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In this paper we define and discuss the theory of abstract outer measures on a

sequentially continuous(2) linear lattice S. This is a generalization of the concept

of outer measure on a function space as used by Bourbaki [3]. H. Nakano [7]

and M. H. Stone [8] have modernized Lebesgue's extension theory; our approach

provides a common generalization of their theories. We show, for example, that

their theories lead to the same set of integrable functions, and that, from a lattice

theoretic point of view, Stone's results depend on the fact that the space of all

real-valued functions on a set X is a perfect(3) lattice.

I. Outer measures. In this section we define outer measure and we introduce

a partial ordering for the space of outer measures. For a given outer measure

P* we introduce a subspace SP, of S, which plays the role of the space of integrable

elements.

Throughout this paper S is a sequentially continuous linear lattice. P* is called

an outer measure on S if P* satisfies the following properties:

(a) P* is a function from S into the extended reals (— co ^ P*(x) ^ + co);

(b) if x = y then P*(x) ^ P*iy)l

(c) if a = 0 then P*(ax) = aP*(x) (0 • co = 0( - co ) = 0);

(d) if P*(x) + P*(y) is defined, then

P*(x + y) = P*(x) + P*(y),

and if in addition, P*(x A y) + P*(x V y) is defined, then

P*(x v y) + P*ix A y) = P*(x) + P"iy) ;

(e) if x„ is a monotonically increasing sequence in S, P*(x,) > — oo, and

x = \fnxB then P*(x) = linw P*(x„).

We present some consequences of our axioms.

Lemma 1.1. -P*(-x) = P*ix)for each xeS.

Presented to the Society, January 25, 1963; received by the editors August 12, 1964.

(') This work was done with the partial support of NSF Grant GP-54.

(2) A linear lattice S is said to be sequentially continuous if for every sequence {a„} of

positive elements, f\a„ exists.This concept is called 6-completeness in [2, p. 80].

(3) A linear lattice S is said to be perfect if for each sequence [aj <zz S, Y.an converges

provided that an A am = 0 for n ^ m. In the literature, various other terms are used for the

concept of perfect such as complete [5, p. 155], and Volkommen [6].
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Proof. If P*(x) + P*( —x) is not defined then P*(x) = + co and P*( — x) = + co.

If it is defined, then 0 = 0 P*(0) = P*(0) g P*(x) + P*(-x). q.e.d.

We write P* ^ Q* if P*(x) = Q*(x) for each x in S.

With the above definition of =, one easily shows that the collection of all

outer measures forms a partially ordered set.

Putting M*(x) = + oo for x+ # 0, and = 0 for x+ = 0 (i.e., x i% 0), we obtain

an outer measure M*, and we see easily M* is the greatest (maximum) outer

measure.

We will make use of the notation

SP, = {x\P*(\x\)< + ooandP*(x) = -P*(-x)}.

Then we have

Theorem 1.2. SP, is a subspace of S and P* restricted to SP, is a positive

linear functional which is sequentially continuous. P* is sequentially continuous

if whenever an\,0 then P*(an)-+0.

Proof. We recall that a subspace of S [Nakano 4, p. 14] is closed under finite

sups and infs and if x„ (x„ 2: 0) is in the subspace for each n, then /\„x„ is in the

subspace.

(a) If x ^ 0 then P*(x) ^ P*(0) = 0 ;

(b) as  P*(-x + (-y)) = P*(-x) + P*(-y), for x, yeSP„ we  have

-P*( - (x + y)) ^ -P*(-x) - P*(-y) = P*(x) + P*(y) ^ P*(x + y). Thus we

obtain by Lemma 1.1, x + yeSP, and P*(x + y) = P*(x) + P*(y).

(c) Let x e SP,. If a ^ 0, then

P*(ax) = aP*(x) = -ocP*(-x) = -P*(-ax).

If a < 0 then

P*(ax) = P*((-a)(-x)) = -aP*(-x) = aP*(x) = -(-a)P*(x) = -P*(-ax).

Thus ax e SP. and P*(ax) = aP*(x).

