OUTER MEASURES ON A LINEAR LATTICE

BY
LEON BROWN AND HIDEGORO NAKANO(1)

In this paper we define and discuss the theory of abstract outer measures on a
sequentially continuous(?) linear lattice S. This is a generalization of-the concept
of outer measure on a function space as used by Bourbaki [3]. H. Nakano [7]
and M. H. Stone [8] have modernized Lebesgue’s extension theory; our approach
provides a common generalization of their theories. We show, for example, that
their theories lead to the same set of integrable functions, and that, from a lattice
theoretic point of view, Stone’s results depend on the fact that the space of all
real-valued functions on a set X is a perfect(3) lattice.

I. Outer measures. In this section we define outer measure and we introduce
a partial ordering for the space of outer measures. For a given outer measure
P* we introduce a subspace Sp. of S, which plays the role of the space of integrable
elements.

Throughout this paper S is a sequentially continuous linear lattice. P* is called
an outer measure on S if P* satisfies the following properties:

(a) P*is a function from S into the extended reals (— o < P*(x) < + o0);

(b) if x < y then P*(x) < P*(y);

(c) if « = 0 then P*(ox) = aP*(x) (0- 0 = 0( — ) = 0);

(d) if P*(x) + P*(y) is defined, then

P*(x + y) £ PX(x) + P*(y),
and if in addition, P*(x A y) + P*(x V y) is defined, then
P*(x V y) + P*(x A\ y) £ P¥(x) + P*(y);

(e) if x, is a monotonically increasing sequence in S, P*(x,)> — oo, and
x = \/,x, then P*(x) = lim,, ., P*(x,).
We present some consequences of our axioms.

LemMa 1.1. —P*(—x) £ P*(x) for each xeS.
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(2) A linear lattice S is said to be sequentially continuous if for every sequence {a,} of
positive elements, A a, exists. This concept is called 6-completeness in [2, p. 80].

(3) A linear lattice S is said to be perfect if for each sequence [a,] < S, X a, converges
provided that a,, A a., = 0 for n % m. In the literature, various other terms are used for the
concept of perfect such as complete [5, p. 155], and Volkommen [6].
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Proof. If P*(x) + P*(—x)is not defined then P*(x) = + oo and P*(—x) = F 0.
If it is defined, then 0 =0 P*(0) = P*(0) < P*(x) + P*(—x). q.ed.
We write P* = Q* if P¥(x) = Q*(x) for each x in S.

With the above definition of =, one easily shows that the collection of all
outer measures forms a partially ordered set.

Putting M*(x) = + oo for x* # 0, and =0 for x+ =0 (i.e., x £0), we obtain

an outer measure M*, and we see easily M* is the greatest (maximum) outer
measure.

We will make use of the notation
Spe = {x|P*(| x|) < + o0 and P*(x) = — P*(—x)}.
Then we have
THEOREM 1.2. Sp« is a subspace of S and P* restricted to Sp. is a positive

linear functional which is sequentially continuous. P* is sequentially continuous
if whenever a,| 0 then P*(a,)— 0.

Proof. We recall that a subspace of S [Nakano 4, p. 14] is closed under finite

sups and infs and if x, (x, = 0) is in the subspace for each n, then A,x, isin the
subspace.

(a) If x = 0 then P*(x) = P¥(0)=0;

(b) as P*¥(—x+ (—y)) < P¥(—x)+ P*(—y), for x, yeSp,, we have
—P*(— (x + y)) 2 — P*(—x) — P*(—y) = P*(x) + P*(y) = P*(x + y). Thus we
obtain by Lemma 1.1, x + y e Sp. and P*(x + y) = P*(x) + P*(y).

(c) Let xe Sps. If =0, then

P*(ax) = aP*(x) = —aP*(—x) = — P*(—ox).
If « < 0 then
P*(ax) = P*((—a)(—x)) = —aP*(—x) = aP*(x) = —(—a) P¥(x) = — P*(—ax).

