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1. Introduction and summary. If 5 is a cancellative semigroup with idempotent e

then e is necessarily the identity element of S, and the set G of all elements of S

having inverses with respect to e in S is the unique maximal subgroup of S.

Furthermore if S is not a group then the complement, T, of G in S is a maximal

proper ideal of S and is, in fact, the only maximal proper ideal of S.

Henceforth whenever we write S = CUT, where S is a cancellative semigroup

with idempotent, it will be assumed that S is not a group and that G and T denote

the unique maximal subgroup of S and the unique maximal proper ideal of S,

respectively.

These considerations suggest the following problems:

(I) Given a group G, under what conditions does there exist a cancellative

semigroup S = G U T for some cancellative semigroup T?

(II) Given a cancellative semigroup T without idempotent, under what con-

ditions does there exist a cancellative semigroup S = G u T for some nontrivial

group G?

(III) Given a group G and a cancellative semigroup T without idempotent,

under what conditions does there exist a cancellative semigroup S = G U T?

The restriction of Problem (II) to nontrivial groups is desirable since, given a

cancellative semigroup T without idempotent, the semigroup S obtained by

adjoining an identity element to T has trivial maximal subgroup and has T as

the complementary maximal ideal.

Each of these problems is readily seen to be equivalent to an extension problem

for cancellative semigroups(3). This is a consequence of the fact that a cancellative

semigroup S with idempotent is not a group if and only if S is an extension of the

cancellative semigroup Tby the group with zero G°, where G and Tare as defined

above.
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It is shown in §2 that every group is the maximal subgroup of some can-

cellative semigroup which is not itself a group.

§3 is devoted to a consideration of commutative cancellative semigroups

which have a basis. It is shown that if T is a finite-dimensional commutative

cancellative semigroup without idempotent and G is a group, then there exists a

cancellative semigroup S which is an extension of Tby G° if and only if Gis com-

mutative of order dividing the dimension of Tand Pis a homomorph of one of

a class of specified finitely generated cancellative semigroups. An analogous

result is obtained if the assumption that T is finite-dimensional is replaced by the

hypothesis that Tpossesses a basis; in this case, however, we also assume that G is

finitely generated.

§4 is concerned with commutative cancellative semigroups which are not

assumed to possess a basis, and problem (II) is solved for such semigroups.

Specifically, if Tis a given commutative cancellative semigroup without idempotent

then a cancellative semigroup S = G u T exists for some nontrivial group G if

and only if there exist distinct elements x,y in Tsuch that xT= yT.

In the final section noncommutative cancellative semigroups which possess a

basis are considered. It is shown that given an arbitrary pair m,n of positive

integers there exists a cancellative semigroup S = G U T, where G has order «

and T has dimension m, if and only if n g «j.

2. Preliminary remarks. As in [1] the cardinal of a set A will be denoted by

\A\. If B is a subset of a set A then A\B will denote the complement of B in A.

The empty set will be denoted by 0. If S is a semigroup without identity then

S1 will denote the semigroup obtained by adjoining an identity element, say 1,

to S.

Now let S be a cancellative semigroup with idempotent e. Then for all elements

x of S, xe2 = xe which, by cancellativity, implies that xe = x. Similarly ex = x so e

is the identity element of S.

Let a, b be elements of S such that ab = e. Then bab = be = b = eb so, by

cancellativity, it follows that ba = e. Thus if x e S then any one-sided inverse of x

relative to e in S is necessarily a two-sided inverse. If an element x of S possesses

a (necessarily unique) inverse y relative to e in S we will write y = x~1. Then also

y~l = x, i.e. (x-1)-1 = x whenever x-1 exists in S.

Denote by G the subset of S consisting of all elements of S which have an in-

verse relative to e in S. If g e G then gg~ ' = g~ 1g = e so g~ieG, and if also

heG then (gh) (h ~1g~i) = e so gh is in G. Hence G is a subgroup of S, maximal

by definition since e is the only idempotent in S.

Assuming that S is not a group, let T=S\G. Suppose there exist a e T and

xeS such that ax eG. Then, setting g = (ax)~1, a(xg) = e so aeG, a contra-

diction. Similarly xa e Tfor all a e Tand x e S, so Tis an ideal of S.

Let  A  be any proper  ideal  of S.  If A D G # 0 let  ge^OG.   Then
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G = Gg£ G A £ A, so e e A. Hence S = Seç A, a contradiction. Thus A n G = 0

so /4 £ T. Consequently T is a maximal proper ideal of S and is unique with this

property.

Thus we have established that a cancellative semigroup S which contains an

idempotent and is not a group must contain a unique maximal subgroup G and a

unique maximal proper ideal T. Furthermore G and T partition S.