(d) Let x, yeSP*. Since

P*(x A y) ú P*(x y y) ^ P*(\x\ y\y\)£P*{\x\ + \y\)

^ P*(|x|) + P*(|y|)< + oo ,

we have by Lemma 1.1

P*(x) + P*(y) = ~(P*(-x) + P*(-y))

S -(P*(-x v -y) + P*(-x A -y))

= -(P*(-(xAy)) + P*(-(x\/y))

^ P*(x A y) + P*(x v y) á P*(x) + P*(y).
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Thus -P*( - (x A y)) - P*( - (x V y)) = P*ix A y) + P*(x V y) ■ Since

-P*( - (x A y)) ä P*(x A v), and -P*( - (x V y)) Ú P*(* V y)

by Lemma 1.1, we obtain x A y £ SP, and x\j ye SP,.

(e) Let x„eSp. and x„J.x in S. Then — xn'\— x which implies that

P*(-xn)fP*(-x), that is, -P*(-x„)|-P*(-x).

As P*(x) ^ P*(x„) = -P*(-x„), we obtain here P*(x) z> -P*(-5c) á F*(x) by

Lemma 1.1. Therefore P*(x) = lim„_00P*(x„) and xeSP>.    q.e.d.

11. Compatible outer measures. The relationship between positive linear

functionals and outer measures is discussed. Of particular interest is Theorem

2.4, which implies that the theories of Nakano and Stone give rise to the same

set of integrable functions. Let C be a linear lattice manifold of S. A positive

linear functional P on C is said to be compatible with an outer functional P* on

S if P(x) = P*(x) for all x e C. We also say P* is compatible with P. If P is compatible

with P*, then C c SP„ because x e C implies - P*( - x) = - P( - x) = P(x) = P*(x).

Theorem 2.1. Let P be a positive linear functional on C then there is a P*

compatible with P if and only if P is sequentially continuous.

Proof, (a) If P is sequentially continuous then let

P*(x) = inf{A | X = lim Piaf) : C 3 a„ |, a„ A x "fx, or X = + cc }.

Then P* is an outer measure compatible with P (see [Nakano 7]).

(b) If P* is compatible with P and Cax„J,0, then — xnfO and

Pi-xn) = P*(-x„)ÎP*(0) = 0, namely P*(x„)|0. q.e.d

Theorem 2.2. If P is a positive, sequentially continuous linear functional on

C then there is the greatest compatible P*, and we have

P*(x) = inf{A| X = + oo or X = lim P(«„) : C a anf, a„ Ax|x}.

Proof. Let P* be compatible with P and xeS. Then we have

(a) If P*(x) = + oo then P*(x) = P*(x).

(b) If P*(x) = - co then given a, there is C 3 a„| a„ A x |x and limn^^P(fl„) < a.

Therefore P*(x) = lim„_œ P*(a, A x) £ lim„^ P*(fl(1) = lim„^ P(a„) < a.

(c) If |P*(x)| < + co, then for any e > 0, there is Csaf\, a„ i\x^x such

that P*(x) + e = lim„^œ P(an).

Thus P,*(x) = lim„^œ P*(a„ /\x) = lim„^w P(a„) ^ P*(x) + e. Therefore

Pf(x)^P*(x).   q.e.d.

Lemma 2.3. If P* is an outer measure on S and if yeSP, then
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P*(x + y) = P*(x) + P*(y).

Proof. P*(x) + P*(y) = P*(x) - P*(-y) < P*(x + y) ^ P*(x) + P*(y).    q.e.d.

Theorem 2.4. If P is a positive, sequentially continuous, linear functional on

C, and P* is the greatest outer measure compatible with P, then xeSpt if and

only if there is a sequence a„eC such that lim„-,K,P*(|x — an\) = 0.

Proof, (a) Let aneC and lim,,.,«,P*(\x - a„\) = 0. Then

|P*(x) - P*(an)| = |P*(x) + P*(-an)| = |P*(x -an)\^ P*(\x - a„\)

and

\P*{-X) + P*(an)\ = \p*(an-x)\ = P*(\an-x\) = P*(\x-an\).

