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The family of all topologies on a set is a complete, bounded lattice. The purpose

of this paper is to study the structure of the lattice of topologies, employing the

notion of ultraspace introduced by Fröhlich [7] and to show that this lattice is

complemented.

The set of ultraspaces may naturally be divided into two classes, each of which

generates a sublattice. One of these sublattices is the lattice of ^-topologies.

The other, which is studied in §2, is the lattice of principal topologies. Principal

topologies are defined in terms of ultraspaces and are then characterized by

properties of open sets.

Some topological properties of ultraspaces are investigated in §4 and maximal

regular (maximal Ty, maximal normal, etc.) topologies are characterized in terms

of ultraspaces.

The problem of complementation in the lattice of topologies has been out-

standing for some time. However, several partial solutions have been provided.

Hartmanis [11] first showed the lattice was complemented if the ground set was

finite and asked whether this was true in the infinite case. Gaifman [8] gave a

positive answer for denumerable sets and Berri [3], using this fact, was able to

provide complements for certain special topologies such as a topological group

with a dense, nonopen countable subgroup.

It is shown in §5 that the lattice of principal topologies is complemented.

Gaifman [9] established that the complementation problem can be reduced to

verifying that each Tropology has a complement. In §6, it is proved that if

every T,-topology has a lattice complement which is a principal topology, then

every topology does. In §7 it is shown that the lattice of topologies on an arbitrary

set is complemented by proving that every topology in the sublattice of Ty -to-

pologies has a lattice complement which lies in the sublattice of principal topologies.

Preliminary definitions and remarks. Throughout this paper, E will denote an

arbitrary set, and t, with or without subscripts, will denote a topology on E,
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whose members are open sets. The symbol | E |   will denote the cardinality of

the set E.

The definitions of T0, T,, T2, regular, completely regular and normal to-

pologies are those found in Kelley [12]. The definitions of partially ordered set,

lattice, sublattice, infimum and supremum are those found in Szász [16] and

Birkhoff [5]. The definitions and properties of filters and ultrafilters are those

of Cartan [6], Samuel [14] and Schmidt [15].

The family S of all topologies definable on a set E, partially ordered by set

inclusion, is a complete lattice (Vaidyanathaswamy [17]). The greatest element

of I, the discrete topology, will be denoted by 1 and the least element, the trivial

topology, by 0.

A topology t on Pis an ultraspaceif the only topology on E strictly finer than

t is the discrete topology.

For a filter 3- on E, Fröhlich [7] defined S(p, SF) to be the family of sets

ty(E — {p}) \j&, where \^(E — {p}) is the collection of all subsets of E which do

not contain p. Hence, <S(p,#~) is a topology on E such that for every xe£,

x 7e p, the set {x} is open and the open sets containing p are just the sets in SF

which contain p.

Fröhlich proved that the ultraspaces on E are exactly the topologies of the

form <5(x, *%) where x e E and % is an ultrafilter on E, % ^ %(x) ; that the corre-

spondence between ultraspaces and ordered pairs (x, V) is one-to-one; and that

every topology t on E is the infimum of the ultraspaces on E which are finer

than t.

Since an ultrafilter is either principal or nonprincipal (i.e. it either contains a

finite set or it does not), the class of ultraspaces on E is composed of the class

of nonprincipal ultraspaces (those in which the ultrafilter is nonprincipal) and

the class of principal ultraspaces (those in which the ultrafilter is principal).

A point x e E is called an isolated point of t if {x} e x. If x0 is not an isolated

point, then t :£ Q(x0,<%) for some ultrafilter %'.

An infraspace is a topology such that the only topology strictly coarser than

it is the trivial topology. Every infraspace has the form {E,A,0} where A<zzE,

A #0, Aj=E. Clearly every topology t is the supremum of infraspaces coarser

than t.

1. T,-topologies. A topology on E is a T,-topology if for every xeE, the

set {x} is closed. For every xe£ and for every nonprincipal ultrafilter <?/ on E,

the set E — {x}eW. Hence {x} is closed in every nonprincipal ultraspace. In a

principal ultraspace S(x,^/(y)), the set {>•} is not closed. Therefore, an ultra-

space is a T(-topology if and only if it is a nonprincipal ultraspace.

Theorem 1.1. A topology z on E is a Trtopology if and only if it is the

infimum of nonprincipal ultraspaces.
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Proof. Any topology finer than a ^-topology must also be a ^-topology;

so a T,-topology can be the infimum of only nonprincipal ultraspaces.

For each xeE, the set E — {x} is open in each nonprincipal ultraspace, and

thus in the infimum of any family of nonprincipal ultraspaces, so {x} is closed

in this infimum.

The ^-topologies form a lattice A, which is a complete sublattice of S, and

which has been studied previously by Bagley [1], and Hartmanis [11]. The

finest Ty -topology is the discrete topology and the coarsest is the cofinite topology

if, in which a nonempty set is open if and only if its complement is a finite set.

On a finite set the only T,-topology is the discrete topology.

2. Principal topologies. Every topology t on E is the infimum of all ultra-

spaces on E finer than x. If also t = inf{S(x, 6fr(y))\x Sj S(x, ^(y))}, then x

is said to be a principal topology. If x = y, then Q(x,'W(y)) is the discrete topo-

logy and if x # y, then S(x, °U(y)) is a principal ultraspace.

A principal ultraspace S(p, W(q)) on £ is a principal topology in which every

open set containing p must also contain q.

The topology x =S(p, °tl (q)) A ®(?> ^(r)) is a principal topology in which

for each xeE, x#p, x # q, the set {x} e x . Every open set p must contain q

and every open set containing p must also contain r. Therefore t = Q(p,^/(r)).

Theorem 2.1.    If x is a principal topology on E, the set

Bx = [yeE\Q(xMy)) = A

is open for each xeE.

Proof. If {x}et then Bx= {x}, since if there is a yeE, y#x, such that

T = <5(x,<?/(y)), then {x}£t. Let x ^ S(p, <%(q)). If pf.Bx, then Bx is open in

Q(p,W(q)). If peBx, then tíS(x,%))AS(p,t(5))áSfef(í)) (Fröh-
lich [7]). Hence q e Bx and Bx is open in Q(p, ^((q)). Since Bx is open in each

S(p, W(q)) finer than x, Bxex.

