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We will here describe a new procedure for the calculation of the cohomology

H*(A) = Ext¿(X, X) of a graded augmented connected (A0 = X) algebra A of

finite type over a field X. Our procedure, which is developed in the first half of the

paper, involves the application of a spectral sequence defined for any DGA-

algebra U to the special case U= C(A), the cobar construction of A. In the second

half of the paper we define Massey products in U and relate them to the differen-

tials in the cited spectral sequence.

To motivate the construction, we recall that any basis for Hy(A) =Tot¡\,(K, K)

is in one-to-one correspondence with a minimal set of generators of A and any basis

for H2(A) is in one-to-one correspondence with a minimal defining set of relations

for A (see Wall [11, pp. 440-442]). Now the same result holds for bigraded aug-

mented connected algebras, and in particular for H*(A). Thus knowledge of

Hy(H*(A)) and H2(H*(A)) would essentially determine H*(A). We will prove the

following theorem.

Theorem 1. There exists a spectral sequence {ErC(A)} of differential co-

algebras having the properties:

(i) EpqC(A) = Hp q(H*(A)) as a graded K-module (where H*(A) is graded

with lower indices so that q = 0: H*(A)q = H~q(A));

(ii)   E2C(A) = H*(H*(A)) as a coalgebra ;

(iii)  The differentials satisfy 8r: Ep qC(A)-> Ep_r q+r_yC(A);

(iv)  Ep°iqC(A) = 0ifq^-p;
(v) Ep°^pC(A) = (E_p,»A)*, where E°A denotes the associated graded

algebra of A with respect to the augmentation ideal filtration F _pA =(IA)P if

p>0,F_pA = AifpúO;
(vi) EœC(A) = (E°A)* as a coalgebra.

By (i), EpqC(A) = 0 if p < 0 or if p + q > 0. In principle, knowing Hl(A)

and the relations in H2(A), we can calculate Ep^pC(A) for all p. Calculation of
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the differentials defined on the ErPt-pC(A) determines Hy(H2(A)) (the inde-

composable elements of H2(A)), and H2(H3(A)) (the relations in H3(A)). This

knowledge allows the computation of £2_P_,C(^), and so forth. Thus an in-

ductive determination of H*(A) is possible. In practice, this procedure is a good

deal simpler than direct computation using the cobar construction. In the case

of Hopf algebras, the procedure seems slightly less workable than that described

by the author in [6].

The differentials 8r: £'+lfîCL4)-»£i;î+r_,C(/4) define cohomology operations

with values in the indecomposable elements of H*(A). Even in cases where H*(A)

is computed primarily by other methods, these operations should be of value

as an auxiliary to the calculation and as a means of interpreting the results. This

is a particularly so, as these operations are not too unmanageable algebraically

and, as will be shown in Theorem 6, are closely related to Massey products [5].

The method of computation of the differentials (Lemma 4) will make clear how to

construct many other explicit operations satisfying the analog of Theorem 6.

This fact may be useful in the study of the Adams spectral sequence [1], since

corresponding stable homotopy operations can be defined. For example, the

homotopy analog of the Massey triple product is the Toda bracket [10], and the

convergence of Massey products to Toda brackets in the Adams spectral sequence

has been proven by M. Moss (Cambridge thesis). The homotopy analog of the

quadruple product has been studied by Mimura [7] and Oguchi [8], and ana-

logs of the higher operations have been defined by Gershenson [3].

The proof of Theorem 1 is quite simple, requiring only the algebraic machinery

developed in MacLane [4, pp. 301-315, 340-342]. To clarify the grading, we outline

the construction. Consider C(A) as the dual of the reduced bar construction

B(A) = T(sIA), the tensor algebra on a copy of IA in which all elements have

a homological degree of one. Bigrade C(^4) by C'q(A) = [B_qt(A)]*, where t is

the degree induced by the grading of A and — q is the homological degree in 5(A))

(so that q ^ 0). C(A) = T(s'x(IA)*) as an algebra, and is a DGA-algebra with

differential <5: C'q(A) -* Cql ¡(A) defined on generators [x*], x* an element of a basis

for (IA)* dual to a given basis for IA, by

(D ö[x*]= K-i^Crflrf].i
where ep*ix*)= TJ,vf(x)z*, eb : A ® A -» A being the product in A. Now form