Thus - P*(- x) = liny oo P*(a„) = P*(x) and xeS P.

(b) Conversely let xeSpt; for any e > 0 there is a sequence a„e C such that

a„î, a„Axfx and lim,,.,«, P(a„) = P*(x) + e\2. Then

P*(\ x - an |) = P*((x - a„)+ + (a, - x)+)

= P^x-aJ^ + P*««,-*)*)

= P*(x - x A a„) + P*(a„ - a„ A x)

= P*(x) - P*(x A a„) + P*(an) - P*(an A x).

Therefore lim,.,nP*i\x-am\)=P*(x)-P*(x)+lim„nP*{aJ-P*(x)^e/2.

Therefore, there exists an n such that P*|x — a„\ < e.   q.e.d.

Theorem 2.5. If P is a positive, sequentially continuous, linear functional

on C, and P* is the greatest outer measure compatible with P, then the following

are equivalent:

(i) P* — Q* where Q* is an outer measure,

(ii) SP* cz SQ* and P*(x) = Q*(x)for x e Spt,

(iii) C cz SQ. and P(x) = Q*(x)for xeC.

Proof, (i) => (ii): If P* = Q* and xeSP„ then P*(x) - = P*(-x) ^

- Q*( ~x) = Q*(x) = P*(x) and ß*(| x J) ¿ P*(| x |) < + co. Thus x e SQ. and

P*(x) = ß*(x).

(ii) implies (iii) : because C c SP,.

(iii) implies (i): since P* is the greatest outer measure compatible with P. q.e.d.

For a manifold C cz S, let P* |c denote a functional R on C such that R(x)=P*(x)

for xeC. With this notation we have

Corollary 2.6. Let P* be the greatest outer measure compatible with P.

If Py =P*|Sp. and P* is the greatest outer measure compatible with Py then

P* = P*.
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Proof,   (a) P* 5ï P* since P* is compatible with Py.

(b) P*z^P* since SP,cSPf and P?(x) = P*(x) for xeSP,. q.e.d.

III. Regular outer measures. Although the collection of all outer measures is

not a lattice, the set of regular outer measures greater than or equal to a fixed

regular outer measure turns out to be a universally continuous lattice (that is,

every set of elements has an infimum).

P* is called a regular outer measure if P* is the greatest outer measure compa-

tible with P*|Sp..

Corollary 2.6 says that P* is a regular outer measure if and only if P* is the

greatest extension of some positive, sequentially continuous, linear functional.

Example 3.1. If S is the space of real numbers and P*(x) = xxi0,ooyix) then

P*is a nonregular outer measure. Note that SP, = {0} and this induces M* > P*.

In this section all outer measures will be regular outer measures.

Lemma 3.2.   If P* A Q* exists, then P*(x) = g*(x) for xeSP.n SQ„.

Proof. The result follows from Theorem 2.5, because if R* = P*A6* tnen

R* = P* and R* ̂  Q*.

Lemma 3.3. Let C = {x|xeSP.nSö. and P*(x) = Q*(x)}. If C is a subspace

of S then P* V Q* exists and SP,vQ= C.

Proof. If R = P*|c, then R is a positive, sequentially continuous, linear

functional on C. Let R* be the greatest outer measure compatible withR. Since

P* and g* are compatible with R, P* <L R* and Q* = R*. If R?^ P* and^ß*,

then S,.cC since if xeS^then xeSP.r\SQ. and R?(x) = P*(x) = ô*(x).

Therefore R* ^ R* and Sj,« c C<zzSR, which implies SR. = C. q.e.d.

We present an example of two regular outer measures that have no infimum

in the space of all outer measures (nor in the space of all regular outer measures),

although they have a supremum.

Example 3.4.   Let S = {f\f: [0,1] -» reals} = (Reals) [0,1].

