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INTERSECTIONS OF COMBINATORIAL BALLS AND OF
EUCLIDEAN SPACES

BY

L. C. GLASER(i)

1. Introduction. Poenaru [5] and Mazur [4] gave the first examples of

contractible compact combinatorial 4-manifolds with boundary which were not

topological 4-cells, but whose products with the unit interval were combinatorial

5-cells. Curtis [1] and Glaser [3] gave similar examples for n = 5. In the latter

result the product of the pseudo «-cell M * with an interval was shown to be a

combinatorial (n + l)-cell rather than just merely topological. In addition, it was

shown in [3], that for « = 5, M" was a compact combinatorial «-manifold with

boundary not topologically I " but could be expressed as the union of two com-

binatorial «-cells whose intersection is also a combinatorial n-cell. Unfortunately

the techniques used in [3] gave no hope of lowering the result to n = 4.

The purpose of this paper is to give another example of a pseudo 4-cell W with

the property that W x I x Is, but in addition W also can be expressed as the

union of two combinatorial 4-cells whose intersection is also a combinatorial

4-cell. This also gives an example of two Euclidean 4-spaces intersecting in an

Euclidean 4-space so that the union is not topologically £4.

2. Definitions. We will use the standard terminology /", £", and S" for the

unit n-cell, Euclidean »-space and the n- sphere respectively. If M is an n-manifold,

then int M and BdM will denote the interior and boundary of M, respectively.

All manifolds and all mappings or homeomorphisms will be considered in the

combinatorial sense. Topological equivalence will be denoted by =, and we will

use « to denote combinatorial equivalence. We will use technique of collapsing

polyhedra, denoted by \, and the notion of regular neighborhoods as in Whitehead

[7] or Zeeman [8].

3. Construction. In this section we will give an example of a certain cont-

ractible 2-complex K and an embedding of K in a combinatorial 4-manifold W

with boundary so that 7r,(Bd W) ^ 1 and Wean be considered as a regular neigh-

borhood of K. IT will be the pseudo 4-cell promised in the introduction.

K is obtained by attaching two disks along a figure eight. Let us consider the

figure eight as four line segments a, ß, y and ô and three vertices a, fe, and c as

indicated in Figure 1. The two disks are attached by the formula ßyy~l6~l5oL
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and ôolol~iß~lßy. The resulting 2-complex K is also indicated in Figure 1. We

observe that K i§ a contractible noncollapsible 2-complex by noting that we can

easily get X as a deformation retract of a 3-cell and that K has no free edges.

Let T be a solid two-holed 3-dimensional torus in E3. Let us consider two

simple closed curves TL and T2 embedded in int(T x {1}) cz T x [0,1] as

indicated in Figure 2. fKwill be formed by attaching two 2-handles to the boundary

of T x [0,1] along the curves Ty and T2.

Figure 1

More precisely, let; be an embedding of Bd/2  x I2 -> int(T x {1}) such tha

j (Bd I2 x 0) = Ty and k an embedding of Bd J2xi2^ int(T x {1}) - j(Bd/2 x I2)

such that k(BdI2 x 0) = T2, where Oeint/2. Also let us choose j and k, so that

in forming the tubular neighborhoods ;'(Bd/2 x I2) and k(BdI2 x I2) we do not

have any twisting as we go around each of Ty and T2 respectively.

Define W as I2 x ifu T x [0,1] \jkI2 x I2.

Lemma 1. W can be considered as a regular neighborhood of a combi-

natorial embedding of K in W.

Proof. Divide T x {1} into seven 3-cells By, B2, ••-, B1 as indicated in Figure 2.

Let us denote the figure eight forming the core of T x {■£} by a, ß, y and «5 as we

did in defining K. This is also indicated in Figure 2. Let us triangulate

Bd(T x [0,1]) « 2T so that Tu r2,;(Bd/2 x I2), k(BdI2 x I2), By, B2, ■-,B1

ate subcomplexes of our triangulation. We also triangulate each copy of I2 x I2 so

that./_10'(Bdf2 x I2)) and k'^kÇBd I2 x I2)) are subcomplexes of their re-

spective 4-cells. Next we want to extend the triangulation of Bd (T x [0,1])
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which we now will consider as 2Tto T x [0,1] so that the figure eight a ß y ô is a

subcomplex of T x [0,1], K c T x [0,1] and so that W\K.

