m +1)2íj0

= b,„ -   2   Cj[(m + n)---(m + n-j + l)a0JJ.
j

Equation (3.11) improves Theorem 3.2 for the case where p¡ = r¡(m + n — i) — m

for some i, i = 0,l,-,n — 1, by placing an additional restriction on a0. For if a0

is not a root of (3.11), then a contradiction is obtained.

Remark 3.2. The example given in this remark shows that Remark 3.1 yields

the best possible result subject to our hypotheses. Consider the differential equation

(3.12) yw - ctm-mn-,nyr = bmtm,

where c # 0 and bm # 0 are determined by the equation

(m + n)■•■(m + 1) - c = bm.

Note y = ím+"is a solution of (3.12) having the desired asymptotic property.

Remark 3.3. An example which shows that the hypothesis concerning the

signs of the c¡ is necessary is

y"-y' + 3t-ly = 6t.

y = t* is a solution having the asymptotic property y(r)/r3~l; however,

Pi — r¡(m + n — i) — m is false for i = 0,1.

Remark 3.4. The motivation for the previous theorems is due to the reasoning

that if the coefficients of y, y (-\)---,yi"~1\ approach zero sufficiently fast then the

solutions of (2.1) should behave like the solutions of the equation y" = h(t).

It is interesting to observe that if the nonlinearity, as determined by the r,'s, is

sufficiently small it is actually possible for the coefficients to have limit infinity

rather than zero.

Remark 3.5. Proceeding under the hypotheses (2.1.1), (2.1.2), (2.9), (2.10),

and (3.2), we investigate other possible types of asymptotic behavior of solutions
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of (2.8). The kind of behavior discussed here is yii\t)¡t"~i~ a¡ >* 0> with P < m + n,

p 5¿ 0,1, ••»,« —1, i = 0,1, ••-,« —1. First, we establish the following result.

If p, _ r¡(p — i) — p + n then no solution y(f) of (2.8) has the behavior

y^CO/í'-'-  «,#0.

Since p #0,l,-",n — 1, then

an.y= lim y^-'Xt)¡i"'"*1 =  limy(B)(í)/(p - » + I)*"-"
t-»00 í-»QO

provided the latter limit exists. Suppose y(r) is any solution of (2.8) which has

the asymptotic property y(i)(í)/íp_í~ a¡ # 0. From (2.8),

Therefore, lim,^00y(")(t)/ip~" = + oo. This is a contradiction and thus, if any

solution y(i) of (2.8) has the asymptotic property y(l\t)¡t"~' ~ a¡ jt 0, then for all

i = 0,1, •••, » - 1, Pi > r¡(p -i)-p + n.

Consider (2.8) where the differential equation is linear, that is, r¡ = 1 for all

i = 0,1, ••», n — 1. Suppose some solution y(t) of (2.8) has the asymptotic behavior

y(,)(0/ip~'~ «i 5e 0, p < m + n, i = 0,1, •••,« - 1. From Theorem 3.1, p¡ satisfies

the inequality

Piûn-i,       1-0,1,—,»-1.

From the above result,

p¡>« —i,       i =0,l,--,n —1.

Since these two statements are incompatible we have shown that for no p¡ can the

linear equation possess solutions which have the asymptotic behavior

y^m'-^ay + O,
where p <m + n.

In the next remark investigation of the asymptotic behavior of solutions of (2.8),.

under the hypotheses of Remark 3.5, is continued. In particular, the behavior

y(0(í)/í"-í~a¡#0,       p = 0, l,-,n-l, t-0,1, ",n-l,

is discussed.

Remark 3.6. If some solution y(t) of (2.8) has the asymptotic behavior

ymit)lf-l~ Oi^O then for all i = 0,1, ••-,« - 1, p¡ = r¡ip - i) - m.

Proof.   From the differential equation (2.8),

y(n)(t)      hit)     "-1 r.,(0i-
-"z «^[^p*-*-*-

f" f

Taking the limit as t approaches infinity yields the equation
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lim yw(t) ltm = bm-\   ctf lim trt(p -»-*-".
t-*OD Í=0 Í-.00

If Pj<r}{p-j)-m for some j, Umt^00fj(p~J)~Pj~m=ao. This implies

lim,^00iy(")(í)/ím= ± °o> which yields a contradiction as previously observed.