C0 = {/|/= axA + bXB: A nB = 0,A #0,B ¿0},

PiaXA + bxà) = a + 2b, and QiaxA + bxs) — 2a + 3b. One can easily show that

SP. m Sa. = C0 and P(/) = Q(J) iff a = - fe. Therefore C = {f\f = a(x - Xb)}
which is not a lattice since (xA - Xb) V ÍXb ~ Xa) = Xa + Xb£C. Also if R* = P*

and ^g* then SR, £ C and we have that SR. = {0} and R* = M* i.e., P*V 6*
= M*.

Remark. If C = SP. n SQ, then P* V Ô* exists.

Lemma 3.5.   // P* A Ö* crisis then P* V Ô* exisrs.

Proof.   If P* A 6* exists then Lemma 3.2 states that C = Sp. D Se«. q.e.d.
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Theorem 3.6. Let P* be a regular outer measure. Then H = {P*|P*^ P*}

is a universally continuous lattice.

Proof. (I) if is a lattice. Let Pfand Pf e H, then P* ^ Pj and P2* = Pf which

implies that Sp. U SP« cz SP* and if x g Sp* , i = 1,2, then Pf (x) = Pf (x).

If ß = O {Q>. | ßA 3 Spf u Spj and ß;. is a subspace}, then ß is a subspace and

QczSp*. Let P = P*\q and P* the greatest outer measure compatible with P.

Then SP, => ß => S,y U % and P*(x) = Pf(x) = P,*(x) on SP«. Therefore P* ^ Pf

and P* ^ P2*.

If P3*eH, P* ^ Pf, P*£P* then SP« => SP, USP; which implies that SP. is ß

and Pf(x) = P*(x) = P*(x) = P(x) on ß. Thus Pf is compatible with P and we

have Pf ^ P*.

We now have that P* A Pf = p* exists and by Lemma 3.5, Pf V P*exists and

is clearly in H.

(II) H is universally continuous.

Let {Pt\XeI}cz H. Then Va . i Pfand Aa < ,Pf exists. Since ß = f) UI Sf* z> {0},

is a subspace we let P = P*\0 and P* the greatest outer measure compatible with P.

Each Pf is compatible with P which implies Pf £ P* for all le L lfP*= P* for all

Xel, then SP. S QAs/ SP/ = ß,and P*(x) = P*(x) = P%(x) = P(x) for x e SP*.

Therefore P* g Pf and in fact SA a . / Pf = f| *■/ S*v Aae/ Pa*= V {P*\HaP* = p}
for all Xel}. Note P* g Pf for all Xel. q.e.d.

IV. Known results on projectors and normal manifolds. A subset A' of S is

said to be a normal manifold if for each aeS, there exists xeN and a yeN±

such that a = x + y.

One easily proves that x and y ate unique and N = N±J-. We can define the

projection operator [TV] as follows: If A' is a normal manifold, then [N]a = x

where a = x + y, xeN and y e N ±. If M is a subset of S, M is said to be normable

if M "L is a normal manifold and in this case we define [M] = [M"1"1]. We write

[M] ^ [TV] iff [M]x ^ \_N~\x for all x ^ 0. If p e S and {p} is normable then [p]

is called a projector.

The next two theorems are summaries of a few results on projection operators

and projectors presented in Nakano's book [4, pp. 14-28].

Theorem 4.1.    Let N, K, and M be normable manifolds, then

(a) [JV] is a positive, linear, and idempotent operator,

(b)|pv>| = [N]|û|a|a|,
(c) [N]a = aiffae N, and [N]a = 0iffaeN±,

(d) [AT] + [N1] = 1,

(e) [IV] («Ai)- ([AT» A b = a A ([N]b)/or a, b = 0,

(f) [JV]  is continuous: i.e.,  lim„_œ a„ = a,   implies  limn^w[N~\an = [A7]«,

(g)XlMi#[X][M] = 0,
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(h) [K] + [M] is a projection operator iff [X] [M] = 0, and in this case

[K] + [M] = [K,M~\ = [K UM].