Thus ax € Sps and P*(ax) = aP*(x).
(d) Let x, y e Sp.. Since

P¥x Ay) S P*xV y) < PX(|x| v [y S PX(|x| +|y])
< PH(|x])+ PH(|y) < + 0,
we have by Lemma 1.1
PX(x) + PX(y) = —=(P*(=x) + P*(—y))
—(P*(=xV =y)+ PX(=x A\ —Y))
—(P*(=(x AP+ PH(=(xV )
P*(x N y) + PX(x V y) < PX(x) + P¥(y).

A
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Thus -P*(—(x Ay)) — P*(—(xV y)) = P*(x A y) + P*(x VV y). Since
—P*(—(x Ay)=P*x Ay), and —P*(—(xV y) = P*xVy)
by Lemma 1.1, we obtain x A ye Sps and x \/ y € Sps.
(¢) Let x,€Sp. and x,} x in S. Then —x, 71— x which implies that
P*(—x,)1P*(—x), that is, —P*(—x,)| —P*(—x).

As P*(x) £ P*(x,) = —P*(—x,), we obtain here P*(x) £ — P*(—x) < P*(x) by
Lemma 1.1. Therefore P*(x) =lim,_,, P*(x,) and xeSp.. q.e.d.

I1. Compatible outer measures. The relationship between positive linear
functionals and outer measures is discussed. Of particular interest is Theorem
2.4, which implies that the theories of Nakano and Stone give rise to the same
set of integrable functions. Let C be a linear lattice manifold of S. A positive
linear functional P on C is said to be compatible with an outer functional P* on
S if P(x)=P*(x)for all x e C. We also say P*is compatible with P.If Piscompatible
with P*, then C = S;., because x € Cimplies — P*(—x) = — P(—x) = P(x)=P*(x).

THEOREM 2.1. Let P be a positive linear functional on C then there is a P*
compatible with P if and only if P is sequentially continuous.

Proof. (a) If P is sequentially continuous then let
P*(x) =inf{2| A =1imP(a,) :C3a,T,a, Ax}x, or A=+ «}.
Then P* is an outer measure compatible with P (see [Nakano 7]).
(b) If P* is compatible with P and C5x,] 0, then —x,10 and
P(—x,) = P*(—x,)1P*(0) = 0, namely P*(x,)]0. q.e.d

THEOREM 2.2. If P is a positive, sequentially continuous linear functional on
C then there is the greatest compatible P*, and we have

P*(x)=inf{A|A= + o or A=limP(a,):C3¢,T, a, A xTx}.

Proof. Let P} be compatible with P and x € S. Then we have

(a) If P*(x) = + oo then P¥(x) £ P*(x).

(b) If P¥(x) = — oo then givena, thereis C 3 a,T a, A xTxandlim, ,P(a,) < a.
Therefore P¥(x) = lim,_,, P¥(a, A x) £ lim,_, P¥(a,) =lim,_,, P(a,) < a.

(c) If ‘P*(x)| < + o, then for any &> 0, there is C3a,T, a, A xTx such
that P*(x) + ¢ = lim,_, , P(a,).

Thus P*(x) = lim,., P{(a, Ax) £ lim,,,, P(a,) £ P*(x) + ¢ Therefore
P¥(x) £ P¥*(x). q.ed.

LemMA 2.3. If P* is an outer measure on S and if y € Sp. then
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P*(x + y) = P*(x) + P*(y).
Proof. P*(x) + P*(y) = P*(x) — P*(—y) £ P*(x + y) = P*(x) + P*(y). q.e.d.

THEOREM 2.4. If P is a positive, sequentially continuous, linear functional on
C, and P* is the greatest outer measure compatible with P, then x € Sp. if and
only if there is a sequence a, € C such that lim,,_.ooP*(lx - a,,l) =0.