In considering Bd (T x [0,1]) as 2Tlet B[, B'2, ■■-, B'7 denote the corresponding

3-cells of the other copy of T. Now we triangulate T x [0,1] so that the cones

aiBy U B'f), fe(B4 U B'f) and c(B7 U B7) are subcomplexes of T x [0,1]. Let us

denote these cones as C,, C4 and C7 respectively. Each of B2 U B'2, B3 U B'3,

B5 U B's and B6 U B'6 can be considered as a copy of [0,1] x S2. For notational

purposes we will denote this as [0,1]¡ x S2, i = 2,3,5,6. Let f2 be a simplicial

homeomorphism taking [0,1]2 onto y; similarly,/3: [0,1]3 -> «5, f5: [0,1]5 -► ß

By B2 B4 B5 R,

Figure 2

and f6: [0,1]6 -> a. Let g¡ be the simplicial map taking [0,I], x S2 onto the

appropriate segment by taking [0,1]; x S2 -* [0,1]¡ and then following this by/¡.

Let M, denote the mapping cylinders of g„ i = 2,3,5,6. Now map each

[0,1]¡ x S2 é M, homeomorphically onto [0,1]¡ x S2 c 2T. Next extend the

map so that a({0}2 x S2),a({0}3 x S2),fe({l}2 x S2), fe({l}3 x S2),fe({0}5 x S2),
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b({0}6 x S2), c({l}j x S2) and c({l}6 x S2) agrees with the corresponding

complexes in the cones constructed above. Finally extend each homeomorphism

so that M¡ maps homeomorphically into Cl (T x [0,1] — Cy — C4 — C7) in a

natural manner. This now gives our desired triangulation of T x [0,1].

Let Fy be the submapping cylinder of M, gotten by restricting g¡ to

(Ty U T2) n ([0,1]¡ x S2), i = 2,3,5,6 and L¡ the subcone of C¡ gotten as the

cone over the appropriate vertex on (B¡ U B'¡) r\ (Tt u T2), i = 1,4,7. The embed-

ding of K in Wis gotten by considering the subcomplex (I2 x 0)jULy U F2<J

F3 U L4 U P5 U F6 UL7 (Jk(I2 x 0). Since C¡\L¡, i = 1,4,7, Mt\F¡,

i = 2,3,5,6 and each I2 x I2 \I2 x 0 and the collapses are such that they match

up on the corresponding parts, we get that W\/C.

Theorem 1.   ny(Bd W) # 1.

Proof. rtt(Bd W) can be obtained by looking at the fundamental group of

E3 — (Ky + K2 + Ty + T2) as indicated in Figure 3 and adding in the relations

corresponding to curves slightly above each of K¡, K2, Tt and T2 respectively.

Figure 3

The resulting group has the following presentation:

generators: a,b,x,y, and z

relations:

I. (äxäyäyaxa) (xäxäyayaxax) (äxäyayaxa)ä =  1,

IL x(x äx äy a y ax a x)äz a(x äx äy ây axax)  = 1,

III. y\b y z b z yb)y(b y zb z yb y z b z yb)  = 1,
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IV.  y(byzbzybyzbzyb)(bäyaxbz)(byzbzybyzbzyb) = 1,

T\\ x(â y a) (ä x à y à y a x a)x à = 1,

T2 :  z y b y(b y z b z y b) = 1,

Ky: (x äx ây a y a x a x) à b =  1,

K2: à(b yzbzybyzbzy b)b =  1.

We note that relations I-IV give Ky(E3 - (Ty + T2 + Ky + Kf)), adding in

relations Ky and K2 give 7r,(2T— (rt + r2)), and adding in relations Y y and T2

gives 7t,(Bd W).

