THE LATTICE OF TOPOLOGIES: STRUCTURE AND
COMPLEMENTATION

BY
A. K. STEINER(Y)

The family of all topologies on a set is a complete, bounded lattice. The purpose
of this paper is to study the structure of the lattice of topologies, employing the
notion of ultraspace introduced by Frohlich [7] and to show that this lattice is
complemented.

The set of ultraspaces may naturally be divided into two classes, each of which
generates a sublattice. One of these sublattices is the lattice of T;-topologies.
The other, which is studied in §2, is the lattice of principal topologies. Principal
topologies are defined in terms of ultraspaces and are then characterized by
properties of open sets.

Some topological properties of ultraspaces are investigated in §4 and maximal
regular (maximal T, , maximal normal, etc.) topologies are characterized in terms
of ultraspaces.

The problem of complementation in the lattice of topologies has been out-
standing for some time. However, several partial solutions have been provided.
Hartmanis [11] first showed the lattice was complemented if the ground set was
finite and asked whether this was true in the infinite case. Gaifman [8] gave a
positive answer for denumerable sets and Berri [3], using this fact, was able to
provide complements for certain special topologies such as a topological group
with a dense, nonopen countable subgroup.

It is shown in §5 that the lattice of principal topologies is complemented.
Gaifman [9] established that the complementation problem can be reduced to
verifying that each T)-topology has a complement. In §6, it is proved that if
every T,-topology has a lattice complement which is a principal topology, then
every topology does. In §7 it is shown that the lattice of topologies on an arbitrary
set is complemented by proving that every topology in the sublattice of T;-to-
pologies has a lattice complement which lies in the sublattice of principal topologies.

Preliminary definitions and remarks. Throughout this paper, E will denote an
arbitrary set, and 7, with or without subscripts, will denote a topology on E,
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whose members are open sets. The symbol |E| will denote the cardinality of
the set E.

The definitions of Ty, T,, T,, regular, completely regular and normal to-
pologies are those found in Kelley [12]. The definitions of partially ordered set,
lattice, sublattice, infimum and supremum are those found in Szasz [16] and
Birkhoff [5]. The definitions and properties of filters and ultrafilters are those
of Cartan [6], Samuel [14] and Schmidt [15].

The family X of all topologies definable on a set E, partially ordered by set
inclusion, is a complete lattice (Vaidyanathaswamy [17]). The greatest element
of X, the discrete topology, will be denoted by 1 and the least element, the trivial
topology, by 0.

A topology 7 on Eis an ultraspace if the only topology on E strictly finer than
T is the discrete topology.

For a filter # on E, Frohlich [7] defined S(p, #) to be the family of sets
R(E — {p}) UF , where P(E — {p}) is the collection of all subsets of E which do
not contain p. Hence, &(p,%) is a topology on E such that for every xeE,
X # p, the set {x} is open and the open sets containing p are just the sets in &
which contain p.

Frohlich proved that the ultraspaces on E are exactly the topologies of the
form S(x, %) where xe E and % is an ultrafilter on E, % # %(x); that the corre-
spondence between ultraspaces and ordered pairs (x, %) is one-to-one; and that
every topology t on E is the infimum of the ultraspaces on E which are finer
than 7.

Since an ultrafilter is either principal or nonprincipal (i.e. it either contains a
finite set or it does not), the class of ultraspaces on E is composed of the class
of nonprincipal ultraspaces (those in which the ultrafilter is nonprincipal) and
the class of principal ultraspaces (those in which the ultrafilter is principal).

A point x € E is called an isolated point of t if {x} e t. If x, is not an isolated
point, then 7 £ S(x4, %) for some ultrafilter %.

An infraspace is a topology such that the only topology strictly coarser than
it is the trivial topology. Every infraspace has the form {E, 4, &} where A< E,
A # J, A#E. Clearly every topology t is the supremum of infraspaces coarser
than 7.

1. T,;-topologies. A topology on E is a T,-topology if for every xe E, the
set {x} is closed. For every x € E and for every nonprincipal ultrafilter % on E,
the set E — {x} e %. Hence {x} is closed in every nonprincipal ultraspace. In a
principal ultraspace S(x,#(y)), the set {y} is not closed. Therefore, an ultra-
space is a Ty-topology if and only if it is a nonprincipal ultraspace.

THEOREM 1.1. A topology © on E is a T,-topology if and only if it is the
infimum of nonprincipal ultraspaces.
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Proof. Any topology finer than a T;-topology must also be a T;-topology;
so a T;-topology can be the infimum of only nonprincipal ultraspaces.

For each xe E, the set E — {x} is open in each nonprincipal ultraspace, and
thus in the infimum of any family of nonprincipal ultraspaces, so {x} is closed
in this infimum.

The T;-topologies form a lattice A, which is a complete sublattice of X, and
which has been studied previously by Bagley [1], and Hartmanis [11]. The
finest T,-topology is the discrete topology and the coarsest is the cofinite topology
%, in which a nonempty set is open if and only if its complement is a finite set.
On a finite set the only T,-topology is the discrete topology.

2. Principal topolegies. Every topology 7 on E is the infimum of all ultra-
spaces on E finer than t. If also t =inf {6(x,%(y))|r§ S(x,%(y))}, then
is said to be a principal topology. If x = y, then &S(x,%(y)) is the discrete topo-
logy and if x # y, then &S(x,%(y)) is a principal ultraspace.

A principal ultraspace &(p, (q)) on E is a principal topology in which every
open set containing p must also contain ¢.

The topology 7 =&(p, % (¢)) \ S(q, %(r)) is a principal topology in which
for each xe E, x # p, x # q, the set {x} et. Every open set p must contain ¢
and every open set containing p must also contain r. Therefore T < S(p, %(r)).

THEOREM 2.1. If T is a principal topology on E, the set

B, = {yeE|G(x, 2(y)) 2 7}
is open for each xeE.

