
TOPOLOGY OF QUATERNIONIC MANIFOLDS

BY

VIVIAN YOH KRAINES(i)

Introduction. The holonomy groups of manifolds having affine connection

with zero torsion have been classified by M. Berger [1]. The possible restricted

holonomy groups for irreducible Riemannian manifolds which are not symmetric

spaces are the following:

SO(n), [/(«) (= T1 x SU(n)), SU(n), Sp(«) x Sp(l),

Sp(n) (all for n ^ 2) and the special groups G2,

Spin(7)  and   Spin(9)   (see   also   Simons   [12]).

Manifolds with holonomy groups in SO(n) are the oriented Riemannian mani-

folds. Only general results may be obtained about the topology of this large class.

The cohomology of Riemannian manifolds with holonomy groups in L/(«)

(Kahler manifolds), has been extensively studied (see [3], [6], [13]). The exis-

tence of compact Riemannian manifolds with holonomy groups in SU(«) or

Sp(n) is not known for « # 1.

Hence, for the general groups, the most interesting cases left are those mani-

folds whose holonomy groups form subgroups of Sp(«) x Sp(l). These manifolds

are called quaternionic manifolds.

In the first part of this paper (§§1-3), a decomposition analogous to the Hodge

Decomposition for Kahler manifolds is given for quaternionic manifolds (Theo-

rem 3.5). Using a theorem of Chern, we get an increasing sequence of Betti

numbers (Theorem 3.6). In the last part (§§4 and 5), we define a quaternionic

pinching. Using it, we give a quaternionic analogue (Theorem 5.5) to Klingen-

berg's Kahler pinching in [7] and [8].

1. Definitions and algebra. Let K" be the «-dimensional right module over

the quaternions K. We define a bilinear form on K" as follows: if P = ipi,---,p„)

and Q=iqy,-,qn)eK", then

<P,Q> = 1  2 (Mi+M)-¿ ; = i
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Then <P, ß> is an inner product of K" considered as a 4/i-dimensional real vector

space.

Lemma 1.1.   <P, ß> is invariant under the action of Sp(n).

Proof. Sp(n) is defined as the set of all endomorphisms of K" which

preserves the "symplectic product" (P,Q) = 2l"=yP¡q~i (see Chevalley [4]). Now

our inner product is <[P,Q} = i((P,Q) + (Q,P)). Hence it is clearly invariant.

Q.E.D.
Remark 1.2. As defined above, Sp(l) is the set of all unit quaternions. Hence

for leSp(l)(i.e. XeK,\X\ = l), <[PX,QX} = <AP,Aß> = <P,ß>.
Now for q e K, write q = q° + q1i + q2j + q3k, where q' ate teal for i = 0,

1, 2 or 3 and 1, i, j and k form the usual basis of X over R (the reals).

Definition 1.3. Considering the three complex structures defined by i, j and

k on K", we define the following three skew symmetric, bilinear forms:

«/(P,ß) - <P«\ß>,

íij(P,Q) = <P/,ß>
and

0*(P,ß) = <Pk,Q>.

By a simple calculation, we have

Lemma 1.4.   (1)  Q,(Pi,Qi) =  -Offl,Qf) = -Çl,(Pk,Qk) = C1,(P,Q).
(2) Clj(Pj,Qj) =  -Qj(Pk,Qk) =  -nj(Pi,Qi) = Qj(P,Q).
(3) QK(Pk,Qk)=  -nK(Pi,Qi) =  -QK(Pj,Qj) = £lK(P,Q).

Definition 1.5. Let /leSp(l) (i.e. 1 is a unit quaternion), write

X = a + bi + cj + dk. Define X* on the bilinear forms £l¡, Qj, ilK by :

X*Çl,(P,Q) = Cî,(PX,QX),

X*nj(P,Q) = Qj(PX,QX)

and

x*nK(p,Q)= nK(PX,QX).

Lemma 1.6.

X*n,  = (a2 + b2-c2- d2)n¡ + 2(ad + bc)Clj + 2(bd - ac)ilK.

X*Qj = 2(bc - ad)il, + (a2 - b2 + c2 - d2)Clj + 2(ab + cd)ÇlK.

X*QK = 2(ac + bd)Qy + 2(cd - ab)Slj + (a2 - b2 - c2 + d2)QK.