Now T, gives that äxäyäyaxa = â y a x a x. This relation applied to I

gives 1 = 1. By X, we have xäxäyayaxax = ha. Applying this to II gives

that xfezfe = l or z = fexb. Using T2 and K2 in III we get y(z y fe y)y a b = 1.

Using K2 and the fact that z = b x b in IV we get 1 = 1.

Using r2, zyb y = by zb z yb in K2 gives that â(y fe y z)y z b z y = 1. Next

applying the new relation III y b y z = y a b y and z = b x b to the preceding

relation for K2 we then get xb xb y = aya.

Writing r2 as zyby = byzbzyb, replacing z by 5 x fe and using the fact

that x b x b y = â y a we get that xb yb y = y b â y ab.

In considering III, z yb y = y b äy, ifwe replacez by fex fe andx by by bx äy a,

we get x o" y a fe y = y b äy.

Finally, using T,, äxäyäy axa = äy a x axinKy,gi\esthatx2äx âyax ä

= fe.
Our group now has the following presentation:

I. 1 = 1,

IL z = b x b,

III. xäyaby = ybäy,

IV. 1 = 1,

Fyi äxäyäyaxa = äyaxax,

T2: xbyby = ybäyab,

Ky'. x2äxäyaxä= b,

K2: x b x b y = à y a.

If we replace the first x in K2 by using relation III, and replace the x by using T2

we get that ab yb y b ä y ab y = 1. Using the fact that the x from III equals the

x from T2, that is, that äy ab y = b yb yb â, the preceding relation just becomes

1 - 1.
Now using III, x = ä y a b y2 a b y we get :

III = r2:öyafey = fe y b y b â,
Ky : [à y a(b y2 a b y)]2 ä (y b à y2 b)2 ä y = b,

Ty : ä(y b ä y2 b) â(b y2 a b y) = (b y2 a b y) a (y b ä y2 b) ä y.

Here we have used in Ky and F y the fact that III also gives äy a = xyb äy2 b.
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Setting ä y = ß and a = y b ä y2 b we get:

Ty :  äaää = 5iaaß,

Ky: (äßa)2ä(ot2)ß = b.

Also x = äß ä.

Using Ty to solve for ß and applying this to Xj we have b = dot a â. a a. à a.. We

now have b and ß in terms of a and a; and hence y in terms of a and a also. Thus we

now have only two relations to consider. Namely, a = y b à y2 b and à y a b y

= b y b y b â. Writing y and b in terms of a and a we get the following group

presentation :

relations

generators:   a, a,

ota a àa ää. a a. ätxa a = äotaotaoiäotaoiäoia

-   -        --      2 -
= aaaaaaaaaaaccaaaaaota.

Now if we add the relation that â a = à oc, the first equality becomes

a5 = a5 and the second à a3 à2 ä = a â3 a2 ä3 a2 a. Adding the relation

a5 = a5 = (a2a2)2 = 1, we get the group

{a, a | öia = dot, a5 = a5 = (a2a2)2 = 1}.

Replacing a2 by u and a2 by r we get

{u,t>|t;2uV = u2,u5 = t;5 = (ui;)2=l}.

This group can be shown to have a nontrivial representation in P5 by letting

u -» (12345) and v -* (12354). If we desire to check that this does indeed give a

nontrivial representation of the original group, we have the following :

a -> (15243),   )3->(254),   a -► (14253),   b -> (12543),

x-* (14352),   y -► (12453)   and   z -► (14523).

4. Main results. In this section we will discuss some additional properties of

the pseudo 4-cell W and show how the particular chosen 2-complex K leads to

the desired results.

Lemma 2. Suppose K is a contractible -subcomplex in the interior of a

combinatorial 4-manifold M and W is a regular neighborhood of K in M. If K

can be combinatorially embedded in E3, then W can be embedded in E4 and

W x I x I5.