Proof. (a) Let a,e C and lim,., P*(|x — a,|) =0. Then
| P*(x) — P*(a,)| = | P*(x) + P*(—a,)| = | P*(x — a,)| £ P*(|x — a,])
and
IP*(—x) + P*(a,,)l = IP*(a,,—x) l < PX( [a,,—x]) =P*(|x - a, |).

Thus — P*(— x) =lim,i ,, P*(a,) = P*(x) and x€S p.
(b) Conversely let x € Sp.; for any ¢ > 0 there is a sequence a, € C such that
a,1, a, Ax1x and lim,,, P(a,) < P*(x) + ¢/2. Then

P¥(|x —a,|) = P*(x —a)* + (a,— %)*)
= P¥(x—a,)") + P*(a,— x)")
= P¥x—x Aa,)+ P*a,—a, A\x)
= P*(x) — P*(x A\ a,) + P*(a,) — P*(a, A\ x).

Therefore lim,, wP*(] x—a, ]) = P*(x)— P*(x)+1lim,_, . P*(a,)— P*(x)<¢/2.
Therefore, there exists an n such that P*|x - a,,| <e q.ed.

THEOREM 2.5. If P is a positive, sequentially continuous, linear functional
on C, and P* is the greatest outer measure compatible with P, then the following
are equivalent:

(i) P* = Q* where Q* is an outer measure,

(i) Sps = Sps and P*(x) = Q*(x) for x € Sps,

(iii) C < Sp. and P(x) = Q*(x) for xe C.

Proof. (i) = (ii): If P*=Q* and xeSp, then P*(x) — = P*(—x)<
— Q*(—x) S Q*(x) S P*(x) and Q*(|x|) < P*(|x|) < + 0. Thus xeS,. and
P*(x) = Q%(x).

(ii) implies (iii): because C = Sp..

(iii) implies (i): since P* is the greatest outer measure compatible with P. q.e.d.
For a manifold C = S, let P* IC denote a functional R on C such that R(x)=P*(x)
for x e C. With this notation we have

COROLLARY 2.6. Let P* be the greatest outer measure compatible with P.
If P, =P* Is,,. and PY is the greatest outer measure compatible with P, then
P* = p*,
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Proof. (a) P} = P* since P* is compatible with P,.
(b) P¥ < P* since Sp. < Spr and PY(x) = P*(x) for xe€ Sp.. q.e.d.

III. Regular outer measures. Although the collection of all outer measures is
not a lattice, the set of regular outer measures greater than or equal to a fixed
regular outer measure turns out to be a universally continuous lattice (that is,
every set of elements has an infimum).

P* is called a regular outer measure if P* is the greatest outer measure compa-
tible with P*|g.«.

Corollary 2.6 says that P* is a regular outer measure if and only if P* is the
greatest extension of some positive, sequentially continuous, linear functional.

ExaMpLE 3.1. If S is the space of real numbers and P*(x) = X)10,,,5(X) then
P*is a nonregular outer measure. Note that Sp. = {0} and thisinduces M* > P*.

In this section all outer measures will be regular outer measures.

LEMMA 3.2. If P* A\ Q* exists, then P*(x) = Q¥(x) for x € Sps N Sp..

Proof. The result follows from Theorem 2.5, because if R* = P* AQ* then
R* < P* and R* £ Q*.

LEMMA 3.3. Let C= {xlxeS,nnSQ. and P*(x) = Q*(x)}. If C is a subspace
of S then P*\/ Q* exists and Sp.,o=C.

Proof. If R= P*[C, then R is a positive, sequentially continuous, linear
functional on C. Let R* be the greatest outer measure compatible with R. Since
P* and Q* are compatible with R, P* < R* and Q* < R*. If R}*> P* and = Q*,
then Sgy = C since if xeSgythen x€Sp. NSy and RI(x) = P*(x) = Q*(x).
Therefore RY = R* and Sgs = C = Sg. which implies Sz, = C. q.e.d.