In a sequentially continuous linear lattice every element p is normable. We

state the following theorem for the special case when S is sequentially continuous

Theorem 4.2.   Let p, q, ae S, then

(a) [p] = [ap]//«#0,

(b) [a+]a = a+ and (I — [a+])a = — a  ,

(c) | p | = | q | implies [p] = [q~\,

(d)[p-\^[q\iff[p]q = q,
(e) M = M í'np/íes [p] - M = [(1 - [q~])p~\,
(f) [p-]a= y„(a A n\p\)fora^O,

(g) [p]  A M = [p] M = [|p|  A M] anrf [p] V M = [\p\ V |a|]
»-EM + M3.

(h) [p + q-\ = [p-] + [q-\iff p Lq,
(0  0 ̂  p„f p implies [p„] |[p],
(j) for any pneS(n = 1,2, — ), A [pj ^isrs and (A"=i [>„])« = A» = i[pJ a

/or a ^ 0,

(k) giye« a sequence of projectors [p„] suc« r/iûi i«ere ex/sis a projector

ÍPo]^ÍPnlfor every n then V»T=i[Pn] exists and (V?=i[pJ)a= Vn°°=i([pJ«)

for a=0.

We have need of one more result. Let S be a normed linear lattice. Sis said to be

monotone complete if 0 = an^ and sup„|| an || < + co implies Vn^i^n exists.

Theorem 4.3 (Amemiya [1]). // S is a monotone complete linear lattice,

then S is complete; i.e., S is a Banach space.

One should note that there exists spaces which are complete but not monotone

complete.

V. Banach spaces induced by outer measures. The main result of this section is

that if P* is an outer measure and S is perfect, then S/NP. is monotone complete

and thus a Banach space. Conversely, if S¡NP, is complete for every regular

outer measure, then S is perfect. Thus we see that from a lattice theoretic point

of view Stone's result depends on the fact that the space of all real-valued functions

on a set X is a perfect linear lattice.

In this section P* is assumed to be an outer measure which is not necessarily

regular. We will make use of the notation NP. = {x|P*(|x|) = 0}.

Theorem 5.1.   iVP. is a closed seminormal manifold of S.

Proof, (a)    For x, y e JVP„, we have

0 S P*(\otx + ßy\) = |a|P*(|x|) + | j8|P*(|y|) = 0.
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Thus x, y e NP, implies ax + ßye NP*.

(b) If xeNP. and |j>|á|x| then 0^P*(\y\)¿P*(\x\) = 0.

Thus NP, is a seminormal manifold and thus a linear lattice manifold and in

fact a subspace.

(c) If Orgx„fx, xneNp. then P*(x) = limn_aoP*(x„) = 0 and xeNpt. q.e.d.

Lemma 5.2.   P*(x) = 0 for x e Npt.

Proof. If x = 0 then P*( - x) = 0 since 0 ^ - P*( - x) = P*(x) = 0. In the

general case — | x | ;£ x — | x |. q.e.d.

Lemma 5.3 (Nakano [3]). If S is a sequentially continuous linear lattice

and H, a closed seminormal manifold [4, p. 14] then S/H is a sequentially

continuous linear lattice.

For any element xeS, the element of S ¡H containing x is denoted by x + H = x.

Lemma 5.4.   y e x + NP* implies P*(x) = P*(y).

Proof.   P*(y) = P*(y - x) + P*(x) = P*(\ y - x |) + P*(x) = P*(x).

Similarly P*(x) ;S P*(y), since yex + H implies xey + H.   q.e.d.

By means of Lemma 5.4 we can define

P*(X + NP.) m P*(x).

We also define | x | = P*(|x|) for xeS. Note that this is a pseudo-norm on

S = {x e S11 x I < + co }. Then we have obviously:

Lemma 5.5.   .ZVI,*={x| |x||=0} and Ê/NP* is a normed linear space.

Theorem 5.6. Let L be a sequentially continuous normed linear lattice. If

Oz%a„1a implies || a„ || ||| a |, and if a„ A am = 0 for n^m, and

sup £   a„
n = l

< + 00,

implies that Za„ converges in L, then L is monotone complete.