The following two lemmas, the first of which was proved in §1, are stated for

later reference.

Lemma 2.1. Let S be a cancellative semigroup. If S contains an element f

such that af= a or fa = a for some a in S, thenf is an identity element for S.

Lemma 2.2. Let S = GUT be a cancellative semigroup with idempotent.

Then T contains no idempotent.

Proof.   An immediate consequence of Lemma 2.1 and the definitions of G

and T.

The next lemma provides a solution to problem (I).

Lemma 2.3. If H is an arbitrary group then there exists a cancellative

semigroup S = GUTfor some cancellative semigroup T without idempotent

such that G is isomorphic to H.

Proof. Let U be any cancellative semigroup without idempotent and let S be

the direct product of H and U1. Then, writing S = G U T we see at once that G

and T are respectively isomorphic to H and H x U.

Lemma 2.4. Let S be a cancellative semigroup and let I be an ideal of S.

If I is commutative then S is commutative.

Proof.   Let Sy,s2eS and t¡,t2el. Then

(SyS2)(tyt2) = Sy((S2ty)t2) = Sy(t2(S2ty)) = (Syt2)(S2ty)

= (S2ty)(Syt2) = S2(ty(Syt2)) = S2((Syt2)ty)

=    (S2Sy)(t2ty)   =    (s2Sy)(tyt2)

so, by cancellativity, SyS2 = s2Sy.

With respect to problem (III), it follows from Lemma 2.4 that if Tis commutative

then G must also be commutative and in fact that any cancellative semigroup

S = G u T (if such exists) must be commutative.

3. Problem (III): the commutative case. A nonempty subset W of a semigroup

S is said to generate S if no proper subsemigroup of S contains W. Equivalently,

W generates S if and only if every element a of S is expressible as a finite product

a = WyW2---wm, where each w¡ is contained in W.
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A subset B of a semigroup S is called a basis for S if (i) B generates S and (ii) no

proper subset of B generates S.

Lemma 3.1. A commutative cancellative semigroup S without idempotent

has at most one basis.

Proof. Let A = {ay,a2,---} and B = {by,b2,---} be bases for S(4). It is

sufficient to show that an arbitrary element, say alt of A must also lie in B.

Since B is a basis for S there exist elements b¡, b2,--, bk, say, in B and positive

integers  al5a2, •■-,ak  such  that

(3.1) ay=b?b*f-blk.

Similarly since A is a basis for S there exist elements ax,a2,—,a„ in /I and non-

negative integers j8y (i = 1,2, •■»,&; j = 1,2, ••»,«) such that

(3.2) &.-«*•<#*••• a'«"     (¿ = l,2,...,fc)(5).

Combining (3.1) and (3.2) we obtain

(3.3) a,=aefaef-aen",

where

i

e} =  S   ft/x;       Q = 1,2, •••,«).
¡ = i

From (3.3) and the fact that A is a basis for S it follows that ej > 0. However S

has no idempotent so, by Lemma 2.1, et = 1 and e¡ = 0 for / = 2, •••,«.

Since a( > 0 and /?,-.= 0 for i = 1,2, ■■-,k, there must exist an integer m,

1 g m g fe, such that

0miam = 1 and ßna; = 0 for all i ^ m.

Therefore ßmi = am = 1. It then follows from (3.1) that at = bmy and from (3.2)

that bm= ayz, where y and z are suitable elements of S1. Hence ay = bmy = axzy

so, by Lemma 2.1, z = y = l. Thus at = bmeB, which completes the proof.

If S is a semigroup with a basis of n elements (where « is a positive integer)

and no basis of fewer than « elements, then « will be called the dimension of S.

S will then be called finite-dimensional or, more specifically, n-dimensional.

Lemma 3.2. Let S be a commutative cancellative semigroup with idempotent

and write S = G U T. // T has a basis B then GB = B.

(4) The use of integral subscripts is solely for notational convenience; nowhere in the re-

mainder of the proof will it be assumed that A or B is countable.

(s) For any s in S, s<> will be interpreted as the identity element, 1, of 5'. It is not an element

ofS.
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Proof. Let B be a basis of T. It is clear that B s GB since, by Lemma 2.1, the

identity element e of G is an identity element for all of S. Hence we need only show

that GBç=B.

Let byeB and geG. If g = e then trivially gB s B so assume the contrary.

There must exist distinct elements by,b2,---,bn of B and nonnegative integers

ri,r2,---,r„ such that gby = b[l-"b*n. If ry > 0 then, by cancellativity,

g = by~ib22 ■■• br„". But this implies that either geTor g = 1 (i.e. g is the

empty word), both of which are impossible. Hence ry = 0, so

(3.4) gbt -6?..tS",

where we can assume without loss of generality that r, > 0 for ¿ = 2,---,n.