Proof. This is straight calculation, noting the following equalities:

<P«,ß> = - <P,Qi>, <Pi,QD = <P,Qk>, <Pi,Qky = <P/,ß> and similarly for
other combinations of i, j and k. Q.E.D.
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Definition 1.7.   Define a 4-form Ü. on K" by

Q = Í2, A Q» + Ü.J A ííj + Q.K A Qx.

Definition 1.8. Define the action of the group Sp(«) x Sp(l) on K" as fol-

lows: let PeK" and (A,À)eSp(n) x Sp(l), then (^,A)P = XPA, i.e. apply ,4

to P and multiply on the right by the unit quaternion X.

Theorem 1.9.   Í2 is invariant under the action of Sp(«) x Sp(l).

Proof. By Lemma 1.1, fi is invariant under the action of Sp(n) on the left.

Now let le K, |k\ = 1, i.e. X represents an element of Sp(l), then

A*Q = /L*Í2, A A*Qj + X*Qj A A*Í2, + X*Q.K A 1*&K ■

By substituting the values of each term on the right from Lemma 1.6, we get

A*Í2 = Q, hence Q. is invariant under the action of Sp(l) on the right.        Q.E.D.

Let (Kn)' be the dual space of K" over K and zv,---,zn be a basis of (Kn)'.

We may write zx = ux +vxi + xj + yxk, so that ul,vl,x¡,yi,---,un,vn,xn,ya

form a basis of (Kn)' over R.

There is a complex structure on (Kn)' defined by the endomorphism P-> Pi,

for Pe(K")'. The elements

zx = ux + vj and z'f = (xj) - iyxj)i

form a basis of (K")' as a 2«-dimensional complex vector space. Then, by [13,

p. 17],

R B n

n, =  Z ux A vx - E x,,; A yj = I (¡fa A K + xx A jO.
a=l a=l a=l

Similarly, using the complex structure P -* Pj,

z'x = ux + xj and z^ - (iy) + (3'«0j

form a basis of (K")' over C (the complex field) and

Qj =  £ («.A^ + .y£tAtv).
ot= 1

Finally, using the complex structure P-*Pk, we have

n

nK = S (m. A y, + »«A*«)-
«=■= i

From the above expression of Q,, £2, and QK, we can express the exterior

4-form Q as a linear sum of the basis elements ux/\vß /\xy /\ yô, where

l = ct, ß, y, ô = n.

Theorem 1.10.   ÎÏVO, in-fold exterior product
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Proof. Since Q = Q¡ A Q, + fi, A fi., + fix A fix, Q" will be a sum of 4/i-

forms, hence will be a sum of

(*) s«i Afi AxyAyyA--Aunf\vnAxnAyn,

where e = ± 1. We will show that e will always be + 1. Each summand of

fi" will be a product of the 2-forms

(**) ux A P«, Jc« A .y«, "a A **> y« A va, ux A y* and vxf\xx.

Now let us take one of the summands and rearrange it so that the subscripts

will be in nondecreasing order, i.e. so that the summand will be an exterior prod-

uct of the 4n elements Uy,Vy,Xy,yy,---,u„,v„,x„,y„, such that the first four

elements in the product will have subscript 1, the next four will have subscript 2,

etc. Since in the original product, we multiply pairs with the same indices, in

order to achieve the new product, we have to permute the elements in the product

by an even permutation, hence we do not change the value of the product.

Take the term in the product consisting of the four elements with the index a.

Since it is a product of terms in (**), it must be one of the following three forms

(else would be 0): ux A v, A xa A y., ua A xx A y„ A vx or «„ A y* A » * A x,,

which are all equal to each other. So each summand is equal to (*) with c = + 1

and fi" is a nonzero multiple of it. Q.E.D.

2. Decomposition. We extend the definition of the star operator * and the

operators L and A to the quaternionic case. Let f\(K")' be the exterior algebra

over R, considering (Ktt)' as a real 4n-dimensional vector space. Every element

of/\(K")' is a linear combination of simple p-forms co = coy /\--- /\cop, where

each car is one of ux, va, xx, or ya.

Definition 2.1. Define *, L and A on f\(K")' as follows. If co is a simple

p-form, then *co is the simple (4n — p)-form such that co A *a is

uy AviAxiAyiA-- AunAvnAx„Ayn- Extend * by linearity to AW-

On an arbitrary exterior form co, define Leo = £1 ¡\co  and Ato = *(íty\ *oj) .