Proof.   We will prove Theorem 5.6 in seven steps.

(1) Given aB| such that sup|a„|| ^ M, then there is p such that [ajfljp].

Proof of (1).   For n < m we have

([aJ-[«„-i])(K]-K-i])

-   !>„] K] - [«»] C«m-l] - [fln-l] [«J + [a,-l] K,-l]

= M-K]-K-i] + [«B-i] = o.

A similar computation for n > m leads to the fact that if n^m then
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([«■] - l>n-i]) a„ L ([am] - [am-y])am.

285

2   ([a„]-K-i]K
n = l

2   a„-[an-i]a„
n = l

< =   am||^A#.-£ «B-ar.-i
n = 1

By hypothesis   S"=1([an] - - [iïn-i])fln converges to some p ^ 0. Since

[m n m

I ([«J - K-iK)   = S (K] - K-i])K]
n=l J n=l

m

=   2   [aj - [an_i] = [am],

we obtain [am] f[p].

(2) Putting pm = Animp - anf,  we  have  [pm] | and [pm] ^ [p]. Therefore

V ÍPm\ = M = [P] for some r.

Proof of (2).   Since

we have

imp — a„)+ z% imp)+ = mp

[pj = [imp - a„)+] ^ [mp] = [p].

(3) V«[Pm] a„ = bm exists and fe„, ̂  [pm] (mp).

Proof of (3). Since [imp — íj„)+] (mp - a„) = imp — a„) + ïï 0, [(«ip- a„)+] mp

= [imp - a„)+>„.

Since [pra] ^ [(mp - a„)+], [pm] [(mp - a„)+] = [pj. Thus [pm] mpk[pm]a„

for n = 1,2, ••• and (3) follows.

(4) Putting po = 0,   S"=1([pfc] - [pt-i])fe* = fe converges.

Proof of (4).

m

DvK =   S   ([p*]-[p*-i])a„

=   2   ([pt] [pj - [Pt-i] [P/t])a
6 = 1

m

=     2    ([p*]-[Plk-i]) [?*]<•„
t = l

î„ 2   (M-[P.-Jífe.   by (3).
* = i

Since I [pm]a„ | ^ || an || ̂  M, we have || 2r=i(|XI - fa-y^h || gM. As in the
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proof of (1) one easily shows that {([p*] — [p*-i])bjj  is an orthogonal family.

Therefore £"= ^[p*] - [pk-y])bk converges.

(5) b, = b.
Proof of (5). Since

bm =   lim  rjvK
k->co

=   Um   [pmfak
Jk-»oo

=  [Pm]   'im   [Pm\ak

=    [>m] &«

bm_! =   lim   [pm_J ak
k-* oo

=   lim   [p,„_j] [jvK
fc->aO

=    [Pm-l]    i™    [>m] «*
*-*oo

=  LPm-i] bm.

and

We have

£   ([>»,]-Om-l] &«=  £   (&«. - bm-i) - &»•
m = 1 m = 1

Therefore b„ ̂  6.

(6) [r] = [p].

Proof of (6).   Let   [q~\ = [p] - [r],   ([r] ^ [p]).    Since

(/ - [(mp - a„)+])(mp - a„) = - (mp - an)~ ^ 0,

we have (7 - [(mp - an)+ ]) mp = (I- [(mp - an)+~\)a„ g a„.

Therefore m || [q](I - [(mp - a„)+])p|| = \\ a„ || ^ M.

Since (1 - [(mp - a„)+]) f „(1 - ¡>J), we obtain

m|M(/-[pm])p|áM;

therefore m|| [q\p || ^ M for all m, because [q] [p,„] = 0 for all m. Consequently

|| [<7jP H = 0» that is, [q~\p = 0 or p - [r\p = 0 which implies [p] ^ [r\. Since

[r] ^ [p] we have [p] = [r].

One is now able to complete the proof of this theorem.

One has [pm~\an = bmûb. Therefore limnm^n0[pm]a„ = [r~]an = [p]a„ = a„.