Now consider the element g~xb2 = y of T. By (3.4),

byb2 = gg-1byb2=(gbi)(g-1b2) = b?-K"y.

Since r2 > 0 it follows that

by = b'rl-K"y.

Because the b¡ are distinct and B is a basis for T, we must have that y = zby for

some z in T*. Furthermore, since T contains no idempotent, it follows from

Lemma 2.1 that b'2~x ••• br„"z is the empty word. Hence r2 = 1 and n = 2. We

conclude from (3.4) that gby = b2eB. Consequently gB s B for all g in G, proving

the lemma.

Lemma 3.3. Let S = GUT be a commutative cancellative semigroup with

idempotent. If T has a basis B then |G| — |ß|. Furthermore if B is finite then

\G\ divides \b\.

Proof. Let B be a basis of T and let b be an arbitrary but fixed element of B.

By Lemma 3.2 the mapping g -> gb carries G into B. Furthermore the mapping is

one-to-one since S is cancellative. Hence |G| — |b|.

Suppos» now that B is finite. Define the binary relation p on B by

bypbj if and only if Gb¿ = Gb¡,   all b¡, b¡ e B.

Clearly p is an equivalence relation on B, so p induces a partition of B into equiv-

alence classes, say By,---,B„. For each ¿, 1 j£ i£ n, let èf be an arbitrary but

fixed element of B¡ and consider the mapping cb¡ of G defined by

<t>f-S-*sbi,   all    <=G.

By the cancellativity of S, </>( is one-to-one. Furthermore cb¡ maps G onto B¡ since

for x,yeB, xpy if and only if gx = y for some geG. Hence | G| = |B¡| for

i = l,--,n so \B\ =n\G\.
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For use in a later theorem we will now construct a particular commutative

cancellative semigroup T.

Let r0, ry, -•-, rn be a set of integers such that r0 = 1 and, for i = 1, •■•, «, r, = 2.

Let X be the set of all vectors x = (x0,Xy,---,x„), where 0 g x, < r, for i = 0,1,

•••,«, and let

m = |x| = n   r,
1=0

Let T be a commutative cancellative semigroup generated by X subject to the

following defining relations. For any x,y,u,v in X, we require that

(3.5) xy = uv

be a relation in T whenever we have for some integer i, 1 g /' g «,

(i) x¡ + y¡ = u¡ + z, (mod r)

and

(ii) Xj = Uj and y¡ = vp all j = 1, ■•■,n such that j # i.

If Wi = w2 and w3 = w4 are relations in an arbitrary semigroup S then the

relation wxw3 = w2wA will be called the product of the relations w1 = w2 and

w3 = w4.

Lemma 3.4.    The cancellative semigroup T has dimension m.

Proof. By Lemma 3.1 it is sufficient to show that X is a basis of T. Since X

generates T we need only show that, for x e X, the relation x = \\y 6 yy, where

Y ezz X\{x} and where the elements y of Y may appear any finite number of

times or not at all, is not a consequence of the generating relations (3.5).

Note that each of the relations (3.5) is of the form

(3.6) n * = n y.
xe Xi y e Y\

where X, and Y, are subsets of X such that, for i = 0,1, •••, n,

(3.7) 2 x, s   2  y, (mod r),
xeX, yeY,

and

Furthermore any product of relations of the form (3.6) is again of the form (3.6),

as is any relation obtained from a relation of the form (3.6) by cancellation.

Consequently every relation which is a consequence of the relations (3.5) must

be of the form (3.6). Thus if the relation x=[}j,ey y is a consequence of the relations

(3.5) then | Y| = 1, i.e., the relation must be x = y for some y in X. To complete
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the proof we therefore need only show that the relation x = y is a consequence

of the relations (3.5) only if x¡ = y¡ for i = 0,1, ••-, n.

Accordingly, suppose that the relation x = y, where x,yeX, is a consequence

of the relations (3.5). Then this relation must be of the form (3.6) with Xy = {x}

and Y¡ = {y}. But then, since | Xy | = | Y¡ | = 1, the congruences (3.7) take the form

Xi = yt (mod r¡), ¿=0,l,---,n,

from   which  it  follows  that  xf = y¡,   ¿ = 0,1,••-,«.

We now arrive at the principal theorem obtained for the case in which T is

commutative and finite-dimensional. This theorem states in effect that given a

group G and a finite-dimensional commutative cancellative semigroup T without

idempotent, there exists a cancellative semigroup S = G U T if and only if G is

finite and commutative and T is a homomorph of one of a specified class of

finitely generated cancellative semigroups.

Theorem 3.5. Let T be a commutative cancellative semigroup without

idempotent; let T have finite dimension m and basis B, and let G be a group.