Remark.   (1)  for all coe f\(K")', **co = co.
(2) L: AP(Kn)' -* AP+4(X")'-

(3) A:  AW -» AP~4(K")'-
Definition 2.2.   Define a bilinear form on   AP(^")' by

(a»,©') = *(© A *to') for co,co' e AP(K")'-

Lemma 2.3.    (Lco,co') = (co,Aco')for coe AP(K")' and co'e /\P+\K")'.

Proof.   This is straight substitution. Q.E.D.

Lemma 2.4. L: A"(*")' -» AP+4(K")' is an isomorphism into for

p + 4 = n + l.
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Proof. It is sufficient to prove that for coe f\"(Kn)', p + 4 = n+ I,

Lea = £1 [\eo = 0 implies eo = 0.

Assume eo # 0 and write eo = 2,a,b,c,d7Abcdua AvB Axc A yD> where A, B,

C and D are subsets of the index set {1, •••,«} and if A = {ay,---,ap}, then

"¿="a, A- A"«p.
In the summation above, consider the terms with the highest total degree,

say r, in u's and v's. Let eo' be the sum of these terms,

M' =   2 7abcdua AvBAxcAyD¥=0,

where the summation is taken over the indices A, B, C and D such that

|A| + |B| = /■ (\A\ and |B| denote the cardinalities of A and B respectively).

Similarly, express Leo = £2 A oj in uA, vB, xc and yD and consider the terms with

the highest total degree in u's and v's. From the expression for £2», £2, and QK

given at the end of §1, it follows that the sum of these terms is given by

•££.<? - i u* A vx A Uß A vß A a>'. Hence Leo = 0 implies that 2"j{3 = 1uxAvxAuß

A vp A 03' = 0, which means that 2C,D( 2«,/,,¿,By¿J)cD"a A »fc A »* A »* A «¿A vB)

A *c A yo — 0. This implies that

12 ux A vx ) A I 2 uß A Vß) A I 2 v^bcd".* A ̂  j = 0

for each fixed C and D, or Í2'2 A cu" = 0, where

n

Í2' = 2 t/« A v„ and oj" =  2 7ABCd"a A ^ ^ 0.
« = 1 ^l.B

Consider the «-dimensional complex vector space with the coordinate system

Uy +(—l)il2vi,---,un + ( — l)ll2vn. Then Í2' is the fundamental 2-form. Apply-

ing the Hodge Decomposition Theorem, (since degree of eo" =n — 3)

£2' A (ii' A <a") = 0 implies ii'A»" = 0, which in turn implies that cu" = 0,

which is a contradiction. Q.E.D.

Definition 2.5. A p-form eo is said to be effective if Am = 0. We denote by

A'c A" W the set of all effective p-forms.

Theorem 2.6. There is a direct sum decomposition of AP(-^")' as follows:

for p = n + l, r = [p/4],

AW = A"e + ¿A'."4 + - + ff AT*

Proof. By Lemma 2.4, L is an isomorphism into. By Lemma 2.3, A is the

adjoint of L and is therefore onto for p=n + l. We will prove the theorem by

induction on p. The statement is true for p = 0, 1, 2 and 3, since A lowers degree

by 4 and hence A P= f\l f°r these p's.

Assume the theorem true for k < p. We shall prove it for k = p. We claim that

Ape is the orthogonal compliment of the subspace LAP_4(K")'  in  AP(*")'»
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Orthogonal — let coe Aï and Lco'eLAP~4(K")\ then

(co,Lco') = A(co,co') = (0,co') = 0.

Compliment. Let coe A"(Kn)' be such that (co,Leo') = 0 for all co' e A""4K".

Then (Aco,co') = 0 and hence Aco = 0, since ( , ) is a nondegenerate bilinear

form.

By induction hypothesis, we have

AW = M + LAp-\Kny

=  AP + Mr4 + ---+LrA!T4r  (direct sum). Q.E.D.

3. Quaternionic manifolds.

Definition 3.1. A 4n-dimensional Riemannian manifold M is called a qua-

ternionic manifold if its holonomy group is a subgroup of Sp(/i) x Sp(l).