Thus V a„ exist, q.e.d.
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Theorem 5.10. Let P* be an outer measure on S. Then if S is perfect :ifor a

sequence aneS such that a„/\am = 0 for « j= m, ¿Zan converges) then S/NP,

satisfies the condition that for a sequence âneS/Np,iîâ„ f\âm = 0 for « # m and

sup 2   â„ < + co

then 2Z¡f=ia„ converges. Consequently S¡NP, is monotone complete and thus a

Banach space. Note:  â„ = a„ + Npt.

Proof,   (a) For  a,  fe ̂  0  we  have  (fe - [a A fe]fe)  a = ((/ - [a A fe])b) A «

= (/ - [a A fe]) (b A a) = 0.
(b) If a e NP. then {a} ̂  x c NP, (i.e., [a]fe e NP. for all fe e S).

Proof of (b).   Iffe^Othen

0^P*([a]fe) = P*(lim (m\a\ A fe))
\m-*co /

=   lim P*(m| a | A fe)
Bf-*00

=   lim   P*(m\a\) = 0.
m-»ao

Let â„ be given and 0 — a„ representives of ân. By induction one defines fe„ in

the following manner:

by  =Cty,

b„ = an- \a„ A ( V    b,\   a„.

One easily sees by (a) that fe„ = 0 and fe„ ± \f¡Z\b, and thus fe„ J. fe¡ for i<«.

We need to prove b„ = ân. bi = ö! is clear. Suppose b, = a, for all /<« then

since â„ 1 V";í o¡ = Vï-î 4-. F*(a„ A (V" = i b)) = 0 which implies by (b) that

P*([a„ A V?=iA]fln) = 0 and thus bn = â„. Since S is perfect E"=.fen converges

to fe and consequently  1.™=lbn,\nb. Thus

P*(fe) =   sup P '(J, ■■) ■sup <   +  00.

Therefore fe e 5 and   I"=, â„ = fe.

(c) If 0^ â„f â then lim,,.,^! â„ | = | á||.
Proof of (c). We may assume that a„z% a for all «. If fe„ =IV "=\a„ b„^a0,then

fe"„ = Â„, â0 = â, and thus | (á) || = P*(a0) = lim(I^0OP*(fe„) = lim^H (fe„)||

= lim„^œ||â„||.   q.e.d.

Theorem 5.11. If S/NP. is a Banach space for every regular outer measure

then S is perfect.
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Proof. Given a„ such that a„ A am — 0 for n =^ m one defines P(b + 2finiteAna„)

= ZU„ / n2 where b Lan for all n. Let P* be the greatest outer measure compatible

with P.

(a) b + !LXttan ^ 0 iff b = 0 and Xn = 0 for all n.

Applying the operators [a„] and [b] gives us this result.

(b) If a ^ 0 and P*(a) = 0 then a Lan for all n.

Let N be fixed. Then 0 = P*([aN~]a) = P*(a) = 0.

Therefore for any e > 0 we can find bm, X"n' such that limm_00 ZA™/n2 ̂  s and

(*) (*.+ SWAK]atMi-

Using the relation (a) one sees that X™jn2 y[mX„/n2 and limm E-C/n2 = 2ZXJn2 < e.

If n ^ N, applying [a„] to (*) we have X™an A 0^0, which implies X„a„ A 0=0.

Thus Xn ̂  0. Therefore XNjN2<s: and applying [%] to (*) we have  X™aN A

[ajv]a-î[ajv]a which implies XNaN A [öjv]« = [%]«•

Thus [aw]a ^ A^a^ rg sN2aN which implies that [aw]a = 0, that is, aN--- a.

Let s„ = S"=iflt. sn is a Cauchy sequence and thus limmsn = s in norm.

Therefore sn 'fs. We may assume that s is a positive representative of s. We can

find b„ such that P*(| b„|) = 0 and sn~s + bn. Applying [s„] one has s„ z% [s„~]s

+ 0 — S. Therefore   Z™=1a„ converges, q.e.d.
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