Then there exists a cancellative semigroup S = GU Tifand only if the following

three conditions are satisfied:

(Cl) G is commutative;

(C2) | G | divides m;

(C3) Let G be the direct product of t cyclic groups of orders r¡,---,r„ and let X

be the set of all vectors (x0,Xy,---,xt) with integral components satisfying

0^x¡<ri       (i = 0,l,--,t),

where r0 = m/\G\. Then there is a one-to-one mapping, x^(x0,x¡,---,x,), of B

onto X such that xy = uo is a relation in T whenever there exists an integer i,

1 ̂  i — t, such that

(i)  Xi + yi= Ui+Vi (mod r¡);

(ii) Xj = Vj and yy = up all j = 0,1, •••, t; j'^ i.

Proof. Suppose there exists a cancellative semigroup S = G U T. Conditions

(Cl) and (C2) are then consequences of Lemmas 2.4 and 3.3, respectively. It re-

mains to establish (C3).

Let G have order n and suppose that G is the direct product of the t cyclic

groups Gy,--,G„ where G¡ is generated by g¡ and has order r¡ (i = 1, ••-,/). Let

X be the set of vectors defined in the statement of the theorem. Partition B into

subsets B0,B¡,-,Bk-y by means of the equivalence relation p defined in the

proof of Lemma 3.3; thus k = r0 = mj\ G\. Choose an arbitrary element from

each B¡, i = 0,l,---,k — 1, and represent it by the vector (¿,0,•••,0). Let geG;

then g is uniquely representable in the form

s = sVsx22-s:',     0 = xi<ri      (i = l,-,t).
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Represent g(i,0,--.,0) by the vector (i,xlt •••,*.). By definition of p and cancel-

lativity in S, every element of B can be written uniquely in the form g(/,0, •••,0)

for some geG and some i, 1 g i g fe — 1. Hence every element of B is represented

by exactly one vector of X.

Now suppose that for some integer i, 1 g i g /, there exist vectors x,y,u,v in X

whose components satisfy (i) and (ii) of condition (C3). It follows from the way in

which the elements of B are represented that

g?x = gfigV-gt'K^o,-^)

= igï-g*ïgï+x,g*\.\' -gï')ixo,0,-,0)

=   0*0» *1> '">xi-l>xi + vbxi+l>'"> xt)

where the component x, + v, is reduced modulo r¡. Similarly

g*'» = iVo,Vy,--,Vl_i,V, + X„V,y_l,---,Vi)

where, again, the component v, + x, is reduced modulo r,. Hence, by (ii) of con-

dition (C3),

ig?)x = ig?)v.

Similarly

igT)y = igyf)f-

Hence

fer+,>y=(gr,+>f.

But since g, has order r,, it follows from (i) that g\" + Vi = gf'+yi. Hence xy = uv.

Conversely let T be a commutative cancellative semigroup without idempotent

and of finite dimension m and basis B, and let G be a group which satisfies con-

ditions (Cl), (C2) and (C3). Assume that B is represented by the set X as described

in (C3). (That T can simultaneously have dimension m and satisfy the relations

given in (C3) is a consequence of Lemma 3.4.) Let g.,-",g, be a basis for the

group G, where g, has order r, for i = 1, ■••, t. Let S be the set-theoretic union of G

and T(with G and T assumed to be disjoint). The proof will be completed if we

extend the multiplications in G and T to S in such a way that S becomes a can-

cellative semigroup having G as its maximal subgroup. With this in mind we

define multiplication in S as follows:

(Ml) Each two elements of G multiply in S as in the group G.

(M2) Each two elements of T multiply in S as in the cancellative semigroup T.

(M3) ig\l - gef)x = xig'f — g'f) = y, where y0 = x0 and, for 1 g i g «, y, = x,

+ e, (mod r); here x is arbitrary in X.

(M4) gityxtf) = ityxtf)g = igx)itytf) for all geG, all xeX, and all ty,t2eTx.
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It must be shown at this point that the definition of multiplication given in (M4)

is independent of the choice of x in representing the element tLxt2 of T, and that

multiplication in S is well defined. We first establish

SX = V   \
(3.8) 1 imply xy = uv,   all x,y,u,veX,   all geG.

Every element g of G is uniquely expressible in the form g = gf1--- g,e', where

0 — e¡ < r¡ (i = 1,•■-,í). For each geG define N(g) to be the number of positive

exponents e¡, 1 = i = t, in this expression for g. The proof of (3.8) will be by

induction on N(g).