Proof. If {x} et then B, = {x}, since if there is a yeE, y # x, such that
TS G(x,%(y)), then {x}¢7. Let 1 <S(p,%(q)). If p¢ B,, then B, is open in
S(p,%(9)). If peB,, then < &S(x, Z(p)/\ S(p, %(q)) < S(x, %(q)) (Froh-
lich [7]). Hence g € B, and B, is open in &(p,#%(q)). Since B, is open in each
&(p, %(q)) finer than 7, B,et.

THEOREM 2.2. If 7 is a principal topology on E, then for each x e E, every
set in T containing x must also contain the set

B, = {yeE|S(x, %)) 2}.

Proof. If Sis a set containing x and y ¢ S for some y e B,, then S is not in
S(x, %(y)). Since T < S(x, #(y)), S is not in 7.

A subcollection # of t is a base of open sets minimal at each point if for every
x € E there is a Ve 4 such that x € Vand every set in 7 containing x must contain V.

THEOREM 2.3. A topology T is a principal topology if and only if it has a
base of open sets minimal at each point,
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Proof. Let t be a principal topology. For cach x e E, the set
B,={yeE| S(x,%(y)) z 1}

is open (Theorem 2.1) and every set in T containing x must contain B, (Thcorem
2.2).

Suppose 7 is not a principal topology. Then there is a nonprincipal ultraspace
S(x, %) such that 1 <S(x, %). If there is a minimal open set V containing x,
then Ve % and every open set containing x must contain V. Hence 1 < &(x, %(y))
for all ye Vand 1 = A{S(x, %(y))lye V} < &(x, %). Thus, if T has a base of
open sets minimal at each point, then for each nonprincipal ultraspace G(x, %)
finer than 7 there is a principal topology finer than t and coarser than S(x, %)
which implies 7 is a principal topology. Therefore, a nonprincipal topology can
not have a base of open sets minimal at each point.

THEOREM 2.4. A topology t is a principal topology if and only if arbitrary
intersections of open sets are open.

Proof. If arbitrary intersections of open sets are open, for each x € E the inter-
section of all open sets containing x is a minimal open set at x and the family %
of open sets minimal at x for all xe E, is a base for 7. Hence 7 is a principal
topology.

If 7 is a principal topology and .4 is a subcollection of 7, then n A" is open
since for each xe n./V , the minimal open set containing x is also in ﬂJV .

COROLLARY. An infraspace is a principal topology.
THEOREM 2.5. The principal topologies form a sublattice of the lattice ¥.

Proof. If 7, and , are principal topologies, then certainly t,; A 7, is a prin-
cipal topology. For each x, the set U, = VN V2, where V. is a minimal open
set in 7; containing x for i = 1,2, is a minimal open set in 7, \/ 7, containing x
and the family & = {Ux| U.et, V 1, is minimal at x, for all xe E} is a base for
7, V t,, minimal at each point. Hence 7, \/ 7, is a principal topology.

The lattice of principal topologies on E will be denoted by IT. -

The lattice I is a complete lattice since IT is meeti complete and is bounded
above by 1. For any subset # < II, infy5# = inf2#°. However, IT is not a
complete sublattice of =. Let 7 be a T;-ultraspace, t # 1. Then 7 = sup {y; | iel},
where each y;, ieT, is an infraspace coarser than 7. Each y; is a principal topo-
logy and 7 =supy{y,|ieT} <supp{y;]ieT}. But supy{y;|ieT}, being finer
than a T,-topology, must also be a T;-topology, so supn{y,li el =1+#r1.

A subset G of E x E is a preorder relation if and only if

(1) (x,x)eG for all xeE; and

(2) (x,y)eG and (y,z)e G imply (x,z)e G for all x,y,zeE.

Subsequently, the notation xGy will be used to denote that (x,y)eG.
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There is a chain of length n from x to y in G if and only if there are clements
X = Xg,X1s'**s X1, Xy = ¥, B =0, such that x,Gx,,x,Gx;,**,X,-,Gx,.

Operations A and \/ are defined on preorder relations by

(1) GiAG, = G;NG,,

(2) G,V G,=(G, UG,), where G = {(x, y)| there is a chain of length n from
xto yin G, n=0}.

Under these operations, the family 4 of preorder relations, partially ordered
by set inclusion, is a lattice.

Each preorder relation G defines a topology 75: a set SS E is open if and
only if for each xe S, if xGy then ye S. Moreover, the topology 7, determincd
by the preorder relation G is a principal topology and 7, = inf {S(x, %( y))|xG v}.
Fach principal topology <t determines a preorder relation G, by
G, ={(x,y) |t = S(x, %(»)}.

THEOREM 2.6. The lattice I1 of principal topologies is anti-isomorphic to
the lattice 9 of preorder relations.

Proof. There is a one-to-one correspondence between principal topologies in
IT and preorder relations in & since the mappings #:II1 > ¥ and ¢:9—I1 de-
fined by

(@) = G, = {(x,5)|S(x, %(y)) = 7}
and
#(G) = 1 = inf{S(x, %(y))| xGy}

are inverses, That is, #(¢(G)) = G and ¢(n(r)) = 7.

Since xG.y holds if and only if © £ S(x, %(y)), if 7, <7, then G, =G,
And since 15 = A {S(x, %(y))ley}, then G, < G, implies 75, = 75,. Hence 5
and n~'= ¢ are antitone.

Thus, the lattice of preorder relations is a complete lattice (since IT is) with a
least element, namely the relation A = {(x, x) I x € E} corresponding to the discrete
topology and a greatest element E x E corresponding to the trivial topology.

Let G be a relation on E. There is a path from x, to x, in G if there is a finite
collection of elements x,,x,,-,x,—, of E such that x,Gx;_, or x;_,Gx;,
i=1,2,--,n. If there is a path from x, to x,, then there is a path from x, to x,.

A subset FS E is a component of E rélative to a relation G if for every pair
x,y € F there is a path from x to y in G and for w¢ F there is no path from x
to w for any xeF.

Two distinct components of E relative to G are disjoint and every point of E
is in some component.

A relationIG on E is connected if E is a component relative to G.

A topology © on E is connected if E is not the union of two nonempty, disjoint
openisets.