We present an example of two regular outer measures that have no infimum
in the space of all outer measures (nor in the space of all regular outer measures),
although they have a supremum.

ExaMpLE 3.4. Let S ={f]|f:[0,1]— reals} = (Reals) [0,1].

Co={f|f=axrs+brs:ANB=F,A+ZF,B#J},

P(ay, + byg) = a + 2b, and Q(ax, + bxs) = 2a + 3b. One can easily show that
Sps = Sp+ = Cy and P(f) = Q(f) iff a = — b. Therefore C = {f|f= a(x — xp)}
which is not a lattice since (x, — x8) V (x5 — X0) = x4 + x5¢ C. Also if R* > P*
and =Q* then Sz, < C and we have that Sz, = {0} and R* = M* i.e., P*V Q*
= M*,

REMARK. If C = Sp. N Sy. then P* \/ Q* exists.
LemMA 3.5. If P* A\ Q* exists then P*\/ Q% exists.
Proof. If P* A\ Q* exists then Lemma 3.2 states that C = Sp. N Sy.. q.€.d.
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THEOREM 3.6. Let P§ be a regular outer measure. Then H = {P*| P*2 P§}
is a universally continuous lattice.

Proof. (I) H is a lattice. Let P;*and P%*e H, then P¥ = P§ and Py = P} which
implies that Spr U Sps = Spsand if xe Spy, i = 1,2, then Pf(x) = Pg(x).

If @ =(){0Q:| Q. >Sp; USpsand Q, is a subspace}, then Q is a subspace and
Q < Spr. Let P= P§,Q and P* the greatest outer measure compatible with P.
Then Sp. > @ > Spr U Sprand P*(x) = Py(x) = Pf(x) on Sp; . Therefore P* < P}
and P* < P},

If Pfe H, P; < P}, PY< P53 then Sps o Sp. U Sps which implies that Sps > Q
and P¥*(x) = P§(x) = P*(x) = P(x) on Q. Thus P% is compatible with P and we
have P% < P*.

We now have that P} A P5 = P* exists and by Lemma 3.5, P} \/ P} exists and
is clearly in H.

(II) H is universally continuous.

Let {P}|Ael} = H.Then\/, ., Pfand \;. P¥exists. Since Q=) ,c; Sp» 2 {0},
is a subspace we let P = P§ l(, and P*the greatest outer measure compatible with P,
Each PJis compatible with Pwhichimplies Py < P* forall AeI. If P,*< P} forall
Ael, then Spp S (ier Spy =Q,and PY(x) = P¥(x) = P§(x) = P(x) for x & Spr.
Therefore P* < PYand in fact SA ;1 PF={)1e1Sp+,- Nser Pi=\/{P*|HaP*<P;
for all AeI}. Note P§ < Pf for all Ael. q.ed.

1V. Known results on projectors and normal manifolds. A subset N of S is
said to be a normal manifold if for each a€ S, there exists xe N and a ye N*
such that a = x + y.

One easily proves that x and y are unique and N = N**. We can define the
projection operator [N] as follows: If N is a normal manifold, then [N]a =x
wherea = x + y,xe Nand ye N*. If M is a subset of S, M is said to be normable
if M * is a normal manifold and in this case we define [M] =[M**]. We write
[M] = [N]iff [M]x =2 [N]x for all x 2 0. If pe S and {p} is normable then [p]
is called a projector.

The next two theorems are summaries of a few results on projection operators
and projectors presented in Nakano’s book [4, pp. 14-28].