Suppose (g"')x = v and (gf )u = y for some x, y, u, v in X and some g¡, 1 g i á í,

where 0 < et < r¡. By (M3),

x¡ + c¡ = v¡ (mod r¡) and Xj = v¡,   all ; ^ i

and

h¡ + e¡ = y¡ (mod r¡) and My = y,-,   all j # ¿.

Consequently x¡ + y¡ = u¡ + v¡ (mod r(). Therefore both (i) and (ii) of condition

(C3) of our hypothesis are satisfied. Hence it follows from (C3) that xy = uv.

This completes the proof of (3.8) for the case N(g) = 1.

Assume inductively that (3.8) holds for all g such that JV(g) < p for some fixed

positive integer p. Let g be an element of G such that N(g) = p, say g = g*1 ••■ g*',

and assume without loss of generality that e, > 0. Suppose gx = v and gu = y

Then, by (M3),

KSt'x) = » and h(get<u) = y,

where h = gey---gT-i and N(h) = p — 1. Hence by the induction hypothesis

(3-9) (gf'x)y = (g°t'u)v.

Let x' = g^'x and u' = gc,'u. Then, since N(g,e') = 1, we can apply (3.7), obtaining

(3.10) xu' = ux'.

Also (3.9) can be written in the form

(3.11) x'y = u'v.

Since the elements x,y, u,v,x', and u' ate elements of the commutative semigroup

T, multiplication of equations (3.10) and (3.11) yields

xyx'u' = uvx'u',

which, by the cancellativity of T, implies

xy = uv.
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This proves (3.8). Note that (3.8) can be stated equivalently as

(3.12) x(gu) = (gx)u,   allx,ueX,   all geG.

~NowlettyXt2ut3e T,whetety,t2,t3e T1 andx,u eX. Then by the commutât ivity

of T, together with (3.12),

(gX)tyt2Ut3  = (gX)utyt2t3  = X(gU)tyt2t3  = (gU)tyXt2t3.

Hence (M4) is independent of the generator used.

To show that multiplication in S is well defined, suppose g = g' and xt = yt',

where g,g'eG and xt, yt' e T. Since there is only one expression for g = g' of the

form gf'.-.g^'all that need be shown is that g(xt) = g(yt').

Let zeX. Then (gz)(xt) = (gz)(yt'). But from (M4),

(gz)(xt) = g(zxt) = (gx)(zt) = ((gx)t)z = (g(xt))z.

Similarly

(gz)(yf) = g(zyt') = (gy)(zt') = ((gy)t')z = (g(yt'))z.

Hence (g(xt))z = (g(yt'))z so, by cancellativity in T, g(xt) = g(yt').

To complete the proof of the theorem it remains to establish that multiplication

in S is associative and cancellative. Because of the commutativity of S and the

associativity of G and T, we need to consider only the following two cases to

establish the associativity of S:

if) gtf (geG;t,t'eT);
(ii) gg'/ (g,g'eG;teT).

Case if).   Let t = xty, where xeX and tyeT1. Then

(gt)t' = ((gx)ty)f by (M4)

= (gx)(tyt') by associativity in T1

= g(xi,f') by (M4)

= s(tf).

Case (ii). Let xeX. Let g = g['■ ■ • gf'and g' = g{'• • • gfl be arbitrary elements

of G. Then it is clear from (M3) that

(3.13) (gg')x = y = g(g'x),

where y¡ = x¡ + e¡ +/¡ (mod r¡) for i = 1,•••,t, and y0 = x0. Now let t = xt' be

an arbitrary element of T\B. Then

(SS')t  = ((SS')xY by (M4)

= (g(g'x))f by (3.13)

= g((g'x)t') by Case (i)

= g(g'(xt')) by (M4)

= gig't).
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Hence S is a semigroup.

To verify that S is cancellative the following four cases must be considered

(for g,g'eG;t,t'eT):

(0    gt = g't;
(ii)   gt = t't;
(iii) gt = gt';
(iv) gt = gg'.

Case (i). Suppose gt = g't, and write t = xt¡, where xeX and ty e Tx. Then

(gx)t¡ = (g'x)ty so, by cancellativity in T1, gx = g'x, or equivalently g~lg'x = x.

Let g_1g' = gey---gV- It follows from (M3) that x; = x, + e¡(mod r)for i = l,---,t.

But 0 g e, < r, for each i, so e, = 0 for i = 1, •■•, t. Hence g~lg' = e, the identity

element of G, so g = g'.

Case (ii). Suppose gt = t't. Then t = (g~xt')t which by Lemma 2.1 implies

that g-V is idempotent. But g~V e GT = T, contrary to the assumption that T

contains no idempotent. Hence Case (ii) cannot occur.

Case (iii).    Suppose gt = gt'. Then g~lgt = g~ 1gt' so t = t'.

Case (iv). This case cannot occur since, by (M3) and (M4), gteT while

gg' e G.