BiCiA)) = TisICiA)). B(C(A)) is trigraded, with degrees t and q induced from

those of C(A) and with a new homological degree p. Regrade by the sum of the

degrees p and q, B'n(C(A))= ®p+q = „Bpq(C(A)). Except in signs, we may now

safely ignore the degree t. B(C(A)), indeed S(U) where U is any

DGA-algebra (graded on the nonnegative or the nonpositive integers) is a

differential coalgebra with differential 8 = 8' + 8" and coproduct ip,

where
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(2) 0'OiH«,] = í(-i)n«.i-i^'.-+il-l£a
i= 1

(3) n«ii-k] - - ¿(-^"''[«.i-i^i-i«»],
i = 1

and

(4)

^["i | — \ap]   =   % [ay\ — \a¡]®[ai+y\--\ap],

fotaieU and X(i)= deg[a, !•>■ \a¿].

We denote by DH*(U) the resulting homology of B(U). Filter B(U) by

FpB„(U)=(g)¡¿pBi „-¡(U). The differential d0 in the resulting spectral sequence

{ErU} is induced by ô", and, using the Kiinneth theorem, it is easily verified that

E1U = B(H(U)) as a differential coalgebra, where H(U) denotes the homology

of U regarded as a complex. Since H(C(A)) = H*(A), parts (i), (ii), and (iii) of

Theorem 1 follow immediately.

A is of finite type, so our spectral sequence converges to Ea'C(A) = E0DH^(C(A)).

To compute this, we study the spectral sequence {ErC(A)} obtained from the

filtration of B(C{A)) defined by FqBn(C(A))=($júqBn_jj(C(A)). Here cf0 is

induced by d', hence E1C(A) = H%(C(A)), the homology of C(A) regarded as an

algebra. However, the homology of a tensor algebra is easily computed. We find

Ep>qC(A) = 0 except for the cases Ey\fiC(A) = K and E\^yC(A) = (IA)* (with

typical elements [[x*]], x* e (L4)*). Necessarily E1C(A) = EcoC(A), and therefore

DH*(C(A)) £ A* as a X-module. We claim that this is true comultiplicatively.

To see this, we prove the dual statement.

Lemma 2.   DH"(C{A)) = 0 if n^O and DH°(C(A)) s A as an algebra.

Proof. We already know that DH"(C(A)) = 0 if n * 0 and that DH°(C(A)) St A

as a X-module. Consider C(C(A)); multiplicatively C(C(A)) = T(s~1lB(A)),

suitably graded. Observe that if x¡eIA, then:

d*[[xy -Xj|xJ+1~\ | [x,-+2] | - | [x„]]

-    ( - Die*X<-Xi[[Xy - Xj-] | [Xi+ J | [x,+ 2] I ... I [X„]]

+ (-Dde8X'-Xj    [[Xl-XJ+y-\\[x;+2-]\-\[Xn-]l

It follows easily that every element of C(C(A) in degree p + q = 0 is congruent

to an element of the form [[xi---x„]] and in particular that [[xy] | ••• | [x„]]

= (-l)n+1[[xy-xnJ]. We conclude that f(x) = - [[x]], xelA, defines an

epimorphism of algebras A-+DH°(C(A)). But / must then be an isomorphism.

A comparison of the filtration of B(C(A)) defining {ErC(A)} and of the filtration

of A defined in (v) of Theorem 1 now shows that E00C(A) of the dual spectral
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sequence is isomorphic to £ °A as an algebra. Thus the proof of Theorem 1 is

complete.

Remarks 3. By [4, pp. 312-313], if U is a commutative DGA-algebra, then

B(U) is a commutative DGA-algebra under the shuffle product.

(5) [ai|---|am]*[am+1|.-.|am+„]= I ( - l)"(,l)[an(1)| ••• |a,(m+n)],
re

where the sum is taken over all (m, n)-shuffles n and o(n) = 2deg[a,]deg[ara+J]

summed over all pairs (i, m + j) such that n(i) > 7r(m + j).

In fact, B(U) is then a differential Hopf algebra (in the sense that both the product

and coproduct commute with the differential). Also, by [4, p. 310] or the compa-

rison theorem for spectral sequences, if / : U -* V is a homology isomorphism

of DGA-algebras, then {£/} is an isomorphism of spectral sequences. Thus if

there exists a homology isomorphism of DGA-algebras C(^4) -> ¡7, where U is

commutative, then {ErC(A)} £ {ErU} is a spectral sequence of differential Hopf

algebras. By [6], this is true if A is the universal enveloping algebra of a Lie

algebra or of a characteristic two restricted Lie algebra. If A is any Hopf algebra,

then H*(A) is commutative and therefore El C(A) = B(H*(A)) is a differential

Hopf algebra, but {ErA} need not, I believe, be a spectral sequence of differential

algebras.