This completes the proof of the remark.

We continue with the investigation of asymptotic behavior of the form

y°(í)/íp_i ~ a¡ t¿ 0; p, i = 0,1, •■•,n - 1. Suppose y(t) is a solution of (2.8) having

the above given asymptotic behavior and p¡ — r¡(p — i) — m, i = 0,1,—,n — 1.

From (2.8), we obtain

^ + 2   tp%(t) \fMX'?*>-»->'-"

where the ./-index (fc-index) set consists of those j (k) whose associated

Pj > rj(p —j) — m (pk = rk(p — k) — m). Taking the limit as t approaches infinity,

yields the equation

lim yin)Itm = bm- 2   ckark=0.
i-»oo k

Therefore, it is necessary that the equation

bm - 2   ckarkk = 0
k

be satisfied in order that y(,H.t)lf~l ~ a¡ # 0.

For a special case of equation (2.8),

(3.13) y{n) + g(t)f = h(t),

the above remark may be improved. We assume that lim,_ac¡tpg(y) = c # 0 for

some p; h(t) is as given by (3.2); r > 0 and odd in the sense previously given.

Remark 3.7. If some solution y(t) of (3.13) has the asymptotic behavior

y(i) ¡f ~ a 7t 0, p = 0, l,--,n — 1, then p = pr — m. When p = pr — m the

asymptotic behavior can occur only if bm — car = 0.

Proof. By Remark 3.6, p = pr- m. If p > pr - m, then limt^aoipr"m"p= 0. As

in the previous remark,

0= limy(B)(í)/ím = bm # 0.

Again, we have reached a contradiction and the first statement of the remark is

proved.

Suppose that p = pr — m and bm — caT # 0. From the differential equation (3.13),

0= lim>'(n)/im=bm-car#0.
r-»œ
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This completes the proof of the remark.

4. Forcing terms with primary part t~1. Asymptotic properties of the solutions

of (1.1) with the forcing term essentially behaving like t'1 will be considered in

this section. The conditions (2.1) and (3.1) are assumed throughout the section.

The explicit hypothesis concerning the forcing term hit) is given by

(4.1) «(0 = «-1(0r1+R_1(/),

where (4.1.1) «(i) is continuous for t _ r0;

(4.1.2) lim^œn_1(i)_=b-1#0;

(4.1.3) J?_1(I) = o(í  *) as t approaches infinity.

Theorem 4.1//(2.1), (3.1), and (4.1) are valid, j0Oí,,("-1)-'"(lní)"-1íír<oo,

and r¡ — lfor i = 0,1,•••,« —1, then all solutions of il.1) have the asymptotic

behavior

y(i)(0/lB_i"1ln t ~ a, * 0,        i = 0,1,-,« - 1.

If r¡ > 1 for some i and the above conditions hold, then there exist solutions y(t)

of (1.1) which have the asymptotic behavior y(,)(í)/í'I~'~1 Int ~ a¡ # 0.

Proof. Consider (2.3) divided by i"~*_1in t,

p^Öet [ö°+6lt+"'+9-k-S~k~^ ['n"*"lln 0"1

(4.2) +p^^o-1J[,^=£S5iL*»*

- [i-'-Mn ty1 £ (¿l5fcI*~lltto.yto.-».jPmlito) ds.

Clearly, the first term in (4.2) is bounded for all large t. Application of L'Hospital's

Rule to the second term on the right in (4.2) gives the equation

v,-*-i bi
(4.3) l^f-^ln tT1fto^^h(s)ds=- (n-fc-1)!'