Hence S is a cancellative semigroup. It is apparent that G is the maximal subgroup

of S and that Tis an ideal of S. This completes the proof of the theorem.

We may now state a theorem very similar to Theorem 3.5 but without the

restriction that Tis finite-dimensional. It is assumed, however, that Thas a basis

and that G is finitely generated. The proof differs from that of Theorem 3.5 in

only minor details, and will be omitted.

Theorem 3.6. Let T be a commutative cancellative semigroup without

idempotent and with basis B, and let G be a finitely generated group. Then

there exists a cancellative semigroup S = GUT if and only if the following

three conditions are satisfied:

(Cl) G is commutative;

(C2) |G|g|B|;
(C3) Let G be the direct product of t cyclic groups of orders r¡,---,r, iany

number of which may be infinite), and let X be the set of all vectors (x0,x,,--.,x,)

with integral components satisfying

0 g x, < r,       if r, is finite,

—  oo < X; < oo    if r, is infinite,

x0eA,

where A is an indexing set of cardinality such that |x| = |ß|. Then there is a

one-to-one mapping x->(x0,.-.,x() of B onto X such that xy = uv is a relation

in T whenever there exists an integer i, 1 g i g t, such that
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f x¡ + y¡ = u¡ + tf¡ (mod r,),        if r¡ is finite,

(i) \
( x¡ + y i = «¡ 4- v¡, if r¡ is infinite;

(ii) x,- = ü^ and yj = Ujfor all j = 0,1, ••-, t; j j= i.

4. Problems (II) and (III): the commutative case. Using a somewhat different

approach we obtain necessary and sufficient conditions for the existence of a

cancellative semigroup S = G U T given a commutative cancellative semigroup T

without idempotent and a finitely generated commutative group G. The theorems

apply to a larger class of cancellative semigroups Tthan do those of the preceding

section since it is not assumed that Thas a basis.

Lemma 4.1. Let T be a commutative cancellative semigroup without idem-

potent and let Q be its group of quotients. Let G be a group. If there exists a

cancellative semigroup S = G\J Tthen S is imbeddable in Q. Conversely if T is

identified with its natural isomorph in Q and if G is any subgroup of Q such

that GTÇ T then there exists a cancellative semigroup S = G UT.

Proof. Recall that Q is the set of all pairs (a, b) of elements a and b of T, with

equality defined by

(flj,b¡) = (a2,b2) if and only if ayb2 = a2by.

Multiplication in Q is componentwise and (a, a) is the identity element of Q for

every element a of T. If t is an arbitrary but fixed element of Tthen the mapping

cb : x -» (xt, t),       all xeT,

is called the natural isomorphism of Tinto Q; clearly cb is independent of the

choice of / in T.

Suppose there exists a cancellative semigroup S = G U T. Define the mapping

a of S into Q by

(4.1) a:s-»(sa,a),       all seS,

where a is an arbitrary but fixed element of T. Then by (4.1) and the definitions

of multiplication and equality in Q,

(syd)(s2cc) = (sya,a)(s2a,a) = (sys2a2,a2) = (s,s2a,a) = (syS2)a

for all Sy,s2eS, so a is a homomorphism. Furthermore if s¡a = s2ot, i.e., if

(sta,a) = (s2a,a), then Sya2 = s2a2 so s, = s2. Thus a is an isomorphism.

The converse is immediate if one observes that GT çT implies G C\T= 0.

Indeed if ge G O T then e = g~1geGT s T, which contradicts the assumption

that T contains no idempotent. Hence the subset S = G U Tof Q is the required

cancellative semigroup. This completes the proof of the lemma.
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Lemma 4.2. Let The a commutative cancellative semigroup without idempo-

tent. Let G be the finite cyclic group of order m. Then there exists a cancellative

semigroup S = G UT if and only if there exists a pair of elements a,b in T

such that

(i)   m is the least positive integer for which am= bm, and

(ii) aT=bT.

Proof. Suppose there exists a cancellative semigroup S = G U T, which, by

Lemma 2.4, is necessarily commutative. Let a be an arbitrary element of T and

let b = ga, where g is a generator of the cyclic group G. Then

b   = iga)   = g a   =ea   = a ,

where e is the identity element of G. Furthermore if a"= b" for some positive

integer n then a" = b" = g"a". Hence g" = e so m divides «, proving (i).

Let teT. Then at = agg'h = bg~ltebT, soaTç bT. Also bt = agíeeiTso

bTE aT. This proves (ii).