384 A. K. STEINER [April

THEOREM 2.7. A principal topology tg is connected if and only if G is a
connected relation.

Proof. Suppose 1, is not connected. Then E=U UV where U, Vertg,
U, V£ and UNV=¢F. Suppose G is a connected relation. Let xe U
and yeV. Then there is a finite subset {x = x,,x,, -, x, =y} E such that
x;Gx;4y Or Xx;4,Gx; for i=1,2,---,n—1. Denote by x, the first x; such that
x;eV. Since x; €U, k>1. Thus x,_,eU and x,eV. If x,_,Gx,, then U is
not open in t; and if x,Gx,_,, then Vis not open in 75. This is a contradiction
so G is not a connected relation.

Suppose G is not a connected relation. For some x,€ E let U = { yeEIthere
is a path between x, and y}. The set U is open. For each xe U, the set
{ yeE]xGy} < U because if there is a path between x, and y and yGz holds,
then there is a path between x, and z. Since G is not connected there is some
Yo€E —U and E — U is also open. Otherwise for some ye E— U, yGz and
ze U, but since there is a path between x, and z and yGz, then there is a path
between x, and y. Thus E — U must be open, and 7 is not connected.

A topology on E which is neither a T,-topology nor a principal topology is a
mixed topology. A mixed topology can be represented as the infimum of a T;-topo-
logy and a principal topology, but this representation need not be unique. The
supremum of two mixed topologies can be a T;-topology or a principal topology.
For example, if = &(x, %) A S(p, %(q)), ' =S(x, %) \ S(q, %(p)), and
" =C(y,?) A S(p, %(q)) where x # y and % #¥", then 1V v’ = S(x, %) and
TtV 1" = S(p, %(q)). The infimum of two mixed topologies cannot be a T;-topo-
logy, but it can be a principal topology.

Let  and ¥~ be distinct nonprincipal ultrafilters. Then there is a set 4 such
that Ae% and E—Ae?. Let 1,=A {6(x,”1/(q))|qu —{x}} and
= NS, %a)|geE— A—{x}}. Then 7,<&(x,%) and 7, <&(y,%),
and S(x,%) A\ 7, and &(y,7") A 1, are mixed topologies. But

[G(X, 0?[) /\ 12] /\ [6(.))’1/‘)/\ tl] = [G(X, 02/) /\ T]] /\ [6())9 V) /\ 12] =T /\ T2

which is a principal topology.
The reader who is interested only in the complementation of ¥, may skip
§§3, 4 and S.

3. Lattice properties of . Vaidyanathaswamy [17] gave an example to show
that the lattice of topologies on a set of cardinality c is not distributive. The fol-
lowing proof uses ultraspaces and is very straightforward.

THEOREM 3.1. The lattice of topologies X on a set E is distributive if E has
fewer than three elements. If E has three or more elements, T is not even
modular.
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Proof. If E has onec clement or two elements, T is a distributive lattice. Let
E={p,q,r} and let A =G(p, %) N S(p, %(r)), & = S(p, %(r)),
N = C(r,%(q)) be topologies on E. Thus X' <¥. But (XV MNZL
=1ANZ =% and X V(NN L) £ S(p,%q)) since A £C(p, %(q))
and /NZLZCS(p, #(q)). Thus (A NVMNANLEA V(AN N F) since
&L £ S(p,%(q)) and X is not modular,

A lattice Lis self-dual if and only if there is a one-to-one mapping ¢ of L onto
itself such that ¢(a A b) = ¢(a) V ¢(b) and ¢(a V b) = ¢(a) A ¢(b).

If T is self-dual, there is a one-to-one map ¢ of X onto itself. If a < b, then
¢(a) = ¢(a A\ b) = ¢(a) \/ ¢(b) which implies ¢(b) < ¢(a). Thus ¢(0) =1 and
¢(1) =0 and infraspaces map onto ultraspaces and conversely, so the number
of infraspaces and ultraspaces must be equal.

In the lattice of topologies on a set E, if | E| = n < oo, there are n(n—1) ultra-
spaces (all principal) and 2" — 2 infraspaces. If |E|>N,, there are 2'¥!infra-
spaces and 22'F' ultraspaces on E (there are 22'Flultrafiters on E [2], [10]).
Thus the number of ultraspaces equals the number of infraspaces only when
|E| £3.

THEOREM 3.2. The lattice of topologies on E is self-dual if and only if
|[E|<3.

Proof. If |E|>3, then £ cannot be self-dual by the preceding argument.
If |E[ =1 or IE[ =2, X is obviously self-dual. If |E[ = 3, there are twenty-nine
topologies on E, but it can be seen by rotating the diagram on page 386 by 180°
that this lattice is also self-dual.

4. Topological properties. Ultraspaces may be studied easily because of their
point-ultrafilter representation. In this section some topological properties of
the ultraspaces are investigated and the maximal T,, T, T,, regular and normal
topologies are characterized. Other topological properties of T;-ultraspaces are
considered in Gillman and Jerrison [10].

THEOREM 4.1. Every ultraspace is Ty, normal and extremally disconnected.

Proof. Let S(x,%) be an ultraspace on E. Then &(x,%) is a T,-topology
since for any two points of E at least one as a set is open.

If A and B are disjoint closed sets, then x¢ A or x¢ B. If x¢ A then 4 and
E— A are open and S(x,%) is normal.

If V is an open set and xeV then V=V. If x¢V then -either
E—Ve% orVe¥.If E—~Ve% then V=V. If Ve then V=Vuy{x},
but VU{x}e# and hence is open. Thus S(x, %) is extremally discon-
nected.

THEOREM 4.2. No ultraspace on a set E is connected if IEI = 3.
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Lattice of topologies on a three point set E = {a,b,c}

m O O %

0 Trivial Topology

1 Discrete Topology
A*
1 {b} {c} {b,c} {c.a}
2 {c} {b} {a,b} {b,c}
3 {a} {b} {a,b} {b,c}
4 {a} {b} {a,b} {a,c}
5 {a} {c} {a,b} {a,c}
6 {a} {c} {c,a} {c,b}

D E
1) b 1 ()
2 {b} {b,a} 2 {a,b}

3@} (b} 3 {a)
4 {a} {a,c} 4 {a,c}
5{c} {c.a} 5 {d
6 {c} {c,b} 6 {b,c}

* ¢, E omitted.