Theorem 2.2. If x is a principal topology on E, then for each xeE, every

set in x containing x must also contain the set

Bx = {yeE\Q(x,ny))Z*}-

Proof. If S is a set containing x and y $ S for some y e Bx, then S is not in

<3(x, "?/(>>)). Since t ^ S(x, <%(y)), S is not in x.

A subcollection âS of x is a base of open sets minimal at each point if for every

xeE there is a Ve US such that x e Fand every set in x containing x must contain V.

Theorem 2.3. A topology x is a principal topology if and only if it has a

base of open sets minimal at each point.
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Proof.   Let t be a principal topology. For each xe£, the set

Bx={yeE\QixMy)) = z}

is open (Theorem 2.1) and every set in z containing x must contain Bx (Theorem

2.2).

Suppose z is not a principal topology. Then there is a nonprincipal ultraspace

S(x, "?/) such that z — S(x, <%). If there is a minimal open set V containing x,

then Ve °U and every open set containing x must contain V. Hence x ¿ S(x, <^(y))

for all yeVandz^ A {S(x, W(y)) \ y e V} z% <3(x, #). Thus, if t has a base of

open sets minimal at each point, then for each nonprincipal ultraspace <3(x, °/¿)

liner than z there is a principal topology finer than z and coarser than S(x,!H)

which implies z is a principal topology. Therefore, a nonprincipal topology can

not have a base of open sets minimal at each point.

Theorem 2.4. A topology r is a principal topology if and only if arbitrary

intersections of open sets are open.

Proof. If arbitrary intersections of open sets are open, for each x e E the inter-

section of all open sets containing x is a minimal open set at x and the family Si

of open sets minimal at x for all xeE, is a base for z. Hence z is a principal

topology.

If t is a principal topology and ^"is a subcollection of z, then C\ Jf is open

since for each xe P|^", the minimal open set containing x is also in fl-^".

Corollary. An infraspace is a principal topology.

Theorem 2.5.   The principal topologies form a sublattice e>f the lattice S.

Proof. If t, and z2 are principal topologies, then certainly t, A t2 is a prin-

cipal topology. For each x, the set Ux = Vfn V2, where V'x is a minimal open

set in z, containing x for i = 1,2, is a minimal open set in t, \J z2 containing x

and the family 38 = {Ux \ Ux e z, \J z2 is minimal at x, for all x e E} is a base for

t, V ^2» minimal at each point. Hence t, V tj is a principal topology.

The lattice of principal topologies on E will be denoted by n. "

The lattice n is a complete lattice since IT is meetl complete and is bounded

above by 1. For any subset Jt c n, infyfW = infnJ^. However, n is not a

complete sublattice of S. Let z be a T, -ultraspace, z # 1. Then z = sup {y, | i e T},

where each y,, ieF, is an infraspace coarser than z. Each y, is a principal topo-

logy and z = supply,-1 i e T} = supn{y(|ier}. But supn{y,-1 i e F}, being finer

than a T.-topology, must also be a Tj-topology, so supn{y,| ieT} = 1 ^ z.

A subset G of E x E is a preorder relation if and only if

(1) (x,x)eG for all xeE; and

(2) (x,y)eG and (y,z)eG imply (x,z)eG for all x,y,zeE.

Subsequently, the notation xGy will be used to denote that (x,y)eG.
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There is a chain of length nfrom x to y in G if and only if there are elements

x = x0,Xy,---,x„^1,xn = y, n = 0, such that x0Gx1,x1Gx2, •••,x„_1Gxrt.

Operations A and V are defined on preorder relations by

(1) GyAG2 = GynG2,

(2) Gy\J G2 = (Gy U G2), where G = {(x,y)| there is a chain of length n from

x to y in G, n=0].

Under these operations, the family <3 of preorder relations, partially ordered

by set inclusion, is a lattice.

Each preorder relation G defines a topology xa: a set Sç£ is open if and

only if for each xeS, if xGy then yeS. Moreover, the topology xa determined

by the preorder relation G is a principal topology and xG = inf {S(x, <JU(y)) \ xGy}.

Each principal topology x determines a preorder relation Gt by

Gr = {(x,y)\xi S(x,^(y))}.

Theorem 2.6. The lattice Tl of principal topologies is anti-isomorphic to

the lattice <& of preorder relations.

Proof. There is a one-to-one correspondence between principal topologies in

n and preorder relations in ^ since the mappings rj-.Tl-*^ and cb:(£-*Tl de-

fined by

n(x) = GT= {(x,y)|S(x,^(y))^r}

and

c6(G) = TG = inf{S(x,^(y))|xGy}

are inverses. That is, ¡i(ch(G)) = G and ch(n(x)) = x.

Since xGty holds if and only if t^ S(x, ^¿(y)), if x¡ £ x2 then Gri — Gt2.

And since xG = A {S(x, W(y)) | xGy], then G y ̂  G2 implies xGl = xG,. Hence n

and >j-1 = c6 are antitone.

Thus, the lattice of preorder relations is a complete lattice (since n is) with a

least element, namely the relation A = {(x, x) I x e E} corresponding to the discrete

topology and a greatest element E x E corresponding to the trivial topology.

Let G be a relation on E. There is a path from x0 to x„ in G if there is a finite

collection of elements X! ,x2,--,x„_1 of E such that x¡Gx¡_i or x^Gx,-,

i = 1,2, ••-,n. If there is a path from x0 to x„, then there is a path from x„ to x0.

A subset Fç E is a component of E relative to a relation G if for every pair

x,yeF there is a path from x to y in G and for w$ F there is no path from x

to w for any xeF.

Two distinct components of E relative to G are disjoint and every point of E

is in some component.

A relationlG on E is connected if £ is a component relative to G.

A topology x on E is connected if E is not the union of two nonempty, disjoint

openisets.
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Theorem 2.7. A principal tope>logy zG is connected if and only if G is a

connected relation.