Proceeding as in the proof of Theorem 3.1, let Ck > 0 be an upper bound on the

absolute value of the first two terms valid for t _ Tk. For e > 0, there exists an Lk

such that if t — Lk then / Pkgk(t) <ck + t = dk. From (4.2), we obtain

n-l

z
* = o

where

[yw(0/0""k_1ln0]

= C + B S'A 1 /i(B","1)'"(ln s)r,_1) i£h^Êr\ )'•
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n-l

C =   2   Ck,
k = 0

n-l   n-l

B =   2    2   d¡/(n-fc-l)!,
k=0   i=0

r = max r¡.
i

The differential equation associated with the above integral inequality is

z' = B 2   ^"-'-»-"'(In t)r,-lzr.

i=0

The remainder of the argument proceeds as in Theorem 3.1, and for this reason

will be omitted.

Theorem 4.2. Let conditions (2.1.1), (2.1.2), (2.9), (2.10), and (4.1) be satisfied.

A necessary and sufficient condition for some solution of (2.8) to have the asymp-

totic behavior yw(t) ¡t"'1'lln t ~ a¡¥=0,    i = 0,1, ••■,« - 1,   is   that

Pi > r¡(n — i — 1) + 1,       i = 0,1,—,n — 1.

Proof. In order to show the condition is sufficient, let p¡ = r¡(n — i — 1) +1+e¡,

where e¡ is positive for all i = 0, l,—,n — 1. Consider

rt'«.»-i-i)-Piflatyi-idt<   f " fA*-t-ii-„-Hl2dt <   œ >

By Theorem 4.1, there exists a solution y(t) of (2.8) such that

/°(i)/'""'" lln t~a,*0.

In order to prove the necessity of the condition, consider

(4.8)      i/"> +1 2 gk(t) iyw(t)jk = m) -1 2 gj(t) [/»ax.
k j

The fc-index (j — index) set is composed of those k (j) whose associated pk (pf)

satisfy the inequality pk > rk(n — k — 1) + 1 (pj — r/n —j — l) + 1).

Notice that

lim y(B_1)(0/ln t =  lim tyw(t) = aB_t
Í-.QO f-.00

provided the latter limit exists. Rewriting (4.8) leads to the equation

ty™ + 2  tPkgk(t) r-^M.^+i-»"jn,(in/)^*<--*-»-»+i

= th(i)- 2   íp's/í) \^9-tJ+l-nY'(lntyífÁ''-}-1)-p<+1 .



192 T. G. HALLAM [March

Taking the limit as t approaches infinity gives lim,_x<y(,,)(f) = + oo. This is a

contradiction and completes the proof of the theorem.

Remark 4.1. If r ;S 1, the condition of Theorem 4.2 is necessary and sufficient

for all solutions to have the asymptotic behavior y(')(í)/ín_1_1ln t~a¡^0.

This follows immediately from the first sentence in the statement of Theorem 4.1

and the result of Theorem 4.2.

A simple example in the linear case may be given to show that the signs of the

c, must all be the same. Asymptotic behavior of the type y(,)(í)/íp~'ln t ~ a¡ =¿ 0,

i = 0,1, •••,« — 1, will now be considered. The r¡ will be restricted such that

0 < r¡ g 1, i = 0,1, ■•■, w — 1. From Remark 4.1, the only p( which need be consid-

ered are the ones which satisfy the inequality p¡ = rÂn — i — 1) + 1.

Corollary 4.1. Let (2.1.1), (2.1.2), (2.9), (2.10), and (4.1) be satisfied. If

p — n — 1, then no solution y(t) o/(2.8) has the asymptotic behavior

y{fXt)¡tp'ilnt~ai*0.

Proof.   Suppose p¡ g rs(p —j) + l for some j and some solution y(f) of (2.8)

has the asymptotic behavior yM(t)¡tp~lln t ~ a¡^ 0. Write equation (2.8) as

(4.9) ty<"> 4- í   Z gk(t) [yw(t)Jk = th(t) - t Z   gj(t) [ya\t)T,
k j

where the fc-index (J-index) set consists of those fc (j) whose associated pk (pf)

satisfy the inequality pk > rk(p — k)+1 (p; 5¡ rj(p —j) + 1). Taking the limit as t

approaches infinity in (4.9) gives

limiyw(0=b-1 -  Z   Cjay lim  f*'-»-»+* Qn í)'J-
(4.1UJ »-»oo j í-»oo

Since pj = rj(p —j) + l, the limit on the right side of (4.10) is + oo. This is a

contradiction and therefore p¡ > r¡(p — i) + 1 for all i = 0,1, •■•,« — 1. But,

since p — n — 1,

Pi > r¡(p - i) + 1 ̂  r¡(« - 1 - i) 4-1.