B

1{b} {c} {b,c}
2 {b} {b,a} {b,c}
3 {a} {b} {a,b}
4 {a} {a,b} {a,c}
5{a} {¢ {ayc}
6 {c} {c,a} {c,b}

[April

1 {a,c} {b}
2 {a,b} {c}
3{a} {b}
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Proof. Let S(p,7") be an ultraspace on E. If lE, = 3, there is an x € E such
that x # p and 7" # %(x). Thus {x} and E — {x} are both open.

An ultraspace is a T;-topology if and only if it is a nonprincipal ultraspace
(cf. Theorem 1.1).

THEOREM 4.3. An ultraspace is a T,-topology if and only if is it a non-
principal ultraspace.

Proof. For any two points, at least one as a set is open and its complement
is also open and contains the other point.

A nonprincipal ultraspace is normal and T, hence is regular and completely
regular. A principal ultraspace S(x, %(y)) is not regular (since {x} is a closed set,
y¢{x}, but every open set containing x contains y), and therefore not com-
pletely regular. An ultraspace is totally disconnected (i.e. no connected subset
contains more than one point) if and only if it is a nonprincipal ultraspace. Sim-
ilarly, being nonprincipal is a necessary and sufficient condition for an ultraspace
to be zero-dimensional (i.e. there is a base for the topology such that each sct
in the base is both open and closed).

A topological space is a door space if every subset is either open or closed.
It is easy to see that every ultraspace is a door space. Actually it is not difficult
to characterize door spaces.

THEOREM 4.4. A space is a door space if and only if the ultraspaces in its
representation have either a common point or a common ultrafilter.

Proof. Let 7, = A{@(x,%,-)|ie11} and 1, = /\{G(y,.,“//)l iel,}. A setnot
containing x is in 7, and if a set contains x, its complement is in 7,. Thus 7,
is a door space. Every setin ¥"isin 7, andif a setis not in ¥/, its complement is.
Hence 7, is a door space.

If 1 £&(x,%) ANS(y,7") where x # y and % # ¥, then there is a set 4 such
that Ae% and E— Ae?". The set (AU {y}) N(E — {x}) is not in S(y, ¥")
and its complement is not in S(x,%). Thus (Au{y}) N(E — {x}) is neither
open nor closed in <.

Vaidyanathaswamy [17] erroneously stated that there are no maximal T)-to-
pologies. Liu [13] gave a necessary and sufficient condition for a topology to
be a maximal T,-topology and then proved that maximal T,-topologies do exist
by constructing an ultraspace with the aid of Zorn’s lemma.

An immediate consequence of Theorem 1.1 is that every maximal T;-topology
is of the form &(p,%) where pe E, % is a nonprincipal ultrafilter on E,
% # U(p). Then every subset of E — {p} and every set in % is open.

The maximal T,-topologies are precisely the maximal T,-topologies. Since
every nondiscrete topology is coarser than some ultraspace and every ultraspace
is a Ty-topology, the ultraspaces are the maximal Ty-topologies. Similarly, a normal
topology is a maximal normal topology if and only if it is an ultraspace.
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All nonprincipal ultraspaces are maximal regular spaces, but there are also
principal topologies which are regular.
A collection 2 of principal ultraspaces

{6()&71, %(xZ)) s G(xb %(xS)), RRE) 6(3‘,,, Q/(xl))}
is called a cycle of order n.

LEMMA 4.5. A topology which is the intersection over a cycle of order 2
is a maximal regular topology.

Proof. Let t =G(p, %(q)) \S(q,%(p)). Then t is regular since every closed
set is also open. The only nondiscrete topologies finer than t are &(p,%(q)) and
&(q,%(p)), neither of which is regular.

LEMMA 4.6. A topology whose representation contains a cycle of order n
is coarser than a maximal regular topology of the form S(x,%(y)) \S(y, %(x)).

Proof. Let & be a cycle of order n in the representation of 7. Thent £ A Zand
since S(x,%(x2)) N S(x2,%(x3)) = S(x1,#(x3)), \ Z SC&(x,,U(x,) \ S(X,,, U(x))).

LEMMA 4.7. A principal topology with no cycle in its representation is
not regular.

Proof. By deleting (x,x) from a relation G corresponding to 7, the topology
T remains the same. So assume (x,x)¢ G for all xeE.

Let ©= A;or{S(x,%)} where {S(x,%)|iel} contains no cycle. If
B,,={yeE | there is a chain from x, to y in G} for some point x,, then x, ¢ B,
since for xo€B,, and (xg,%,)¢ G, there is a cycle of order n>1 in
{S(x, )| iel} which is a contradiction. The set B, is open, so E — B, is
closed. For y € B, there is no open set containing E — B, which does not contain
y since xo€ E — B,,. Thus 7 is not regular.

THEOREM 4.8. A regular topology is a maximal regular topology if and
only if it is a nonprincipal ultraspace or it is of the form S(x,%(y)) N\S(y,%(x))
for some x,yeE.

Proof. If 7 is a nonprincipal ultraspace or tt=C(x,Z(y)) AS(y,%(x)),
then 7 is a maximal regular topology. Every T,-topology and every mixed topo-
logy is coarser than some nonprincipal ultraspace and every regular principal
topology is coarser than a maximal regular topology of the form

S(x, %(y) NS(y, %(x)).

5. Principal complements for principal topologies. In 1958, Hartmanis [!1]
proved that the lattice of topologies on a finite set is complemented. Since every
topology on a finite set is a principal topology, this implies that the lattice IT
of principal topologies on a finite set is complemented.
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In this section it will be shown that the lattice ¥ of preorder relations is a
complemented lattice and hence, that the lattice IT of principal topologies on
an arbitrary set is complemented. Actually, this result is just a special case of
the more general theorem concerning the complementation of ¥ and follows
from Theorem 7.8.