Conversely suppose there exists a pair of elements a, b in T which satisfy (i)

and (ii). Consider the element ia,b) of the group of quotients Q of T. Since

(a, b)" = (an, b") is the identity element of Q if and only if a" = b", it follows from

(i) that (a, b) has order wi in Q. Let G' denote the cyclic subgroup of Q generated

by ia,b) and let 7" be the natural isomorph of Tin Q. By Lemma 4.1 the proof

will be complete if we show that G'T' ç T'.

Suppose then that (zt,t) is an arbitrary element of T', where z,teT. By (ii)

there exists an element w in Tsuch that az = bw. Hence (a,b)(zt,r) = iazt,bt)

= ibwt,bt)eT', so ia,b)T' E T'. By induction ia,b)"T' £ T for every positive

integer n, so G'T' S T'.

We next prove the infinite analogue of Lemma 4.2.

LiiMMA 4.3. Let Tbe a commutative cancellative semigroup without idempo-

tent and let G be the infinite cyclic group. Then there exists a cancellative

semigroup S = GUT if and only if there exists a pair of elements a,b in T

such that

ii)   a" # b" for every positive integer n, and

(ii) aT= bT.

Proof. Suppose there exists a (necessarily commutative) cancellative semigroup

S = G U T. Let a be an arbitrary element of T and let b = ga, where g is a gener-

ator of G. If a" = b" for some positive integer n then a" = b" = g"a" so g" = e,

a contradiction. This proves (i), while (ii) is proved as in Lemma 4.2.

Conversely suppose T contains elements a, b which satisfy (i) and (ii). Let Q be

the group of quotients of Tand consider the element (a, b) of Q. By (i), (a, b) has

infinite order in Q. Let G' be the cyclic subgroup of Q generated by (a, b) and let T
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be the natural isomorph of Tin Q. Again we need only show that GT' Ç T, and

this follows just as in the proof of Lemma 4.2.

By applying the two preceding lemmas we can now give a solution to Problem

(II) in the commutative case.

Theorem 4.4. Let T be a commutative cancellative semigroup without

idempotent. Then a necessary and sufficent condition for the existence of a

cancellative semigroup S = GUT, where G is nontrivial, is that there exist a

pair of distinct elements x,y in T such that xT=yT.

Proof. Suppose that S = G U T exists for some nontrivial group G. Let

heG,hj= e, and let H be the cyclic subgroup of G generated by h. Let S'= HKJT

be the subsemigroup of S defined by the set-theoretic union of H and T. We note

that S' is cancellative, H is the maximal subgroup of S', and T=S'\H is the

maximal proper ideal of S'.

If H is finite it follows from Lemma 4.2 that there exist distinct elements a and b

of T such that aT= bT. The same conclusion follows from Lemma 4.3 if H is

infinite.

Conversely if xT= yTfot distinct elements x, y of Tthen condition (ii) of Lem-

mas 4.2 and 4.3 is valid. Since X # y, either x"=í y" for every positive integer n,

in which case there exists a cancellative semigroup S = G U T with G the infinite

cyclic group, or there exists a least positive integer m, m > 1, such that

xm = ym, in which case there exists a cancellative semigroup S = G u T with G

cyclic of order m.

We next give a solution to the commutative case of Problem (III).

Theorem 4.5. Let T be a commutative cancellative semigroup without

idempotent and let G be a commutative group. Then there exists a cancellative

semigroup S = GUT if and only if there is a homomorphism a of G into Q, the

group of quotients of T, such that for geG,

ga = (a, b)

implies

(i) a"= b" (n a positive integer) if and only if the order of g is finite and

divides n, and

(ii) aT= bT.

Proof. Suppose there exists a cancellative semigroup S = G U T. Let b be an

arbitrary but fixed element of T, and define the mapping a of G into Q by

ct:g^(gb,b),   all geG.

Then (g,a) (g2a) = (g^, b) (g2b, b) = (gyg2b2, b2) = (gig2b, b) = (g,g2)a, so a is a

homomorphism. Furthermore (gb)n = b" if and only if g"b" = b" if and only if

g" = e (the identity element of G) if and only if the order of g is finite and divides n.
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Moreover, for any t in T, (gb)t = (bg)t = b(gt)ebT and bt = (bg)(g~1t)egbT.

Hence (i) and (ii) are satisfied.

Conversely suppose that there exists a homomorphism a of G into Q which

satisfies (i) and (ii). Suppose gy,g2eG, with g,a = (a1,b1) and g2a = (a2,bf).

If ga = (a, a), the identity element of Q, then, by (i), g= e. Thus a is an isomorphism.

By Lemma 4.1 the proof will be complete if we establish that G'T' E T', where

G' = Ga and where T' is the natural isomorph of Tin Q. Let (r,x,x) be an arbitrary

element of T and let (a,b) be an arbitrary element of G'. By (ii) there exists an

element t2 in T such that

(4.2) aty = bt2.