Let M be a 4n-dimensional quaternionic manifold and xeM. We may iden-

tify TX(M) with X". However, this quaternionic structure of TX(M) may not be

invariant under parallel displacement. Using this identification, we may define fi,

which will be invariant under parallel displacement (Theorem 1.9). Hence fi is

independent of the choice of quaternionic structure on TX(M). From the above

discussion and Theorem 1.10, we have

Lemma 3.2. fi as defined above is a closed differential form of degree 4

and of maximal rank.

Theorem 3.3. Let M be a 4n-dimensional quaternionic manifold and let

B' denote its ith Belli number, then

B4'V0,/or i = 0,l,---,n.

Proof. By Lemma 3.2, fi is a closed 4-form of maximal rank, hence fi' is a

nonzero element of H4'(M;R).

Therefore B4i = dimension of H4i(M;R) #0. Q.E.D.

Definition 3.4. Define the operators *, Land A on the space of differential

forms 5>" as follows: If co is a differential p-form, then *co is the (4n — p)-form,

such that

(*co)^. = *(cox), for all xeM,

Leo = CIA«),      A co = *(fi A *(o).

A differential form co is said to be effective if Aco = 0.

Theorem 3.5. Let M be a 4n-dimensional quaternionic manifold and co a

differential form on M of degree p-—n + l. Then

[P/4]

co =    2 L'cop 4l, where co\ is an effective k-form.
¡ = o
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Proof. Let 4>* denote the space of effective fe-forms. By Theorem 2.6, there is

a direct sum decomposition for p 5¡ « + 1,

$"= 4>p+ L4V; ~4+ - + Lr(Dep-4r>

where r = [p/4] . Q.E.D.

A Theorem of Chern in [2, p. 105] states the following: Let M be a compact

Riemannian manifold with structure group G, Wy,---,Wk be the irreducible in-

variant subspaces of •D9 under the action of G and Pw be the projection map

of O* into W,. Then, if a «¡r-form eo is harmonic, so is Pw.eo.

Clearly each of the L'0>£-4' is an invariant subspace of <PP under the action of

the holonomy group G, since £2 is invariant under G. So each L;<I>£~4'

is a sum of the W,s. Therefore the projection of a harmonic form into L-î'""4'

is again harmonic and we have

Theorem 3.6. If M is a quaternionic manifold of dimension 4«, then there

is an increasing sequence of Betti numbers B' = B' + 4 ^ ••• ^ B'+4r, for

i + 4r= n + 1, ¿ = 0,1,2 or 3.

4. Sectional curvature of quaternionic projective space. A quaternionic

projective space has Sp(«) x Sp(l) as its holonomy group, so it is a quaternionic

manifold. As a symmetric space, it is represented as Sp(«+1)/Sp(«)x Sp(l). Now

let P"(3) be the 4«-dimensional quaternionic projective space. We will first find

an explicit representation of the Killing form and then express the sectional

curvature of P"(3) in an invariant form in order to define pinching.

The Lie algebra sp(« + 1) of Sp(« + 1) is the set of all (« + 1) x (« +1) skew-

quaternionic matrices, i.e. matrices (a,f), where each atj is a quaternion satisfying

a¡, = — a,j, with a the quaternionic conjugate of a.

Lemma 4.1. Lei B(X,Y) = real part of the trace of XY, where X and

Y"esp(« + 1). ThenB(X,Y) is the Killing form of spin+1) up to a constant factor.

Proof. Since for any quaternions p and q, Reipq) = Re(gp), B is clearly

symmetric. Since sp(w + 1) is simple, we need only to show that B is invariant

under the action of Sp(« + 1).

If we represent X and Y as real 4«-dimensional square matrices ft and Y, then

n + l 3

ReTr(A:y) = Tr(Jpy) =22 lyTtj,
¡,j = l      k=0

where X = iXu)  and  Xj - Xf} + Xfa + X?}j + X*tJk, similarly for Y.
Since Tr(.?, Y) is invariant under 0(4« + 4) => Sp(« + 1), we have our result.

Q.E.D.
Let P = iPi,—,p„) and Q = iqi,--,q„)e K", write

P¡ - P? + Pii + Pfj + PÏ* and q, = q? + qH + qfj + q?k.
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Recall that in §1 we defined two products in X" as follows: Considering K" as a

real 4n-space, we have

CP,ß>=   \   £(Mi + *Ä)-   i    i Pkl
*•  i=l ¡=1   j=0

Considering K" as a quaternionic n-space, we have the "symplectic product":

(P,Q) =  i Piïi-
i = í

We have the following relation,

(P,Q) = <P,Q}+i<P,Qi}+j<:P,Qjy + k<:P,Qky.