A lattice complement of a preorder relation G is a preorder relation G’ such
that GV G'=ExE and GAG' =A={(x,x)|xeE}.

The set complement G* =(E X E) — G is not necessarily transitive and in
general G* A G #A.

THEOREM 5.1. The lattice ¥ of preorder relations on a set E is a comple-
mented lattice.

Proof. Let G be a preorder relation on a set E and let E = Ua <o E, where
each E, is a component of E relative to G. Then for x,ye E,x and y are in the
same component if and only if there is a path from x to y in G, i.e., if xGy or yGx.

Let G, = {(y, x)IxG y and not yGx} U A. Select one point from each E, and
denote it by x, (the x,s, ae0, will now remain fixed). Let
G, = {(x, x,,)] o, fef} U A. The relations G, and G, are both preorder relations
so G' =G, \ G, is also a preorder relation.

If xGy, then x and y are in the same component E, of E and by definition,
(x,y)¢G,, hence (x,y)¢ G’. Therefore G A G' =A.

For (x,y)e E x E, x and y are in components E, and E;, respectively, of E.
If (x,x)¢G then (x,x)eG, and if (x5,y)¢G then (x5y)eG;. Since
(x5 Xxp) €Gay  {(%,%0), (X Xp), (X5, )} = GUG' so  (x,y») eGVG'. Thus
GVG =EXE.

THEOREM 5.2. The lattice I1 of principal topologies is a complemented
lattice.

This follows directly from Theorem 2.6, since I and ¥ are anti-isomorphic.

6. Reduction to T -topologies. Hartmanis [11], after concluding that the
lattice of topologies on a finite set is complemented, posed the question: *‘Is
the lattice of topologies on an infinite set complemented?’” Gaifman [8] showed
that this lattice is complemented if the set E is countable. To obtain this result,
he proved that if every T,-topology on a set has a complement, then every topo-
logy on that set has one.

In this section it will be shown that if every T,-topology on a set has a comple-
ment which is a principal topology, then every topology on that set has a prin-
cipal complement. It will also be established that every T;-topology on a count-
able set has a principal complement.

A topology 7 is said to have a principal complement if there is a principal
topology 7 such that t \V 7' =1 and Tt A 7" = 0.
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If 7 is a topology on a set E and F < E, then ‘L’lF denotes the restriction of ©
to F (i.e., the relative topology on F induced by 7).

THEOREM 6.1. If every T,-topology (T,-topology) t on E has a (principal)
complement and F < E, then every Ty-topology (T,-topology) 1, on F has a
(principal) complement.

Proof. Let 7, be a Ty-topology on F, and define a topology 7 on E by
t={AcE )|A NFety}. Then t is a Ty-topology and hence has a comple-
ment t'. For xe F thereisa Uet, Vet such that {x} =UNV. But UNFer,
and VA Fet'|F so {x} =(UNF)N(VNF)et,\V1'|F. Thus 7,V 1'|F = 1.
For Uer, /\r’|F, U=VNF for some Vet’, hence Vet (by definition of 7).
Since T At' =0, it follows that V= or V= E and consequently that U=
or U=F.Thusto At'|F =0, and t'| F is a complement of 7,. If ¢’ is principal,
then for each x € F there is a minimal open set B, € 7’ containing x. Thus B,N F
is a minimal open set in t'|F containing x, so t'|F is a principal topo-
logy.

THEOREM 6.2. If every Ty-topology on E has a principal complement, then
every topology on E has a principal complement.

Proof. Gaifman [9] showed that if every Ty-topology on a set has a comple-
ment then every topology does. He did this in the following way:

Let 7 be a topology on E. Define x = y by: for every Ve, xe Vif and only
if ye V. Obviously = is an equivalence relation. There exists a subset E; of E
whose intersection with every equivalence class consists of exactly one point.
Now, 1, = t|E1 is a Ty-topology and if every Ty-topology on E has a comple-
ment then every Ty-topology on E, has a complement since IE 1 | = IE I . Denote
this complement by t{. Then v’ = {4 < E|4 NE, e 7}} is a complement for t.

In Gaifman’s notation, if every Ty-topology on E has a principal complement
then every T,-topology on E; has a principal complement (Theorem 6.1). Thus,
let 7} be a principal complement of 7,. For each xe E — E,, {x}et’. For each
xeE,, there is a minimal set in 7, containing x and this set is thus a minimal
set in t’ containing x. Therefore, t’ is a principal topology (Theorem 2.3).

THEOREM 6.3. If every T;-topology on a set E has a principal complement,
then every topology on E has a principal complement.

Proof. By Theorem 6.2 it suffices to show that if every T,-topology on E
has a principal complement, then every T,-topology on E has a principal comple-
ment. So let T be a Ty-topology on E.

Under the assumption that every T)-topology on E has a complement, Gaif-
man [9] deduced that every Ty-topology on E hasa complement in the following
way:
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He defined an ordered family of disjoint sets E,, such that 7, = ‘tlEa is a
T,-topology (the other properties of the E, are not essential to this proof), and
constructed the topology 7’ in the following way:

Since each 7, is a Ty-topology on E,, by Theorem 6.1 7, has a complement
..

The topology t’ is generated by sets of the form:

(i) {x}, where x¢ | J.E,.

(ii) V, Vert, where a is such that for cvery > « and for every We tsuch
that E,c W, Wn[Us<,E] #9.

(i) Vu Upngv where Vet, and o,f are such that ff>a and for some
Wert, E,c W,and WN[ U< E)] =@ .

Gaifman proved 7\/1'=1 and t At =0.