Thus, by (4.2),

(fl,b)(r1x,x) = (atyX, bx) = (br2x, ox) = (t2bx,bx),

which is in T. Hence G'T' £ T, proving the theorem.

5. Noncommutative cancellative semigroups. We recall from Lemma 3.3 that

if Tis a finite-dimensional commutative cancellative semigroup without idempotent

and G is a group then a necessary condition for the existence of a cancellative

semigroup S = G U T is that | G | divide the dimension of T. If T is not com-

mutative this condition is no longer necessary for the existence of S = G U T;

however it is still necessary that | G | not exceed the dimension of T.

Theorem 5.1. Let m and « be positive integers. Then there exists a cancellative

semigroup S = G U T, where Thas dimension m and G has order n, if and only

if m = n.

Proof. Let S = G U T be a cancellative semigroup such that G has order n

and Thas dimension m, and let B be a basis for Tsuch that |ß| = m. To show

that m = n it is sufficient to show that Gb £ B for some b e B since, by cancel-

lativity, | Go | = |G|.

Suppose by way of contradiction that this is not the case for any b in B, i.e.,

(5.1) Gb+=B,   all beB.

Let b, be an arbitrary but fixed element of B. By (5.1) there exists geG such that

gby = WyUy, where ux eß and w, 6 T. Again by (5.1), there exists gyeG such that

gyUy$B. Hence g¡Uy = w2u2, where w'2eT and u2eB. Then gb, = w.w,

= Wig^'g.w. = w¡g¡ lw'2u2. Setting wig'i'xw2 = w2, we have

gby = w.m, =w2u2,

where w, is a left divisor of w2 in T. Repetition of this process yields

(5.2) gby =w,m1 = w2u2 = - =wmum,
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where ui e B and w¡ e T for ¿ = 1,2, • ■ •, m. Furthermore if 1 = i < j = m then w¡

is a left divisor of Wj in T.

If by = uk for some integer k, l = k = m, then gby = wkuk = n^bj. By can-

cellativity in S it follows that g = wkeT, contradicting that G (~\T= 0. Hence

by t¿ u¡ for i = 1,2,...,m. Therefore, since |BJ = m, there must exist integers r

and s, with 1 ^ r < s ^ m, such that ur = ws. It then follows from (5.2) that wr = w^

Since r < s we also have that ws = wrw for some w in T. Hence ws = wsw, which by

Lemma 2.1 implies that w is an identity element for T. This contradicts the as-

sumption that T contains no idempotent, so necessarily Gb ç B for some b in B.

It follows that m — n.

To prove the converse we will sketch the construction, corresponding to an

arbitrary pair of positive integers m and n such that m = n, of a cancellative

semigroup S = G U T where G is the cyclic group of order n and T is a cancel-

lative semigroup of dimension m without idempotent.

Let m,n be fixed integers with m — n > 0. Let a be the permutation (l,2,---,n)

and, for each positive integer k, define permutations ßk and p\ by

ßk = (n + k2 - k + 1, n + k2 -k + 2,---,n + k2),

and

ßk = (n + k2 + l, n + k2 + 2,---,n + k2 + k).

These expressions for ßk and /Jt, in which the first integer which appears is the

smallest integer in that cycle, will be called canonical forms for ßk and p\. Assuming

ßk = (by,---,bk) and ßk = (by,---,bk) to be in canonical form, define, for each

positive integer k,

y¡¡= (ci>c2>'">c2*)>

where c2i-y = b¡ and c2i = bk+2_¡ (i = !,■■•,k), with each subscript of the

components of yk reduced to its least positive residue modulo k. Define

(5.3) ak = a* (Û ß&)       (k = 0,1,-,n - 1)

and, for each positive integer k,

(     (k - l)k (k - l)fc k(k + 1) \

Finally define

** = (   A      ̂ i)    ill   0     (k = n,n + l,-,m-l).

Let T be the multiplicative semigroup generated by the set {o~0,o~y,-",cTm_y}.

Then it can be verified that
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(5.4) o-Qerpo = er,       if n g i g m — 1 ;

(5.5) T is a cancellative semigroup without idempotent and of dimension m.

Thus if G denotes the cyclic group of order « generated by a, it follows from (5.3)

that

aa, = a p. = Oj       for 0 g i g « — 1,

where j is the least positive residue of i + 1 modulo «. Furthermore, by (5.4),

aer, = OyO,er0   and   rj¡a = er0ertOy       for n^i<m.

Hence Tis an ideal of S = G U T. Clearly G is the maximal subgroup of S, and S,

being a subsemigroup of a group, is cancellative. Furthermore Thas dimension m

and G has order «, so the proof of the theorem is complete.
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