Proof. Suppose zG is not connected. Then E = U U V where U, Ve zG,

U ^ 0, Vj=0 and U(~\V=0. Suppose G is a connected relation. Let xeU

and yeV. Then there is a finite subset {x = x¡ ,x2,---,xn = y}ezz E such that

X;Gxi+1 or x,+ 1Gx; for i = 1,2, •••,« — 1. Denote by xk the first x, such that

x,eV. Since xyeU, k>l. Thus xk^,eU and xkeV. If xk_yGxk, then U is

not open in zG and if xkGxk_x, then I7is not open in zG. This is a contradiction

so G is not a connected relation.

Suppose G is not a connected relation. For some x0 6 E let U = {y e E | there

is a path between x0 and y}. The set U is open. For each xeU, the set

{y e £ | xGy} <= U because if there is a path between x0 and y and yGz holds,

then there is a path between x0 and z. Since G is not connected there is some

y0G£— U and £ — U is also open. Otherwise for some ye£— U, yGz and

zeU, but since there is a path between x0 and z and yGz, then there is a path

between x0 and y. Thus E — U must be open, and t is not connected.

A topology on £ which is neither a ^-topology nor a principal topology is a

mixed topology. A mixed topology can be represented as the infimum of a ^-topo-

logy and a principal topology, but this representation need not be unique. The

supremum of two mixed topologies can be a T,-topology or a principal topology.

For example, if z = S(x, °il) A ®(p, *(<?)), i' = S(jt,«)AS(?,t(p)), and

T" = S(y, Y) a <3(p, <?/(<?)) where x # y and * # f, then z\J z' = S(x, 'T) and

z\] z" = Q(p, ^(q)). The infimum of two mixed topologies cannot be a T,-topo-

logy, but it can be a principal topology.

Let'?/and"V be distinct nonprincipal ultrafilters. Then there is a set A such

that AeW and E-AeY. Let Zy = ¡\{Q(x,W(q))\qeA-{x}} and

T2 = /\{S(y,<t(«3))|i2eJB-^-{x}}. Then rt S <5(x,W) and t2^S(y,n,

and ®(x, ^) A f2 and ®(y,^)A"»"i are mixed topologies. But

[G(x,^)Ar2]A[<Siy,^)Azy]  = [Q(x,%)Arí]A[(S(y,nAr2] = zíAr2,

which is a principal topology.

The reader who is interested only in the complementation of S, may skip

§§3, 4 and 5.

3. Lattice properties of I. Vaidyanathaswamy [17] gave an example to show

that the lattice of topologies on a set of cardinality c is not distributive. The fol-

lowing proof uses ultraspaces and is very straightforward.

Theorem 3.1. The lattice of topologies T on a set E is distributive if E has

fewer than three elements. If E has three or more elements, E is not even

modular.
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Proof. If E has one element or two elements, S is a distributive lattice. Let

E={p,q,r} and let Jf = <5(p, ®{q)) A <5{p, ®(r)), & = S(p, *(r)),

JÍ = Q(r, <%(q)) be topologies on E. Thus X~ = ¿?. But pf V 'O A-^

= 1A^ = ^ and JT V (-^A ^?) á S(p,*(«)) since ¿T g Sip, #(«))

and J,r A&-è. <3(P> *(«))■ Thus pf V^) A^S-^Vi^A^O since

■^ as ®(P> ̂ (g)) and Z is not modular.

A lattice Lis self-dual if and only if there is a one-to-one mapping cb of L onto

itself such that cb(a Ab) = cb(a) V eb(b) and cb(a V b) = côp) A </>(b).

If Z is self-dual, there is a one-to-one map cb of Z onto itself. If a :g b, then

c/>p) = <b(a A b) = cb(a) V 0(b) which implies eb(b) = cb(a). Thus c6(0) = 1 and

</>(!) = 0 and infraspaces map onto ultraspaces and conversely, so the number

of infraspaces and ultraspaces must be equal.

In the lattice of topologies on a set E, if | E | = n < co, there are n(n — 1) ultra-

spaces (all principal) and 2"—2 infraspaces. If |£|S;K0, there are 2|E| infra-

spaces and 22lEI ultraspaces on £ (there are 22lE| ultrafiters on £ [2], [10]).

Thus the number of ultraspaces equals the number of infraspaces only when

|£| ^3.

Theorem 3.2. The lattice of topologies on E is self-dual if and only if

\E\=3.

Proof. If |£¡ >3, then Z cannot be self-dual by the preceding argument.

If | £ | = 1 or | £ | = 2, Z is obviously self-dual. If | £ | = 3, there are twenty-nine

topologies on £, but it can be seen by rotating the diagram on page 386 by 180°

that this lattice is also self-dual.

4. Topological properties. Ultraspaces may be studied easily because of their

point-ultrafilter representation. In this section some topological properties of

the ultraspaces are investigated and the maximal T0, T¡, T2, regular and normal

topologies are characterized. Other topological properties of ^-ultraspaces are

considered in Gillman and Jerrison [10].

Theorem 4.1.   Every ultraspace is TQ, normal and extremally disconnected.

Proof. Let S(x,f/) be an ultraspace on £. Then S(x, <?/) is a T0-topology

since for any two points of £ at least one as a set is open.

If A and B are disjoint closed sets, then x£A or x^B. If x£A then A and

£ — A  are open and Q(x, <%) is normal.

If V is an open set and xeV then V = V. If x ^ V then either

E-Ve% otVeW.lf E-VeQl then V= V. If Ve® then F=Fu{x},

but Ku{x}e* and hence is open. Thus S(x, <?/) is extremally discon-

nected.

Theorem 4.2.    No ultraspace on a set E is connected if |£| ïî3.
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Lattice of topologies on a three point set E = {a,b,c}

I

[April

B

C

D

E

0 Trivial Topology

1 Discrete Topology

A*

1 {b} {c}  {b,c} {c,a}

2 {c}  {b} {a,b} {b,c}

3 {a} {b} {a,b} {b,c}

4 {a} {b} {a,b} {a,c}

5 {«} {c} {a,b} {a,c}

6 {a} {c}  {c,a} {c,b}

D E

1 {b} {b,c} 1   {b}

2 {b} {b,a} 2 {a,b}

3 {a} {a,b} 3   {a}

4 {a} {a,c} 4 {a,c}

5 {c} {c,a} 5   {c}

6 {c} {c,b} 6 {b,c}

* eb, E omitted.