Now, if t* is defined in a modified form as the topology generated by the
following sets:

(i) and (ii) as above,

(i) Vu Upéva where Vert, and f,,a are such that 8, > a (B, fixed for
each a) and for some Wez, E,= W, and Wﬂ[U,,éva] =¥, then it can be
shown that 7* is a principal topology if each 7, is. First, 7* is a union of sets of
the form (i), (ii) and (iii). The intersection of sets of the form (i) with different
sets of the form (i), (ii) or (iii) is empty. The intersection of sets of the form (ii)
with sets of the form (ii) or (iii) is of the form (ii) and the intersection of two
sets of the form (iii) is again of form (iii). To elaborate this last point let
U;=V,u Uﬂa <vE,, i=1,2, be two sets of form (iii) where V,et,,, i=1,2.
If a, =a, then Bay=B., and U, NU,=(V,NVy) U U,, <E, and this is
of form (iii). If a; < a, then U, N U, = U, if f,, < ay, and U, NU, = Uss<Ey
if a, < B,,, where B3 = max(f,,,B,,). This last set is of the form (iii) also, where
V=3.

Second, T\ t* = 1. If x ¢ | J,E,, then {x}et*. If xeE,, then {x} =V NV’
where Vet,, V'e1, and V=U NE, for some Ue. If, for every Wer and
every B>a, E, =W implies WN[|Jp<,EJ#Q then Viet* so
{(x}=(UNE)NV'=UNV'et\1*. Otherwise there is a B, >« and some
Wersuch that E,cWand WN [ <, E,]=&. Then V' =V'u | < E € 1*
and (UNW)NV"={x}. Hence 7\/t*=1. Since t*<=1’, t A7 =0 implies
Tt At*=0. Thus t* is a complement of 7.

Since 1, is a T;-topology, by Theorem 6.1, ,’is a principal topology for each «.

For x ¢ U,E,, there is a minimal open set containing x in t*, namely {x}.

For x € E,, there is a minimal open set B, € 1, containing x. In case (ii)) B, e t*.
Any set of form (ii) in T* containing x must be in 7, and hence contains B, .Any
set of form (iii) in 7* containing x, contains E,, hence B,. So B, is a minimal
open set in t* containing x. In case (i), V, =B, U U,,évaet*. Let Wet*
such that x e W. Wis the union of sets of the form (i), (ii) and (iii) but only the
part of form (iii) can contain x. So we assume W= Uy Uﬂ«l-iva where Ue1,; .
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If oy =a, then B,c U so V,c W. If a; <a and B, S« then WNV, =V, so
VieW. Ifa; <a < B, then x¢ Wand if « <a, then x¢ W. So V, is a minimal
open set in t* containing x. Thus t* has a base of open sets, minimal at each
point and t* is a principal topology (Theorem 2.3).

THEOREM 6.4. A T;-topology on a countable set has a principal complement.

Proof. Let 7 be a Ty -topology on a countable set E. Let E be ordered as
{x;]i=1,2,---} where {x,} ¢7.If {x;}et, i=1,2,--,c =1 and has a principal
complement, 0. Let G be a relation on E defined as G = {(x;,x;)€ E x E|j < i}.
Then the topology 1’ defined by G is a principal topology and is a complement
of 7.

For each x;eE, i #1, the set Bx‘={xjeE|j§ i} is open in t’. Since B,
is finite, U=E—{B, — {x;}} is an open set in 7 containing x;. Thus
{x} =B, NUe’ \/7. And since {x,}et’, TV 1 =1.

Let UetAt', U#J. If x;eU, then B, < U since Uet’'. Hence x,e U
and since 7 is a T)-topology, U must be infinite. For every x; € E there isa j = k
such that x;e U. But B, < U implies x,eU. Thus U=E and T A" =0.

THEOREM 6.5. Every topology on a countable set has a principal complement.

7. The general theorem. In this section it will be shown that every topology
has a principal lattice complement. Several preliminary theorems are proved
first.

THEOREM 7.1. Let T be a topology on a set E, where E=E, UE, and
E,NE, = such that 1, = 1:| E, and 1, = tIEz have (principal) lattice com-
plements t, and 1) respectively. Then t has a (principal) complement.

Proof. If either E, or E, is empty, the theorem is trivial. So suppose both
are nonempty.

Case (a). Suppose E; and E, are open sets in 7. Let x; € E; and x,€E,.
Let ¢’ be the topology generated by sets of the form:

(i) U, where Uet] and x,¢U,

(ii) V, where Vet) and x,¢V,

(iii) Uy V, where x;eUet; and x,€ Ver,.

(If 7 and t; are principal topologies, then 7’ is the principal topology defined
by the relation G = G,uU G,u {(x;,x5),(x2,%;)} where G, defines 7} and
G, defines t,.)

It is not difficult to see that the restriction of an open set in ¢’ to E, (or E,)
is open in 7 (or t3).

For xeE, suppose x€E,;. Then there are open sets Uet;, and U'et]
such that {x} = U NU’. Since E, is open, Uer, and either U'e’, if x, ¢U’,
or UuV’'et’ if x,eU’ where x,eV’'e1). In either case, {x}et\ 1’ for
each xe E,. Similarly {x} et \/ 1’ for each xeE,, so 7\ 7' =1.
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Let Aet A1, A#. Thus ANE et At/ and ANE,et, \15. Some x
isin A, and if xe E,, then ANE;, =E,. But since x,e 4 and Ae1’, x,€4.
Thus ANE,=E, and A=E. Hence T A7 =0.

Case (b). Suppose neither E; nor E, is open. Let ¢’ be the topology generated
by sets of the form:

(i) U, where Uer},

(ii) V, where Ver;.

(If 7} and t; are principal topologies, then t’ is the principal topology defined
by the relation G = G, U G, where G, defines 1} and G, defines 75.)

For xeE, if xeE, then thereisa Uet, and U’'e7] such that {x} =UNU".
But U=VNE,; where Vet. Hence {x} =VNE, NU'=VNU'et\/ 7’ since
U'et’. Similarly, if xeE,, {x}et\V 1t sot\1' =1.

Let Aet A, A#F.If xeE;NA, ANE et; At; implies ANE, =E,.
But E; ¢t so some xeE, is in A. Thus ANE,=E, and 4 =E. Similarly if
ANE,#, then A=E. Therefore t A7’ =0.