This result contradicts Remark 4.1 and the corollary is proved.

5. Forcing terms with primary part fV". In this section forcing functions

having primary part rme*'will be considered. Specifically, the forcing term is to

satisfy the following properties.

(5.1) «(/) = Ji(l)fV' 4- Rit),
■

where «(i) is continuous for I ^ r0 ;

lim Hit) = A*0;
(-»00

and

Rit) = o(rV) as t->oo.
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If b < 0, h(t) is integrable and the forcing function is included in the class of

forcing terms of §2. If b = 0, the primary part of the forcing function is a power of /.

§§2, 3, and 4 give results for forcing functions of this type. The purpose of this

section is to consider forcing terms with primary part tmebt where b > 0.

Theorem 5.1. Let conditions (2.1), (3.1), and (5.1) be satisfied; b > 0, 0<r,^l

for all i = 0,1, —,» — 1; furthermore, ifr¡ = l, it is required that n<p¡.

Under these hypotheses, all solutions y(t) of (1.1) have the asymptotic behavior

j>(i)(0/iV~ai?*0,  ¿ = 0,l,-,n-l.

Proof. The argument proceeds as in the previous Theorems 2.1,3.1, and 4.1;

for this reason it will only be sketched here. The form of equation (1.1) which is

used is

yw(t)     e0 + 9yt + -+9n-k_yt> n-k-1

tme" fmgbt

(5.2)

Jfo (n-k-

yi-k-l

/(s.j'is),-,/"-1^))*.

The boundedness of each term will be investigated. It is clear that the first two

terms on the right in (5.2) are bounded. Proceeding as before with Tas previously

chosen and with the additional requirement that the function

X(t)=ltm-n+k+1ebT1

is decreasing for t _ T, we obtain

I/"CO I
tme"

M n-l

= Ck + Bk       2
Jt i = 0

n-m-k-l -pt + rtm  (r¡- l)bs /»is)

sme■bs
ds.

If the sum E"^11 y {i\t)ltmebt\ = 1 for all large t, then clearly Z,"^1 |/°(0/i meb'\

isbounded.if2":o|/i\0/iV'|r¡>i,then2,Br01|/i)(0/íV'|'i=2n:o|/i)(0/ímew|.

Therefore,

n-l

2
*=0

yw(t)

tmeb'

n-l n-l /•»   n-l n-l

= 2 Q+2   bk\     2   s»-'»-*-i-"+"'V"-1),'s £
Jt   ¡=o ¡=ok=0 k=0       Jt   ¡=o

Applying Theorem 1.1, we obtain the inequality

\ym(t)

y«\s)
sme°

ds.

n-l

2
* = 0

¡mebt

fit n— 1 n— 1

^Cexp        2   B 2   s"-"-1
Jt k=o     ¡=o

-k- 1 -m-p¡+i-¡me(ri- l)bs ^$
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By hypothesis, the above integrals converge and thus, Z1"=o1|y(':)(0/i'"ei"| is

bounded. Proceeding as in the previous proofs, the result

lim y(,)(f)/fV* = a, # 0,       i = 0,1, •••, n - 1,
t -»OO

may be obtained.

Remark 5.1. This theorem or theorems determining existence of solutions

having the above type of asymptotic behavior may not be demonstrated for

nonlinearity involving higher powers. Consider the following example:

y<»>+iy-Y,
where p is arbitrary and r > 1. Suppose some solution y(t) has the asymptotic

behavior y(t)¡e' ~ a # 0. If lim.^y00/»?' exists, necessarily, lim,_0Oy(,,)/et = a.

Thus, from the equation,

>_+ipJLe(-l><=1;
e' e'

we obtain limI_00y(n)e ~'= + oo. This is a contradiction and the desired asymptotic

behavior is impossible.
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