B

1 {b} {c} {b,c}

2 {b} {b,a} {b,c}

3 {a} {b} {a,b}

4 {a} {a,b} {a,c}

5 {a} {c} {a,c}

6 {c} {c,a} {c,b}

1 {a,c}    {b}

2 {a,b}    {c}

3 {a}      {b,c}



1966] THE LATTICE OF TOPOLOGIES 387

Proof. Let S(p, "¡O be an ultraspace on £. If | £ J ;> 3, there is an x e £ such

that x ,¿ p and "f & <%(x). Thus {x} and £ — {x} are both open.

An ultraspace is a Ty -topology if and only if it is a nonprincipal ultraspace

(cf. Theorem 1.1).

Theorem 4.3. .4« ultraspace is a T2-topology if and only if is it a non-

principal ultraspace.

Proof. For any two points, at least one as a set is open and its complement

is also open and contains the other point.

A nonprincipal ultraspace is normal and T,, hence is regular and completely

regular. A principal ultraspace S(x, °ti(y)) is not regular (since {x} is a closed set,

y $ [x], but every open set containing x contains y), and therefore not com-

pletely regular. An ultraspace is totally disconnected (i.e. no connected subset

contains more than one point) if and only if it is a nonprincipal ultraspace. Sim-

ilarly, being nonprincipal is a necessary and sufficient condition for an ultraspace

to be zero-dimensional (i.e. there is a base for the topology such that each set

in the base is both open and closed).

A topological space is a door space if every subset is either open or closed.

It is easy to see that every ultraspace is a door space. Actually it is not difficult

to characterize door spaces.

Theorem 4.4. A space is a door space if and only if the ultraspaces in its

representation have either a common point or a common ultrafilter.

Proof. Let Zy = f\ {<3(x, <%,)\iely} and z2 = f\ {Q(y,, V) \ i e I2}. A set not

containing x is in t. and if a set contains x, its complement is in Xy. Thus t.

is a door space. Every set in ^~is in x2 and if a set is not in V, its complement is.

Hence x2 is a door space.

If t ú&ixfti) A &iy, •**") where x # y and °l¿ -j¿ 'f, then there is a set A such

that AeûU and E-Aef. The set iA u {y}) n (£ - {x}) is not in <S(y, "V)

and its complement is not in ®(x,^). Thus (A \j {y}) r, (E — {x}) is neither

open nor closed in x.

Vaidyanathaswamy [17] erroneously stated that there are no maximal T.-to-

pologies. Liu [13] gave a necessary and sufficient condition for a topology to

be a maximal T,-topology and then proved that maximal T,-topologies do exist

by constructing  an ultraspace with the aid of Zorn's lemma.

An immediate consequence of Theorem 1.1 is that every maximal 7\ -topology

is of the form S(p,^) where peE, "ll is a nonprincipal ultrafilter on E,

<% -¿ °U(p). Then every subset of £ — {p} and every set in "?/ is open.

The maximal ^-topologies are precisely the maximal T2-topologies. Since

every nondiscrete topology is coarser than some ultraspace and every ultraspace

is a T0-topology, the ultraspaces are the maximal T0-topologies. Similarly, a normal

topology is a maximal normal topology if and only if it is an ultraspace.
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All nonprincipal ultraspaces are maximal regular spaces, but there are also

principal topologies which are regular.

A collection   Q of principal ultraspaces

{S(x1,*(x2)),S(x2,^(x3)),-,S(x„,^(x1))}

is called a cycle of order n.

Lemma 4.5. A topology which is the intersection over a cycle of order 2

is a maximal regular topology.

Proof. Let T = S(p,%))A£(?,t(p)). Then x is regular since every closed

set is also open. The only nondiscrete topologies finer than x are <B(p,"//(q)) and

<B(q,^/(p)), neither of which is regular.

Lemma 4.6. A topology whose representation contains a cycle of order n

is coarser than a maximal regular topology of the form S(x, 9t(y)) A S(j>, °^(x)) ■

Proof. Let 2 be a cycle of order n in the representation oft. Then t ^ A ^and

sinceQ(Xl,nx2))Ae(x2,nx3))ú(5(xy,nx3)),A ®£<5{xyMxn))A G(xa,W{xy)).

Lemma 4.7. A principal topology with no cycle in its representation is

not regular.

Proof. By deleting (x,x) from a relation G corresponding to x, the topology

xG remains the same. So assume (x,x)$G for all xe£.

Let x= A¡ e/{®(x¡>'^';)} where {<3(x¡, <%¡) | i e 1} contains no cycle. If

Bxo = {y e E | there is a chain from x0 to y in G} for some point x0, then x0 £ BXo

since for x0eBxo and (x0,x0)^G, there is a cycle of order n>l in

{S(x¡,'^'i)| i el} which is a contradiction. The set BXQ is open, so E — BXo is

closed. For y e Bxo there is no open set containing £ — BXQ which does not contain

y since x0 e E — Bxo. Thus x is not regular.

Theorem 4.8. A regular topology is a maximal regular topology if and

only if it is a nonprincipal ultraspace or it is oftheform'5(x,e?/(y))AQ(y,û^(x))

for some x,yeE.

Proof. If x is a nonprincipal ultraspace or tx = Q(x, W(y)) A &(y, 9/(x)),

then t is a maximal regular topology. Every Trtopology and every mixed topo-

logy is coarser than some nonprincipal ultraspace and every regular principal

topology is coarser than a maximal regular topology of the form

Q(x,<%(y)AQ(y,nx)).

5. Principal complements for principal topologies. In 1958, Hartmanis [11]

proved that the lattice of topologies on a finite set is complemented. Since every

topology on a finite set is a principal topology, this implies that the lattice n

of principal topologies on a finite set is complemented.
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In this section it will be shown that the lattice 'S of preorder relations is a

complemented lattice and hence, that the lattice n of principal topologies on

an arbitrary set is complemented. Actually, this result is just a special case of

the more general theorem concerning the complementation of S and follows

from Theorem 7.8.