We now consider the differentials in the spectral sequence {ErU}, and show

that those differentials landing in E\*U might well be called generalized Massey

products. For generality, we assume from now on that U is a DGA-algebra

(with differential 8) over a commutative ring A. {ErU} is defined exactly as above,

but of course Ex U s* B(H(U)) in general. If ocjei/(t/), the symbol [a, | ••• |ap]

will denote the image in El U of <Xy ® ••• (g> ap under the obvious (Kiinneth) map

<g>"H(U) ~» H(<S)PU) = E}t.V.
We will need the following lemma, which describes the method by which the

differentials in {ErU} are to be computed.

Lemma 4. Let 0 ^ 9eEpqU, r^.1, and suppose that ebyeBpJJJ) is a rep-

resentative chain for 0, in the sense that 8"epy = 0 and {(/>,} 6 EpqU survives to 0.

Then there exist eb,+ l eBp_,q+,(U), 1 Jí i£r — l, such that 8"ep,+ 1 + d'ep, = 0,

and 8r9 is that element (possibly zero) to which {d'epr}eEp_r q+r-yU survives.

Proof. Note first that it suffices to prove the existence of the ep,, for then

8(Ifi=yep) = 8'epr and by definition {8'<pr}eElU survives to 8,0. If r = l, the

result is trivial. Assume the result for s<r,r> 1. Since {epy} survives to n, say, in

£r-1C/, there exist ep,+ yeBp.,q+,(U), 1 ^ i ^ r - 2, such that 8"ebi+1 + d'ep, = 0

and {8'4>r.y}eE1U survives to <3r_,« = 0. If {8'epr.y} = 0 in ElU, then clearly

there exists epr such that 8"epr + d'ebr-, = 0. Suppose, on the other hand, that

{d'ebr_i}¿0 in ElU. Then {8'ebr_y} must have been killed by some dsX,

1 *g s < r — 1. Again by induction, there exist \p,, 1 g i z% s, such that 8"\py = 0,
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8"ip,+ y + d'tp, = 0, and {8'ips} = {d'ebr_,} in ESU. Let Xi = <¡>¡, 1á J< r- s,

and Xi = 'Pi ~ lAi+i+s-r> r — s z%i ^r — I. Now either there exists xr sucri that

8"Xr = 8'(ips — epr_y) = — d'Xr-u m which case the x, satisfy the conclusion, or

else {8'Xr-y} must have been killed by some 8,1', 1 íg r <s, in which case we

iterate the argument until the result is obtained.

We remark that the lemma (suitably rephrased) is actually valid for the first

spectral sequence of any bicomplex [3, p. 341].

We now recall the definition of Massey «-tuple products. In Definitions 5 and

10 and Example 12 below, if a e U the symbol â will denote ( — 1)'+deg" a.

Definition 5. Let a,,---,a„eH(U). Suppose that a,,eU is a representative

cycle for <x, and suppose there exist chains a,j, 1 íí i <j z%n, j — i < n — I,

such that
)-t

àa,j=   Z d,ikak+1J.
*= i

Observe that SaUn — 0, where
n-l

a\,n~   ^   (ll .kak+ 1 ,n»
k=l

Under these hypotheses, the Massey «-tuple product <a,, •••,«„> is defined and

is the set of all homology classes {aln} so obtainable, «a,,••»,«„> is said to be

strictly defined if <a¡, ---,oif) = {0}, / — i < n — 1.)

Theorem 6. Let a.,-",ar+1 eH(U). Suppose that <al5...,ar+1> is defined

and contains ß and that [a, | ••• |ar+1] e£1 U survives to a nonzero element

QeE'U. Then 8r6 is that element (possibly zero) of ElU to which [ß]eExU

survives.

Proof. Using Definition 5, we can easily define ep¡, I z% i z^r, such that 8"eby = 0

and {<p1} = [a1|-..|ar+1]££1C7, o"»pJ+1 + 8'eb, = 0, and {8'e])r} = [ß]eExU.