Case (c). Suppose E; is open but E, is not open. Let x, € E; and x,€E,
and let v’ be the topology generated by sets of the form:

(i) U, where Ue1) and x,¢ U,

(ii)) V, where Ver,,

(iii) U yuV, where x,eUet] and x,eVert,. (If 7} and 1), are principal
topologies, then 7’ is the principal topology defined by the relation
G=G;uUG,uU {(xy,x,)}, where G, defines 7, and G, defines 1,.)

The restriction of an open set in t’ to E; (or E,) is open in t; (or 75).

For xeE,, {x} =UNU’ where Uet, and U’'et,. But Uet and if x, ¢ U’
then U'et’ and if x, e U’ then U’y V'e1’ where x,eV’e1;. In either case,
{x}etV 1. For xeE,, {x}=UNU’ where Uet, and U'et,. But U'er’
and U=VNE, where Vet. Thus {x} = VNU’, hence {x} et \/ t’. Therefore
TVt =1.

Let AetAtv, A#g. If ANE, #7, then ANE,=E, since
ANE;et; A7{. But x, € E, implies x, € A4 since Aet’ and thus ANE,=E,.
If ANE,#g, then ANE,=E, since ANE,et, A7,. But E, é1 so
some xeE; must be in 4. Hence ANE;,=E, and A=E. Therefore
tAt' =0.

THEOREM 7.2. If T is a topology on E and E =1y (E —I), where I is the
set of isolated points of ©, and if ‘rl(E — I) has a (principal) lattice complement,
then t has a (principal) lattice complement.

This is an immediate consequence of Theorem 7.1, since 1:|I is the discrete
topology and as such has a principal complement.

THEOREM 7.3. If every topology (T,-topology) with no isolated points has
a principal complement, then every topology (T,-topology) has a principal
complement.
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Proof. Let 7 be a topology (T;-topology) on a set E and let I =1, be the set
of isolated points of 7. It can be assumed that I, ¢ . Let I, be the set of isolated
points of rl(E— 1).

Let 4 be an ordinal number and suppose I, has been defined for all 1 <v.
Define I, as the set of isolated points of 1:|(E — Ul<v1).)°

Thus a family of disjoint sets {I,,[l < u} is inductively defined where |E| < ly|
so that, for each v <, I, is the set of isolated points of t|(E — (Ji<,12)-

There is some y < u such that I, = . Let y be the first ordinal such that
I, = and let E, = U,K,I,l and E,=E — E,. Since I, =@, the topology 1| E,
has no isolated points. Let 7, =1|E1.

Select x, eI, for each A <y. Let

G = Uiy x DU {(xix)| A <v <7y},

Then the principal topology ' on E; defined by G is a complement of z,.

Let Vetr, At , V. VNI, #, A<v, then I, « V since Vet'. It fol-
lows that x; eV, hence x,eV and I, V, for A<v<y. Thus V= U5§l<y1,1
for the least ordinal 6 such that VN I; #F.

Since Ver,, V=E NV’ for some V'et. As x;eV is isolated in
t|(E= Us<s D), {xs} = WN(E — Us<s)) for some Wet. But Ve V' cE
- U,K,,I,“ and hence WN V' = {x,} is isolated in 7. Thus 6=1 and V=E;,.
Therefore 7; \/ ¢’ =0.

Foreach xe E,, x is in some I,. Thus x is an isolated point in 1:|(E - U,1<VI,1).
There is then a We t such that {x} = WN(E — Ul<vI).)’ but {E — UKVI,I} et
and WN E, et,. Therefore 7, \/ 7' = 1.

It has been shown that tIE1 has a principal complement z’. If E; =¢F then
7’ is a principal complement of 7. If E, #{J, then 1:|E2 has no isolated points,
and hence by assumption a principal complement. (If 7 is a T,-topology, so is
‘L’IE2 .) But then by Theorem 7.1, T has a principal complement.

The next theorem in this section is an extension of the following result of Berri
[3], [4]: A topology on a set E has a complement if there is a decomposition of
E into countable sets such that no union of any proper subcollection is open.

THEOREM 7.4, Let t be a topology on a set E such that

(i) E= U,eoE,, where the E,’s are pairwise disjoint,

Gy r,= TIE,, has a (principal) lattice complement z,, and

(iii) for all Ver, if V+# E,&, then V is not the union of E,’s.
Then t has a (principal) complement t'. If some t,, has an isolated point, so does
.

Proof. Let t’ consist of all sets of the form U«eﬂ V, where V,et, for
all a € 0. (If each 7, is princinal, t’ is the principal topology defined by the union
of the relations representing the 7,.)
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Let xe E. Then x € E, for some ae (). There is a Ve, and a V' e 1, such that
{x}=VnV'. Since V'er'and V=U NE,forsome Uet, {x} =(UNE)NV’
=UnV'etyt. Thus t\y1' =1.

If Vet A1’ then VNE,et, A1, hence for all €@, either VNE,=E, or
VNE,=g.1f VNE,= for all ae @, then V=. If VNE,=E, for some
o, then VNE, = E, for all a € § by hypothesis, and V= E. Therefore 1 A " =0.
If {x} e, for some «, then {x}e7’.

THEOREM 7.5. Let T be a T,-topology on a set E containing a proper open
set S with at least two points, such that 15 = 1|S has a (principal) complement
15 with an isolated point. Then 1 has a (principal) complement with an isolated
point.

Proof. Let x,€ S be an isolated point, i.e., {xo} €15, and let yo€ S, yo # Xo.
Define 7’ as unions of sets of the form:

(i) V, where Vetg and y, ¢V,

(i) VU(E-=S)u {xo}, where y,eVerg,

(iii) {z} U {xo}, for each zeE - S.

The intersection of sets of form (i) with sets of the form (i), (ii) or (iii) is again
a set of form (i). A set of form (ii) intersected with a set of form (ii) is a set of
form (ii) and intersected with a set of form (iii) is of form (iii). The intersection
of two distinct sets of form (iii) is a set of form (i). Thus these sets form a base
for a topology.