A lattice complement of a preorder relation G is a preorder relation G' such

that G\jG' = ExE  and G A G' = A = {(x,x)|xe£}.

The set complement G* = (E x E) — G is not necessarily transitive and in

general G* A G # A.

Theorem 5.1. The lattice 'S of preorder relations on a set E is a comple-

mented lattice.

Proof. Let G be a preorder relation on a set £ and let £ = [Jx s9Ex where

each Ex is a component of £ relative to G. Then for x,yeE,x and y are in the

same component if and only if there isa path from x to yin G, i.e., if xGy or yGx.

Let G y = {(y,x)|xGy and not yGx}\j A. Select one point from each Ex and

denote it by xx (the xa's, aeO, will now remain fixed). Let

G2 = {(xa,xß)| a,ße 0} u A. The relations G¡ and G2 are both preorder relations

so G' = Gy\f G2 is also a preorder relation.

If xGy, then x and y are in the same component Ex of £ and by definition,

(x,y)$Gy, hence (x,y)$ G'. Therefore G A G' = A.

For (x,y)eE x E, x and y are in components Ex and Eß, respectively, of £.

If (x,xx)$G then (x,xa)eGy and if (xß,y)$G then (xß,y)eGy. Since

(xx,xß)eG2, {(x,xx),(xx,xß),(xß,y)}czG\jG' so (x,y) eG\/ G'. Thus

GVG' = £x£.

Theorem 5.2. The lattice n o/ principal topologies is a complemented

lattice.

This follows directly from Theorem 2.6, since n and & are anti-isomorphic.

6. Reduction to Tropologies. Hartmanis [11], after concluding that the

lattice of topologies on a finite set is complemented, posed the question: "Is

the lattice of topologies on an infinite set complemented?" Gaifman [8] showed

that this lattice is complemented if the set £ is countable. To obtain this result,

he proved that if every T,-topology on a set has a complement, then every topo-

logy on that set has one.

In this section it will be shown that if every Trtopology on a set has a comple-

ment which is a principal topology, then every topology on that set has a prin-

cipal complement. It will also be established that every ^-topology on a count-

able set has a principal complement.

A topology x is said to have a principal complement if there is a principal

topology x such that x \f x' = 1 and x A ?' = 0.
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If i is a topology on a set £ and F cz E, then x | F denotes the restriction of x

to £ (i.e., the relative topology on £ induced by t).

Theorem 6.1. // every T0-topology (Tytopology) x on E has a (principal)

complement and FczE, then every T0-topology (Tytopology) x0 on F has a

(principal) complement.

Proof. Let x0 be a T0-topology on F, and define a topology x on £ by

T = {(4c£)|/lnF6T0}. Then x is a T0-topology and hence has a comple-

ment t'. For xe£ there is a Uex, Vex' such that {x} = U C\V. But If n£et0

and Fn£eT'|£ so {x} =(U C\F)r\(Vr\F)ex0\J x'\F. Thus x0 \fx'\F = 1.

For Uex0 A?'\F, U = VC\F for some Vex', hence Vex (by definition of t).

Since TAt' = 0i it follows that V=0ot V=E and consequently that U=0

or U «= F. Thus t0 A t'|F = 0, and x'\F is a complement of x0. If x' is principal,

then for each x e F there is a minimal open set Bx e x' containing x. Thus Bxd F

is a minimal open set in x'\F containing x, so x'\F is a principal topo-

logy.

Theorem 6.2. // every T0-topology on E has a principal complement, then

every topology on E has a principal complement.

Proof. Gaifman [9] showed that if every T0-topology on a set has a comple-

ment then every topology does. He did this in the following way:

Let x be a topology on £. Define x « y by: for every Vex, xe F if and only

if ye V. Obviously x is an equivalence relation. There exists a subset Ey of £

whose intersection with every equivalence class consists of exactly one point.

Now, Xy = x | Ey is a T0-topology and if every T0-topology on £ has a comple-

ment then every T0-topology on Ey has a complement since | Ey | = | £ |. Denote

this complement by x'¡. Then x' = {A c £| A PiEy e x\} is a complement for t.

In Gaifman's notation, if every T0-topology on £ has a principal complement

then every T0-topology on £x has a principal complement (Theorem 6.1). Thus,

let x'y be a principal complement of t1 . For each xeE — Ey, {x} e x'. For each

xeEy, there is a minimal set in t/ containing x and this set is thus a minimal

set in x' containing x. Therefore, x' is a principal topology (Theorem 2.3).

Theorem 6.3. If every Tytopology on a set E has a principal complement,

then every topology on E has a principal complement.

Proof. By Theorem 6.2 it suffices to show that if every ^-topology on £

has a principal complement, then every T0-topology on £ has a principal comple-

ment. So let x be a T0-topology on £.

Under the assumption that every Ty -topology on £ has a complement, Gaif-

man [9] deduced that every T0-topology on £ has a complement in the following

way:
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He defined an ordered family of disjoint sets Ex, such that xx = x\Ex is a

T,-topology (the other properties of the Ex are not essential to this proof), and

constructed the topology x' in the following way:

Since each xx is a ^-topology on Ex, by Theorem 6.1 xx has a complement

<■
The topology x' is generated by sets of the form:

(i)   {x}, where x$ \JXEX.

(ii) V, Ve x'x where a is such that for every ß > a and for every We x such

that Ex s W, WC. [U«,£J *0 ■
(iii) V uljfs»£» where Vex'x and a,ß are such that ß > a and for some

Wex,E.= W, and Wn[\JßSyEf] =0.
Gaifman proved x V t' = 1 and t A i"' = 0.

Now, if x* is defined in a modified form as the topology generated by the

following sets:

(i) and (ii) as above,

(iii) Vu\^)ß.<vEv where Vex'a and ßx,a are such that ßx > a (ßx fixed for

each a) and for some Wex, Ex e= W, and (^«^[[J^ gv£v] =0, then it can be

shown that t* is a principal topology if each t.'is. First, t* is a union of sets of

the form (i), (ii) and (iii). The intersection of sets of the form (i) with different

sets of the form (i), (ii) or (iii) is empty. The intersection of sets of the form (ii)

with sets of the form (ii) or (iii) is of the form (ii) and the intersection of two

sets of the form (iii) is again of form (iii). To elaborate this last point let

U, = V,u [JßX gv-Ev> i = L2, be two sets of form (iii) where V,exx¡, i = 1,2.