THEOREM 4.1. Let N, K, and M be normable manifolds, then

(a) [N] is a positive, linear, and idempotent operator,

(b) |[N]a| =[N]|a| =|a|,

(©) [N]Ja=aiffaeN,and[NJa=0if aeN*,

(@) [N]+[N"]=1,

© [N](a Ab)=([N]a) Ab=a A(NIb)for a, b2 0,

(f) [N] is continuous: i.e., lim,., a,=a, implies lim,.,[N]a,=[N]a,
() K LM iff [K][M] =0,
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(b) [K] +[M] is a projection operator iff [K] [M]=0, and in this case
[K]+ [M]=[K,M]=[KuUM].

In a sequentially continuous linear lattice every element p is normable. We
state the following theorem for the special case when S is sequentially continuous

THEOREM 4.2. Let p, q,a€ S, then

(a) [p] =[oap] if « #0,

() [a*]a=a*and (1 —[a*Pa=—a",

©) |p| = |q| implies [p] 2 [4],

(@) [Pl z[q] if [P1q =4,

(¢) [p] = [q] implies [p] — [q] = [(1 - [4]) p],

() [pla= V.(aAn|p|)forazo,

@® [p] A [a] = [p]1[a] = [|p| A |a|] and [p] Vv [4] = [|p| V |4]
=[|p| + |4]]

() [p+q]l=[p]1+[q]liffp Lag,

(i) 0= p,1p implies [p,] 1[P],

(§) for any p,eS (n=1,2,--), \ [p,] exists and (\7=, [P.DJa= N\7=1[p.] a
for a =0,

(k) given a sequence of projectors [p,] such that there exists a projector
[o] = [p,] for every n then \/32,[p,] exists and (V= i[p.Da= V% ([p.a)
for a = 0.

We have need of one more result. Let S be a normed linear lattice. Sis said to be
monotone complete if 0 < a,1 and sup,| a, | < + oo implies \/;_,a, exists.

THEOREM 4.3 (AMEMIYA [1]). If S is a monotone complete linear lattice,
then S is complete; i.e., S is a Banach space.

One should note that there exists spaces which are complete but not monotone
complete.

V. Banach spaces induced by outer measures. The main result of this section is
that if P* is an outer measure and S is perfect, then $/Np. is monotone complete
and thus a Banach space. Conversely, if $/Np. is complete for every regular
outer measure, then S is perfect. Thus we see that from a lattice theoretic point
of view Stone’s result depends on the fact that the space of all real-valued functions
on a set X is a perfect linear lattice.

In this section P* is assumed to be an outer measure which is not necessarily
regular. We will make use of the notation Np.= {le*(]x]) =0}.

THEOREM 5.1. Np. is a closed seminormal manifold of S.
Proof. (a) For x,ye Np,, we have

0 < P*(|ax + By|) < |a|P*(|x]) + | B|P*(| ¥ ]) =O.
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Thus x,ye Np. implies ax + fy € Np..

(b) If xeNps and |y| < |x| then 0 < P*(|y]) < P*(|x|) =0.

Thus Njp. is a seminormal manifold and thus a linear lattice manifold and in
fact a subspace.

(© If 0=x,7x, x,€ Np. then P¥*(x) =lim,,,P*(x,) =0 and x€& Np.. q.e.d.

LEMMA 5.2. P*(x) =0 for x€ Np..

Proof. If x =0 then P*(—x) =0 since 0 £ — P*(— x) < P*(x) =0. In the
general case — |x| < x < |x| qed.

Lemma 5.3 (NAkaNo [3]). If S is a sequentially continuous linear lattice
and H, a closed seminormal manifold [4, p. 14] then S[H is a sequentially
continuous linear lattice.

For any element x € S, the element of S /H containing x is denoted by x + H==%*.
LEMMA 54. yex+ Np, implies P*(x) = P*(y).

Proof. P¥(y) £ P*(y — x) + P*(x) < P*(|y — x|) + P*(x) = P*(x).
Similarly P*(x) < P*(y), since yex + H implies xey + H. q.e.d.
By means of Lemma 5.4 we can define

P*(x + Nps) = P*(x).