By a calculation similar to that in the proof of Theorem 1.9, it can be shown

that <P, ßi>2 4- <P, ßj>2 + <P, ßfc>2 is invariant under the action of Sp(n) x Sp(l).

Sp(n)x Sp(l) acts transitively on the set of all unit vectors in X", hence, in the

above sum, we may assume that P = (pl50, --..O). Then, by a straight calculation,

it follows that if P and ß are unit vectors, <P, ßi>2 + <P, ß/>2 + <P, ßft>2 á 1.

These results will enable us to make the following definition.

Definition 4.2. Let M be the quaternionic projective space and xeM. For

each pair of unit vectors X and Y in TX(M), define the "angle" function

ot(X, Y),0 = x(X, Y) ¿ nß by the equality

Cos2a(X, Y) = (X, my2 + (X, Yj}2 + <[X, Yk)2.

Remark. ol(X, Y) is well defined since it is independent of the choice of a

quaternionic structure on  TX(M).

We shall now calculate the sectional curvature X of the quaternionic projective

space M in terms of a. Choose a quaternionic structure on TX(M), for xeM,

then given an element X in TX(M), write X = (xy,---,xn) as an element of K".

Then there is a representation of X as an element in sp(n + 1) (see Nomizu [11])

by the skew quaternionic matrix (oy), where alt = — a~n = x^y for i ^ 1 and

a¡j = 0 otherwise.

Lemma 4.3.   For X and YeTx(M),

b([x, y], [x, y]) = 2((x, Y)2 - (x, Y)(Y,X) + {Y,X)2- (x, x) ( y, y».

Proof.   This is straight calculation, using Lemma 4.1. Q.E.D.

Lemma 4.4.   If X and Y are orthonormal (as real vectors) in TX(M), then

B([*,y],[*,y]) = 2(3(z,y)2-i).

Proof. Using the fact that <X,Xi> = <[X,Xj) = <[X,Xk} = 0 for any

XeK", the lemma follows immediately from Lemma 4.3. Q.E.D.

Theorem 4.5.    Let   M    be   the   quaternionic   projective   n-space   P"(3),
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xeM, X and Y be two orthonormal vectors in TxiM). Furthermore, let K denote

the sectional curvature of M. Then,
i

0 < KiX, Y) = - (1 + 3Cos2a(X, Y)) < 1.

Proof.   For a symmetric space, up to a positive constant factor, KiX, Y) is

- Bi[X, Y], [X, Y]) = 2(1 - 3(X, Y)2).

Now, for orthonormal vectors X and Y, it is a straight calculation to show that

iX, Y)2 = - <:X, Yi}2 - <[X, Y/)2 - (X, Yk}2 = -Cos2a(X, Y).

Hence KiX, Y) is a positive multiple of

(l + 3Cos2aLY,Y)).

The latter function attains a maximum of 4 when X = Yi. Since the sectional

curvature of M with the usual Riemannian metric attains a maximum of 1, the

constant factor must be \ . Q.E.D.

5. Pinching. We first state some general results of Klingenberg [7]. Let

P"(l) and P"(3) denote the complex and quaternionic projective space of real

dimensions 2« and 4« respectively, P"(l), for n = 2, denotes the Cayley plane,

each endowed with the usual Riemannian metric for which the curvature varies

between £ and 1. Let M be an m-dimensional complete and simply connected

Riemannian manifold and let G = (p(s)), 0 ^ s — co be a geodesic ray in M,

parametrized by the arc length.

Definition 5.1.   For k = 1, 3 or 7, we say G satisfies (n, k) if

(1) there are no conjugate points in [0, n[,

(2) there are k conjugate points in [7r,4n:/3[,

(3) there are no conjugate points in [4n/3,2n[ and

(4) there are X conjugate points in [2n, 8tt/3[, X > k + 1.

Theorem 5.2 (Klingenberg). Let M be as above of dimension (k + l)n with

n = 2. Assume that there is a point o in M such that (it,k) holds for all geodesic

rays starting from o. For k = I, assume also that the distance between o and its

cut locus C(o) is greater or equal to n. Furthermore, assume k + X'=m = dim M.