If <Xy = a2 then ßXl = ßX2 and UyC.U2 = (K, n Vf) U Ufc S»£» and this is

of form (iii). If txy < <x2 then t/, n l/2 = U2 if ßxi = a2, and iz/n U2 = (J^-sA

if a2 < ßxi, where ß3 = max(ßXj,ßxf). This last set is of the form (iii) also, where

V = 0.
Second, t \¡x* = 1. If x$ \JXEX, then {x}ex*. If xeEx, then {x} = V n V

where feT^, V'exx and F = U (~\EX for some 1/et. If, for every ITgt and

every ß>a, Exç W implies Wr\[\J„ávEf]¿0 then F'et* so

{x} = ([/n£í)nf= [7 O F' e t V t* • Otherwise there is a p\ > a and some

Wex such that ExzWandW n[[Jß^vEv]=0. Then F" = V u U/».s*£»eT*
and (C7 O W) O F" = {x}. Hence iVt* = l. Since t* s t', t A t'= 0 implies

T A t* = 0. Thus t* is a complement of t.

Since xx is a T,-topology, by Theorem 6.1, ra'is a principal topology for each a.

For x^ {JXEX, there is a minimal open set containing x in x*, namely {x}.

For xeEx, there is a minimal open set Bx e x'x containing x. In case (ii) Bx e x*.

Any set of form (ii) in t* containing x must be in Ta'and hence contains B^.Any

set of form (iii) in x * containing x, contains Ex, hence Bx. So Bx is a minimal

open set in t* containing x. In case (iii), Vx = Bx\j \j$m^E^ex*. Let Wex*

such that xeW. W is the union of sets of the form (i), (ii) and (iii) but only the

part of form (iii) can contain x. So we assume W = U \j {Jßa s yEv where U e xXí (
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If «y = a, then Bxcz U so Vxcz W. If a, < a and ft,, ^ a then If n K» = Vx so

Fj c W. If otj < a < jßa) then x £ W and if a < otL then x ^ W. So Fx is a minimal

open set in t* containing x. Thus t* has a base of open sets, minimal at each

point and t* is a principal topology (Theorem 2.3).

Theorem 6.4.   A Tytopology on a countable set has a principal complement.

Proof. Let x be a Tytopology on a countable set £. Let £ be ordered as

{x,| / = 1,2, •■■} where {xy} $x. If {x¡}ex, i = 1,2, • - -, r = 1 and has a principal

complement, 0. Let G be a relation on £ defined as G = {(x¡,Xj)e£ x E\j < i}.

Then the topology x' defined by G is a principal topology and is a complement

of x.

For each x¡e£, f»*l, the set BXi = {x¡eE\j = i] is open in x'. Since BXI

is finite, U = E — {Bx. — {x,}} is an open set in x containing x¡. Thus

{x,} = Bx¡ O U e x' V T • And since {xy} ex', x \J x' = 1.

Let 17 e t A t' > U t^0 . If x¡eU, then Bx. cz U since U ex'. Hence Xj e U

and since t is a Tytopology, U must be infinite. For every xk e E there is a j = k

such that XjeU. But BXj cz U implies xke U. Thus U = E and tAt' = 0.

Theorem 6.5.   Every topology on a countable set has a principal complement.

7. The general theorem. In this section it will be shown that every topology

has a principal lattice complement. Several preliminary theorems are proved

first.

Theorem 7.1. Let x be a topology on a set E, where E = Ey \j E2 and

Ey C\E2 =0 such that x¡ = t| £t and x2 = x\E2 have (principal) lattice com-

plements Xy  and x'2 respectively. Then x has a (principal) complement.

Proof. If either Ey or £2 is empty, the theorem is trivial. So suppose both

are nonempty.

Case (a). Suppose Ey and £2 are open sets in x. Let x1e£1 and x2eE2.

Let t' be the topology generated by sets of the form:

(i)      U, where Uex'y and Xy$U,

(ii)     V, where Ve x'2 and x2 i V,

(iii)    U u V, where Xy e U e x[ and x2 e Ve x2.

(If x'y and t2 are principal topologies, then x' is the principal topology defined

by  the  relation   G = Gy\j G2\j {(xy,x2),(x2,x¡)}   where   Gy   defines  x'¡ and

G2 defines x2.)

It is not difficult to see that the restriction of an open set in t' to Ey (or £2)

is open in ti (or x'2).

For xe£, suppose xe£x. Then there are open sets Uexy, and U'ex'y

such that {x} = U CiU'. Since Ey is open, Uex, and either If ex', if Xy $ If,

or U'yjV'ex' if Xyelf where x2eF'eT2. In either case, {x}ex\/x' for

each xeEy. Similarly {x} ex \J x' for each xe£¡, so x \/ x' = 1.
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Let A ex At', A #0. Thus A(~\Eyexy At/ and A C\E2ex2 At2. Some x

is in A, and if xe Ey, then A OEy = Et. But since xt e A and Aex', x2eA.

Thus 4 fi£2 = £2 and A = E. Hence x A x' = 0.

Case (b). Suppose neither Ey nor £2 is open. Let x' be the topology generated

by sets of the form :

(i)    U, where U ex\,

(ii)   V, where Vex'2.

(If x'y and t2 are principal topologies, then x' is the principal topology defined

by the relation G = Gx u G2 where G¡ defines x\ and G2 defines x'2.)

For xe£, if xe£. then there is a U exy and U' ex\ such that {x} = 17 O U'.

But L7 = Fn£, where Vex. Hence {x} = Fn£, O [/' = KO [/'er \¡x' since

¡7' e t' . Similarly, if x e £2, {x} e t V t' so x\¡ x' = 1.

Let Aex Ai', A #0. If xe£, 0^4, A n£t eTx A t'x implies inE^E,.

But E, ^t so some xe£2 is in A. Thus AC\E2 = E2 and A = E. Similarly if

A r\E2 #0, then A = E. Therefore z A x' = 0.