We also define | x| = P*(|x|) for xeS. Note that this is a pseudo-norm on
8={xeS||x| <+ 0} Then we have obviously:

LeMMA 5.5. Npo={x| | x| =0} and S/Np. is a normed linear space.

THEOREM 5.6. Let L be a sequentially continuous normed linear lattice. If
0<a,ta implies | a,| 1| a|, and if a, A an=0 for n#m, and

m

Z a,

n=1

sup

m

<+ o0,

implies that Xa, converges in L, then L is monotone complete.

Proof. We will prove Theorem 5.6 in seven steps.
(1) Given a,? such that sup| a,| < M, then there is p such that [a,]1[p].
Proof of (1). For n <m we have

([an] - [an- 1]) ([am] - [am—l])
= [a,] [an] — [a,] [@m-1] = [as-1] [@m] + [@4-1] [@m-1]
[an:l - [an] - [an- 1] + [an-l] =0.

A similar computation for n > m leads to the fact that if n # m then
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([an] - [an—l:l) a, L ([am] - [am-l]) A

Now

ay — [an— l]an

EMS

([a,] - [a-1Da i; - H

< §1 a,— dp_, =“a,,,|| <M.

By hypothesis X ,([a,] — [a,-1])a, converges to some p = 0. Since

[£ @ed-ta-d0)] = £ @ad-[a-Dle]

§ [an] - [an-l] = [am]’

[

we obtain [a,] 1[p].
(2) Putting p,, = A (mp—a,)’, we have [p,]71 and [p,] = [p]. Therefore

V [pm] = [r] £ [p] for some r.
Proof of (2). Since

(mp—a,)* <(mp)* =mp
we have

[Pm] £ [(mp — a,)*] < [mp] = [p].

(3 ValPmla, = by, exists and b,, < [p,](mp).

Proof of (3). Since [(mp — a,)* ](mp — a,) = (mp — a,)* = 0,[(mp—a,)*]mp
2 [(mp — a,)" a,

Since [7,] < [(np — a)* 1, [om] [(mp ~ 4,)*] = [p,]. Thus [p,]mp=[p,]a,
for n=1,2, --- and (3) follows.

(4) Putting po =0, X ([p] — [Pi-1]bi = b converges.

Proof of (4).

[pnla,

k=1

\ ([p] [Pe] = [Pe-1] [PuD) a

k

Z: ([pe] = [Px-1] as

£
= X (l-[n-Dnle,
Ta k§1 ([pe] = [Px-1D b by (3).

Since || [pmla, || < || aa]| = M, we have | T ([p] — [Pe-1Dbx | SM. As in the
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proof of (1) onc easily shows that {([p,] — [px-1])bs} is an orthogonal family.
Therefore 2% (([pe] — [Pi-1]) by converges.

(5) b= b.

Proof of (5). Since

b

I

hm [pm] ay

k- o

= lim [p],

k=

= [pm] klim [pm] ag

[Pm] b

and

by_y = lim [p,_,]a

k- ©

= lim [pm-l] [pm]ak

k- o0

= [pm-—l] khm [pm] ag

= [pm—l] bm'
We have

[\E]

. ([pm] - [pm-l] b, = z=1 (bm - bm—l) = bn'

Therefore b, < b.

(6) [r]=1[r].
Proof of (6). Let [q]=[p]-[r], ([r]1=[p]). Since

(I - [(mp - an)+])(mp - an) =- (mp - an)- <0,

we have (I —[(mp—a,)" )mp (I —[(mp — a,)" Da, < a,.
Therefore m || [¢](I — [(mp — a,)*Dp| < || a.|| = M.
Since (1 — [(mp — a,)*]) 1.(1 — [Pn]), we obtain

m|[q]d - [paDp| < M;

therefore m|| [g]p || < M for all m, because [q] [p,.] = O for all m. Consequently
| [ap| =0, that is, [¢]p=0 or p—[r]p=0 which implies [p] <[r]. Since
[r]1<[p] we have [p]=[r].