The result now follows from Lemma 4.

Definition 7.   Suppose that <a1; •■•,ar+1> is defined and let

eb = [ay\-\ar+y]eBiU),

where a,e U represents a¡. We say that <a,,...,ar+I> is a good Massey product if

there exist no elements x and ip in B(U) such that 8"x = ep — 8'ip.

Using Lemma 4 (inductively), it is easily verified that if <al5••-,«„} is a good

Massey product, then f^ot. | ■•• | a„] is not killed by any 8SX, l=s. Therefore

we have

Corollary 8. Let <a., •••, ar+<> be a good Massey product and let

/?3<a,, ...,ar+1>. Then [et, | ••• |ar+1] survives to QeE'U, 0^0, and either

[ß~] e £' U survives to 8,6 #0or else 6 survives to a nonzero element of Eœ U.
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Reverting for a moment to the hypotheses of Theorem 1, we have

Corollary 9. Let uteHq'(A), 1 ¿ i ¡g r + í, q¡ ^ 1, and suppose at

least one q¡ > 1. Then if <oc1; •••, oer+1> is a good Massey product, every

element ße (oty,---,ar+1> is indecomposable (has nonzero image in QH*(A)

= IH*(A)I(IH*(A))2) and <a1,—,ar+1> is well defined as an elemnt of QH*(A).

Further,   if   <ai,---,as'+1>   is   another   good   Massey   product,   r < s,   then

Proof. As follows directly from the definition, any Massey product is well defined

as an element of QH*(A). Now since [o¡i | ••■ |«,+ i] survives to 6eEp qC(A),

where 0^0 and q < p, we must have dr6 ^ 0. Therefore [jS] must survive to a

nonzero element of E2,C(A) = Hy(H*(A)), hence ß is indecomposable. The last

statement follows, since if ß were in <ai,.--,as'+1>, then [ai ••• a»'+i] would

survive to a nonzero element of EœC(A).

We cite another explicit operation, due (in homotopy theory) to Barratt [2],

which satisfies an analog of Theorem 6.

Definition 10. Let a, ßlt ß2, y¡, y2eH(U). Suppose that a, bu b2, c¡, c2elf

are representative cycles and suppose there exist chains d,, d2, and e such that

5d¡ = âb y,   5d2 = äb2,   and   èe = b¡Cy + b2c2.

Observe that ôf = 0, where

/ = dyCy + d2c2 + äe.

Under these hypotheses, <a, ^;^> is defined and is the set of all homology classes

{/} so obtainable.

Proposition 11. Let a, ßy, ß2, ylt y2eH(U). Suppose that <a,p2',^> is defined

and contains cb and that [«■\ßi\yi'j + [oi\ß2\y2]eE1U survives to a nonzero

element 6eE2U. Then d20 is that element (possibly zero) of E2U to which

[cb2eElTJ survives.

We can, of course, complete the analogy by defining "good" operations<a,p2'*'>

and proving analogs of Corollaries 8 and 9.

Lemma 4 leads to the definition of a multiplicity of new operations. We give

one example which shows that these operations need not be related in any obvious

way to Massey products (<a, jL'J') can be regarded as a "matric" Massey triple

product).

Example 12. Let a¡ e H(U), lzii = 7. Suppose that a¡ e U is a representative

cycle for <x¡ and suppose there exist chains by, b2, cit c2 such that

Sby  =  ä2a3 + äAa5,   ôb2 = äyü2 + äfta1,

öcy  = äyüA   and   ôc2 = ä7a3.
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Observe that ôe = 0, where

e  =  äyby + b2a3 + Cya5 + a6c2.

Under these hypotheses, we define 8(als.",a7) to be the set of all homology

classes {e} so obtainable. Then e(al5 ••■,a7)is related to d20, where

[«i | a2 | «s] + [«i I «41 °¡s] + [«61 <*71 a3] eElU

survives to 0, by an analog of Theorem 6. Defining "good" operations fi(a,, •••,a7)

we can again obtain analogs of Corrollaries 8 and 9.

Remarks 13. Stasheff [9] first noticed a similarity between Massey products

and the differentials in {E'lf}. In an application to H-spaces, he called the dif-

ferentials dr: Err+l¡qU-*Er¡ q+r_yU "Yessam" operations, and showed that

{E'U} could be defined under weaker assumptions than associativity on the

product in f.
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