Case (c). Suppose £, is open but £2 is not open. Let XyeEy and x2e£2

and let x' be the topology generated by sets of the form:

(i)      17, where Uex[ and Xy$ U,

(ii)     V, where Fer2,

(iii) (7 \jV, where XyeUex'y and x2eFeT2. (If x\ and t2 are principal

topologies, then x' is the principal topology defined by the relation

G = Gy u G2u {(x,,x2)}, where G. defines x[ and G2 defines t2.)

The restriction of an open set in %' to E, (or £2) is open in x[ (or x'f).

For xeE,, {x} = U r\U' where t/er, and U'erf. But t/et and if Xy$U'

then 17' e t' and if x, e C7' then U' \jV e x' where x2 e V e x2. In either case,

{x}ex\/x'. For xe£2, {x} = Uf\U' where [/er2 and fJ'eT2. But U'ex'

and L7= Fn£2 where Vex. Thus {x} = VC\U', hence {x}er Vt'. Therefore

t\/t' = 1.
Let AexAt', A+0. If 4nE,#0, then 4n£,=£, since

4 OE, exy A x[. But xt e£, implies x2e^4 since ^ez' and thus A C\E2 = E2.

If AC\E2±0, then >4n£2 = £2 since A C\E2ex2 A *î. But £2 $x so

some x e £j must be in 4. Hence A O £, = E¡ and ,4 = £. Therefore

tAt' = 0.

Theorem 7.2. // x is a topology on E and E = I\j(E — I), where I is the

set of isolated points of x, and if x\(E — I) has a (principal) lattice complement,

then x has a (principal) lattice complement.

This is an immediate consequence of Theorem 7.1, since x\l is the discrete

topology and as such has a principal complement.

Theorem 7.3. // every topology (Tt-topology) with no isolated points has

a principal complement, then every topology (T^-topology) has a principal

complement.
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Proof. Let t be a topology (Tj-topology) on a set £ and let I = ¡y be the set

of isolated points of t. It can be assumed that I¡ #0. Let 12 be the set of isolated

points of t|(£ — Iy).

Let X be an ordinal number and suppose f has been defined for all X < v.

Define f as the set of isolated points of x\(E — {Jx<vh)-

Thus a family of disjoint sets {/; | X < p} is inductively defined where | E \ < I p I

so that, for each v < p, Iv is the set of isolated points of x\(E — [Jx<vh)-

There is some y < p such that Iy = 0. Let y be the first ordinal such that

Iy =0 and let £, = \^Ji<yIx and £2 = £ — £,. Since Iy = 0, the topology r| £2

has no isolated points. Let t1=t|£1.

Select xx e Ix for each X < y. Let

G = U<.(^x//l)u{(x;,xv)|A<v<y}.

Then the principal topology x' on £, defined by G is a complement of x¡.

Let Vexy At', F#0. If VC\IxJ=0, X<v, then fez V since Vex'. It fol-

lows that xxeV, hence xveFand /„ c V, for X<v<y. Thus V= \^)o¿x<yIx

for the least ordinal ô such that VC\I6j^0.

Since Vexy, V—EyCiV for some Vex. As x¿eF is isolated in

x\(E-\)x<iIx), {xá} = JFn(£- Ui<4/J for some Wex. But FcF'cE

— yjx<ôIx, and hence Wn V — {xô} is isolated in x. Thus 5= 1 and V= Ey.

Therefore Xy \J x' = 0.

For each x e £,, x is in some f. Thus x is an isolated point in x \ (E — Ua<v^a) •

There is then a Wex such that {x] = Wr\(E- \JX<JX), but {E - \Ji<Jx}ex'

and WC\Ey sty. Therefore x{\/ x' = 1.

It has been shown that x\Ey has a principal complement x'. If E2=0 then

z' is a principal complement of x. If £2 #0, then t|£2 has no isolated points,

and hence by assumption a principal complement. (If t is a Tytopology, so is

t|£2.) But then by Theorem 7.1, x has a principal complement.

The next theorem in this section is an extension of the following result of Berri

[3], [4]: A topology on a set £ has a complement if there is a decomposition of

£ into countable sets such that no union of any proper subcollection is open.

Theorem 7.4.   Let x be a topology on a set E such that

(i)      £= Ua6fl£a, where the £a's are pairwise disjoint,

(ii)     tc, = t|£S( has a (principal) lattice complement Ta, and

(iii)   for all Vex, if V^=E,0, then V is not the union of E¿s.

Then x has a (principal) complement x'. If some x'x has an isolated point, so does

x'.

Proof. Let x' consist of all sets of the form U^el^ where Vxex'x for

all a60. (If each x'^ is princinal, x' is the principal topology defined by the union

of the relations representing the tJ.)



1966] THE LATTICE OF TOPOLOGIES 395

Let xe£. Then xeEx for some cteO. There is a Vezx and a Vez'x such that

{x} = Vr.V. Since F'er'and F= U n Ex for some l/er, {x} = (1/ OEJn K'

= U nVez Vt'. Thus t V t' = 1.

If KeiAt' then FnE.eT, A <, hence for all aeö, either VC\EX = EX or

VCsEx = 0. If KO£il = 0 for all aeö, then F=0. If Vr\Ex = Ex for some

a, then Fn£a = £a for all ae 0 by hypothesis, and V = E. Therefore iAt' = 0.

If {x}etj for some a, then {x}ei'.

Theorem 7.5. Let x be a Ty-topology on a set E containing a proper open

set S with at least two points, such that xs = x\S has a (principal) complement

x's with an isolated point. Then x has a (principal) complement with an isolated

point.

Proof. Let x0 e S be an isolated point, i.e., {x0} e xs, and let y0 e S, y0 ^ x0.

Define x' as unions of sets of the form:

(i)      V, where Ve x's and y0 $ V,

(ii)     V\j(E-S)\j {x0}, where y0eVex's,

(iii)    {z} u {x0}, for each z e £ — S.

The intersection of sets of form (i) with sets of the form (i), (ii) or (iii) is again

a set of form (i). A set of form (ii) intersected with a set of form (ii) is a set of

form (ii) and intersected with a set of form (iii) is of form (iii). The intersection

of two distinct sets of form (iii) is a set of form (i). Thus these sets form a base

for a topology.