One is now able to complete the proof of this theorem.

One has [p,la,<b,<b. Therefore limysmu.,[pPnla,=/[rla,=[rla,=a,
Thus V/ a, exist. g.e.d.
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THEOREM 5.10. Let P* be an outer measure on S. Then if S is perfect:(for a
sequence a,€S such that a, )\ a, =0 for n#m, Xa, converges) then S|Np.
satisfies the condition that for a sequence G, S/N ,.if G, \G,, =0 for n # m and

m
T 4,|<+o
n=1

sup
m

then X2 ,d, converges. Consequently S|Np. is monotone complete and thus a
Banach space. Note: d,=a, + Np..

Proof. (a) For a, b=0 we have (b—[a Ab]b) a=(I—[a Ab])b) Na
= —[a AbD(bAG)=0.

(b) If a€ Np. then {a}** < Np. (i.e., [a]be Np. for all beS).

Proof of (b). 1f b =0 then

0 < P*([a]b)

P"‘(lim (m|a| A b))

m- o

lim P*(m|a| A b)
lim P*(m|a|)=0.

m - o0

I\

Let 4, be given and 0 < a, representives of d,. By induction one defines b, in
the following manner:

bl =a,,

oo (7 )]

One easily sees by (a) that b, > 0 and b, L \/7Z}b, and thus b, L b; for i<n.

We need to prove b, = d,. b, = 4, is clear. Suppose b; = 4, for all i<n then
since 4, L\/?21d,=\/1% b, P*(a, A (\/"Z} b)) =0 which implies by (b) that
P*([a, A\ \V'Z{b;]a,) =0 and thus b, = d,. Since S is perfect Z7_,b, converges
to b and consequently X7_,b,1,b. Thus

P*(b) = sup P*(E a,,) =sup | X d,[<+ oo.
m n=1 m n=1

Therefore be § and X*_,d4,=b.
(©) If 0< 4,14 then lim,. | 4, = 4|.
Proof of (c). We may assume that a, < a for all n. If b, =1V /> ,a;, b, Ta,, then
=, do=4, and thus |(4)|=P*ao)=lim,.,P*b,) =lim,..|(b,)]
= lim,,_,m” a, " q.e.d.

THEOREM 5.11. If S$/Np. is a Banach space for every regular outer measure
then S is perfect.
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Proof. Given a, such that a, A a,, = 0 for n # m one defines P(b + Xy;ni¢eln@n)
= XA,/ n* where b La, for all n. Let P* be the greatest outer measure compatible
with P.

(a) b+ XAa,=0iff b=0 and 4, =0 for all n.

Applying the operators [a,] and [b] gives us this result.
(b) If a = 0 and P*(a) =0 then a La, for all n.
Let N be fixed. Then 0 < P*([ay]a) £ P*(a) =0.
Therefore for any & > 0 we can find b,,, A" such that lim,,_, XA"/n* <¢ and

™ (bn + ZA7a,) AlLay]atlan]a.

Using the relation (a) one sees that A;"/n” 1, A, /n* and lim,, XA, /n* = X4,/n* <e.
If n # N, applying [a,] to (*) we have i7a, A 010, which implies 4,a, A 0=0.
Thus A, = 0. Therefore 1y/N? <e} and applying [ay] to (*) we have Ayay A
[ay]af[ay]a which implies Ayay A [ay]a = [ay]a.

Thus [ay]a £ Ayay < eN?ay which implies that [ay]a = 0, that is, ay - a.

Let s,= X7_,a;. 8, is a Cauchy sequence and thus lim,§,=§ in norm.
Therefore §,75. We may assume that s is a positive representative of §. We can
find b, such that P*(| b,,I) =0 and s, <s+ b,. Applying [s,] one has s, < [s,]s
+ 0 <s. Therefore X;.,a, converges. q.e.d.
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