Then M has the same integral cohomology ring as the symmetric space P"(k).

For k = 1, M actually has the same homotopy type as P"(l) [8, p. 338].

For a Kahler manifold M of dimension 2n = 4, if er is a 2-plane tangent to M

and X is in er, then a.(er) is defined to be the angle between the plane o and the

plane er spanned by X and JX, where J defines the almost complex structure

in M. Define K'(a(er)) = ¿(1 + 3 Cos2a(<r)).

Theorem 5.3 (Klingenberg). Let M be a Kahler manifold of dimension

2« ^ 4. Assume that for all 2-planes er tangent to M, the curvature K(er) satisfies

the inequality
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9/16<X(<7)/X'(a(<7))^ 1.

Then M is compact and has the homotopy type of the complex projective n-space

P"(l) [8, p. 339].

Using his method, we will obtain a similar result for quaternionic manifold s.

Let M be a quaternionic manifold of dimension 4n. For some xe M, let X and

y be orthonormal vectors in TX(M). Then X and Y span a 2-plane a. We may

define the angle function a(a) = a(X, Y) by the equality

Cos2a(X, Y) = <[X, Yi}2 + (X, Yj}2 + <[X, Yk>2,       0 = a(<r) = nß,

and a function K'(a(a)) by

X'(a(<r)) = i(l 4- 3 Cos2a(cr)).

4

X'(a(<r)) is well defined since a.(a) is invariant under the action of Sp(«)x Sp(l).

If M is a quaternionic projective space, then X'(a(<r)) reduces to the sectional

curvature K(o).

Theorem 5.4. Let M be a quaternionic manifold of dimension 4n, G a geo-

desic ray on M, G0 the initial geodesic segment of length 2njs/ô, with Ô = 9/16.

Assume that the sectional curvature K(d) of each plane section o tangent to

G0 satisfies the inequality

ô < K(cj)IK'(a(ej)) = 1.

Then G satisfies (n, 3).

Proof.    The proof proceeds in the same way as that of Proposition 3.3 of [7].

We may rewrite the inequality as

(*) <5/4 Û oK'(oc(cr)) < K(ct) = K'(ot(o)) z% 1.

Let G0' be a geodesic segment of length 2n¡^Jb' in M' = P"(3). There exists

an isometry I, compatible with i, j and k, mapping the tangent space of

the initial point of G0 onto the tangent space of the initial point of G'0,

sending the initial direction of G0 onto the initial direction of

G'0. / gives a 1-1 correspondence between plane section a tangent to

plane section a' = la tangent to G'0. Since a((x) and a(er') are invariant under

the action of Sp(n) x Sp(l), they are invariant under parallel translation along

G and G' respectively. Hence K(Io) = X'(a(cr)) and from (*) we see that

K(cf) z% Kilo). By Lemma 3.1 of [7], this means that index G' = index G.

Since G0 has no conjugate points in [0,7t[, hence has index 0, G0 has index 0,

hence no conjugate points in that interval. Also since G0 has 3 conjugate points

in [7r,7t/(<5)1/2[, G0 has at most 3 conjugate points in [n,nj(ô)1/2[.
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Now let M" be the space obtained from M' by multiplying the usual metric

by l/(<5)1/2> 1 and let K" be its curvature. Let G'¿ be a geodesic of length 2n¡(b)X12

in M" and introduce the isometry I as before. Then from (*), we see that

K"(Ier) < K(er). Now G'¿ has 3 conjugate points in [0,7c/(<5)1/2[, so G0 has ex-

actly 3 conjugate points in [7r,7i/(<5)1/2[. By a similar argument, we conclude that

G0 has no conjugate points in [7r/(<5)1/2,27r[ and 4n —3 conjugate points in

[2n,2K¡(o)U2[.  Letting  0 = 9/16,  the  Theorem  follows. Q.E.D.

Theorem 5.5. Let M be a compact quaternionic manifold of dimension

4« — 8. Assume that for all 2-planes a tangent to M, the curvature K(er) satisfies

the inequality

9/16 < K(er)¡K'(a(er)) = 1.

Then M has the same integral cohomology ring as P"(3).

Proof. This Theorem follows from Theorems 5.2 and 5.4 (noting from the

proof of Theorem 5.4 that X = 4n-3). Q.E.D.
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