(If x's is a principal topology with defining relation Gs, then x' is the principal

topology defined by

G = GSKJ {y0} x (E - S) U(£ - S) x {x0}.

It must be shown that x \J x' = 1 and x A t' = 0. Let xe£. If xe£ — S, then

{x} = {x, x0} n (£ — {x0}) ex'VT.IfxeS and x # y0, then {x} = U n V where

Uexs and Vexs. If y0^V then Vex' and since Uex, {x}ex\/x'. If y0eV

then V*= Fu(£-S)u{x0}et' and U* = U n(E - {x0})et. Thus

{x} = U*n V* ex Vt'. If x = y0, then {y0} = FOC/ where Fer^ andt/eTs.

Thus {y0} = (F u (£ - £)U {x0}) O(t/ O(£ - {x0}))er' V t. Therefore

tVt' = 1. Let AexAt'- Since A r\Sezs C\z's, AnS = S or 4nS = 0.

If A n S = S, then since y0 e S e t¿ , A must contain £ — S and hence A = E.

If A(~\S = 0, then A = 0, since ze/4 n(£ — S) would imply x0e/1 OS.

Hence z Ax' = 0.

Since {x0}ets, {x0}ex'. Thus t' has an isolated point.

Theorem 7.6.   If x is a Ty-topology on a set E such that

(i)      £ is ordered as {xx}x<lt where p is the smallest ordinal of cardinality



396 A. K. STEINER [April

(ii)     each nonempty open set in x has the same cardinality as E,

(iii)   for each xeE there is an open set containing x which does not contain

any predecessors of x, then x has a principal complement  with a insolated

point.

Proof.   Let x' be the principal topology defined by the relation G = {(x, y) \y<x}.

Let If ex Ax', U # 0. For each xeE there is a zeE z>x, such that

zeU. Otherwise it follows from the well-order on £ that |l/|<|£|. Thus

xeU since Uex' and (z,x)eG, and U = E. Hence tA?' = 0.

For each xe£, the set V= {y\y ^x}ex' and there is a set Uex which con-

tains x but contains no predecessors of x. Thus {x} = U n Vex V x' and

tVt'-i.
For the first element x, in the well-order, {x,} ex'.

Theorem 7.7. A Tytopology with no isolated points has a principal comple-

ment with an isolated point.

Proof. If there is some T, -topology with no isolated points which does not

have a principal complement with an isolated point, then there is a first cardinal

X such that some Ty -topology x on £, where x has no isolated points! and | £ | = X,

fails to have a principal complement with an isolated point.

No set in x has isolated points in its relative topology, hence by Theorem 7.5

every nonempty set in x must have cardinality K.

Let £ be well ordered as {xa}or</1 where p is the smallest ordinal of cardinality X.

(a) If for each x € £ there is an open set containing x which contains no pred-

ecessors of x, then x has a principal complement with an isolated point by

Theorem 7.6.

Hence, the set S = {x e E | every open set containing x contains predecessors

of x} is not empty. No nonempty subset of S can be in x since it would be an

open set not containing the predecessors of its first element. Since S$x,E — S ^ 0.

(b) Suppose there is a nonempty set Uex such that U C\S = 0. Then

rv = x | U satisfies the conditions of Theorem 7.6, and by Theorem 7.6 and

Theorem 7.5, x has a principal complement with an isolated point.

(c) Thus S must be dense in x. Also, since no nonempty subset of S is open,

£ — S is also dense in x.

Let us say that a subset M cz E with the induced well-order has property P

if for every xeM there is an open set containing x which does not contain any

predecessors of x in M.

Consider sets of disjoint, dense subsets of £ having property P and let T be

the collection of all such sets. Since £ — S is dense and has property P, T is not

empty. The union of a chain of sets of disjoint dense subsets of £ having property P

is again such a set. Thus, by Zorn's Lemma, T has a maximal element

Wl={Wi\¡ieO}.
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Denote by F the set £ - (Jis9 W„ W,ei\fi, and let zF = z\F. The well-order

on £ induces a well-order on F. Let T= {xe£|every set in xF containing x

contains predecessors of x in £}. Then £ = T\j (E — T) where F — T has pro-

perty P with respect to xF. No subset of Tis in zF so F — T is dense in zF. If £

is dense in z, since F — T is dense in Tf, E — T is dense in t , which contradicts

the maximality of idl.

(d) Thus E is not dense in z and there is a set U e z such that U HE = 0.

But now 17= lJ¡et){^nW¡} where U C\W,^ 0 for each ieö and the sets

U O W, are disjoint. Let t», = z\ U and let z, = zv\(U C\W) = z\(U C\W).

If it can be shown that each z, has a principal complement with an isolated

point, then by Theorem 7.4, zv has a principal complement with an isolated

point.

For ie0, x, has no isolated points, since if {x} ex,, then {x} =(U C\W)C\V

where Vex. But U n Vn(E - {x})ex and (Í7 n FO(E- {x})) n Wj = 0

which contradicts the fact that W, is dense in z.

If for some F¡eT¡, 0<|F¡|<K, since z,\V, has no isolated points (¡'¡e^

and z, has no isolated points), t¡| F¡ has a principal complement with an isok'ed

point and hence by Theorem 7.5, so does z,.

If for all V,ez„ V, # 0 implies |F,|=K, then |l7nW.|=X. But U O H,

is well-ordered (order induced by £) as {xí}í<í, where p is the smallest ordinal

of cardinality X, and since W, has property P with respect to t, U O W, has

property P with respect to z and hence with respect to z,. Therefore by Theorem

7.6, z, has a principal complement with an isolated point.

Thus z, has a principal complement with an isolated point for each ieO, and

by Theorem 7.4, zv has a principal complement with an isolated point. Now

by Theorem 7.5, z has a principal complement with an isolated point.

Theorem 7.8. The lattice of topologies on any set is complemented. More-

over, each topology has a principal complement.

Proof. Every T,-topology with no isolated points has a principal comple-

ment by Theorem 7.7, hence by Theorem 7.3, every T,-topology has principal

complement. Thus every topology has a principal complement by Theorem 6.3.
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