(If 75 is a principal topology with defining relation Gg, then 7’ is the principal
topology defined by

G = GsU{yo} x (E—S) U(E - S) x {xo}.

It must be shownthatt\/t'=1andt A1 ' =0.Let xeE.If xe E— S, then
{x} ={x,x} N(E = {xo}) e’ Vt.If xe S and x # y,, then {x} = U NV where
Uets and Vertg. If yo¢ Vthen Vet and since Uer, {x}et\/ 1. If yoeV
then V*=VU(E-S)u{x}etr’ and U*=UN(E — {xo})etr. Thus
{x}=U*n V*et\1'.If x=y,, then {yo} = VN U where Vetg and U e 15.
Thus  {yo} = (VU (E =S U {xo}) N(UNE — {xo}))et’ \V . Therefore
tV1'=1. Let AetA1'. Since ANSetsN1g, ANS=S or ANS=(F.
If ANS =S, then since yoeSets, 4 must contain E—~ S and hence A =E.
If ANS=, then A=, since ze AN(E~-S) would imply xoe 4 NS.
Hence 1 At' =0.

Since {xo}ets, {xo}et’. Thus ' has an isolated point.

THEOREM 7.6. If © is a T,-topology on a set E such that
(i) E is ordered as {X,},<, where u is the smallest ordinal of cardinality
|E],
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(ii) each nonempty open set in t has the same cardinality as E,

(iii) for each x € E there is an open set containing x which does not contain
any predecessors of x, then t has a principal complement with a insolated
point.

Proof. Let 7’ be the principal topology defined by the relation G ={(x, ) | y<x}.

Let Uet A1, U# . For each xeE there is a ze E. z > x, such that
ze U. Otherwise it follows from the well-order on E that I U| < IE | . Thus
xeU since Uet’ and (z,x)eG, and U=E. Hence t A1t =0.

For each xe E, the set V= {yly < x}et’ and there is a set U et which con-
tains x but contains no predecessors of x. Thus {x}=UNVer\1 and
TVt =1.

For the first element x, in the well-order, {x,}e1’.

THEOREM 7.7. A T,-topology with no isolated points has a principal comple-
ment with an isolated point.

Proof. If there is some T;-topology with no isolated points which does not
have a principal complement with an isolated point, then there is a first cardinal
N such that some T;-topology t on E, where ¢ has no isolated pointsiand |E| =N,
fails to have a principal complement with an isolated point.

No set in 7 has isolated points in its relative topology, hence by Theorem 7.5
every nonempty set in T must have cardinality N.

Let E be well ordered as {x,},<, where p is the smallest ordinal of cardinality N.

(a) If for each x € E there is an open set containing x which contains no pred-
ecessors of x, then 7 has a principal complement with an isolated point by
Theorem 7.6.

Hence, the set S={xeE | every open set containing x contains predecessors
of x} is not empty. No nonempty subset of S can be in 7 since it would be an
open set not containing the predecessors of its first element. Since S¢ 7, E — S # .

(b) Suppose there is a nonempty set Uet such that UNS= ¢&. Then
Ty= 1:] U satisfies the conditions of Theorem 7.6, and by Theorem 7.6 and
Theorem 7.5, ¢ has a principal complement with an isolated point.

(¢) Thus S must be dense in 7. Also, since no nonempty subset of S is open,
E— S is also dense in 7.

Let us say that a subset M < E with the induced well-order has property P
if for every x e M there is an open set containing x which does not contain any
predecessors of x in M.

Consider sets of disjoint, dense subsets of E having property P and let T be
the collection of all such sets. Since E — S is dense and has property P, I' is not
empty. The union of a chain of sets of disjoint dense subsets of E having property P
is again such a set. Thus, by Zorn’s Lemma, I' has a maximal element

M= {W,|ieb}.



1966] THE LATTICE OF TOPOLOGIES 397

Denote by F the set E — Ui coWi, WeI, and let 7, = r]F. The well-order
on E induces a well-order on F. Let T= {‘ceFlevery set in 7, containing x
contains predecessors of x in F}. Then F = Ty (F — T) where F — T has pro-
perty P with respect to 7. No subset of Tis in 7z so F — T is dense in 7z, If F
is dense in 7, since F — T is dense in 7z, F — T is dense in 7, which contradicts
the maximality of M.

(d) Thus F is not dense in 7 and there is a set U et such that UNF = .
But now U= |J;.o{UNW} where UNW,# & for each ie0 and the sets
U N W, are disjoint. Let 7, = t] U and let 7, = Tul(U NW)= tl(U NW).

If it can be shown that each 7; has a principal complement with an isolated
point, then by Theorem 7.4, 7, has a principal complement with an isolated
point.

For ie@, 7; has no isolated points, since if {x}et;, then {x} =(UNW) NV
where Vetr. But UNVN(E—-{x})er and (UNVNE-{x)H)NW, =
which contradicts the fact that W, is dense in 7.

If for some Viert;, 0 < [ Vil <N, since ‘til V; has no isolated points (i;eT;
and 1; has no isolated points), ‘c,-[ V; has a principal complement with an isolz‘ed
point and hence by Theorem 7.5, so does 7;.

If for all Vier;, V;# & implies IV,I =N, then lU nW,.| =N. But UNnh,
is well-ordered (order induced by E) as {x;}s<, where p is the smallest ordinal
of cardinality N, and since W, has property P with respect to 7, U NW; has
property P with respect to 7 and hence with respect to 7;. Therefore by Theorem
7.6, 7; has a principal complement with an isolated point.

Thus 7, has a principal complement with an isolated point for each i€ 0, and
by Theorem 7.4, t, has a principal complement with an isolated point. Now
by Theorem 7.5, T has a principal complement with an isolated point.

THEOREM 7.8. The lattice of topologies on any set is complemented. More-
over, each topology has a principal complement.

Proof. Every T;-topology with no isolated points has a principal comple-
ment by Theorem 7.7, hence by Theorem 7.3, every T,-topology has principal
complement. Thus every topology has a principal complement by Theorem 6.3.
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