Proof. By [1, Proposition 2] W x I2 = I6. Since Bd (W x 72) is homeomorphic

to S5 triangulated as a combinatorial 5-manifold and 2(W x I) xBd(W x 72),

W x I can be combinatorially embedded in a combinatorial triangulation of
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F5. Let K' be a combinatorial embedding of K in £3c E5. Since the regular

neighborhood of K' in £3 is necessarily a combinatorial 3-cell, the regular neigh-

borhood N of K' in Es is a combinatorial 5-ceIl. By the corollary of [6], this

implies that W x I x N x I5. The fact that 2W x Bd(W x I) x S4 gives that

W can be combinatorially embedded in £4.

Theorem 2. There exists a pseudo 4-cell W # Ia such that W <= £4,

IK x i « J5 and W x X U 7, wfeere Iä rxlny xl4.

Proof. 17 is the pseudo 4-cell of §3. Since ^(Bd IT) # 1 we have W j= Ia.

Since W \ K and K can be embedded in £3, the fact that W ezz E 4and W x I x I5

follows from Lemma 2.

Let A be the middle polyhedral arc going from the vertex fe to the vertex c in

the top disk used in the construction of K. Similarly, let B be the middle poly-

hedral arc going from the vertex a to the vertex fe in thebottom disk. If we separate

K along the polyhedral arc BUiwe end up with two collapsible complexes which

we will denote as Ky and K2. Hence K = Ky U K2, Ky n K2 = B U A and each

of Ky, K2, and Ky C\K2 collapses to a point. Let W be a regular neighborhood

of K in Wunder the secondary centric subdivision of W. Let X' be the regular

neighborhood of Ky and 7' the regular neighborhood of K2 under this subdi-

vision. Now X' n 7' is combinatorially equivalent to the regular neighborhood

of Ky n K2 = B U A. Since X'\ Kt\0, Y'\K2\0, and X'nY'\

B U A \ 0 we have X' x Y' x X' n Y' x I* by the results of Whitehead [7].

Again using [7] we have that W x W and hence the conclusion to the theorem.

Corollary 1.For«^4 there exist pseudo n-cells W ^ /" such that

W x I x I"+1

and WxX"(J Y", where Xn x Y" x X" n 7" « /".

Proof.   The result for « = 4 is just Theorem 2 and for « = 5 follows from [3].

Corollary 2. For « ^ 3 there exists open contractible combinatorial n-

manifolds 0" # £" such that OnxU"\JV", where U" x V x U" DV" x E".

Proof. The result for n ^ 5 follows from [3]. For « = 4 we use U x int X,

Farint 7 and O4 x int Wof Theorem 2. We have that 04# E\inceity(BdW) # 1.

That is, if 04= £4 then simple closed curves near "infinity" could be shrunk near

"infinity", but the collar of Bd If is not simply connected.

For « = 3, the result has been known for some time, but apparently is not too

well known. Hence for completeness, the example will be included here. Consider

the double Fox-Artin arc A in S3 intersecting the 2-sphere S2 in the point p as

indicated in Figure 4. Taking U' and V as the two components of S3 — S2, one

can easily express each of U' — A and V — A as a monotone increasing sequence

of open 3-cells. Let C be a small double collar of S2 so that C n A is an open
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straight line segment and let C = C — A. Then taking U = (V — A) U C and

V=(V -A) UCwehaveS3-/l = U U Fwhere U « F«£3and(7 nF«£3

since t/ O K x C » {S2 - p} x ( - 1,1). We get that S3 - A J= E3 since

S3 — (A + B) is not simply connected, where B is the simple closed curve in

dicated in Figure 4. That is, if S3 — A = E3, then simple closed curve near

"infinity" (here this means curves in an arbitrarily small neighborhood of A in

S3) could be shrunk missing B and this will not always be possible.

Figure 4

Clearly in the construction of W we could have altered slightly our embeddings

of Ty and T2 in int T, say link Ty or T2 with itself differently, add local knots,

or link Ty with r2, and still get a contractible 4-manifold with boundary which

also collapses to X. Also, it is interesting to note that in some sense the given

embeddings are the simplest possible in order to get an example where ny(BdW)

± 1. In fact the crucial part of the construction is the linking of Ty over a and the

linking of T2 over c. Moreover, our next result says that as long as lk(a, X) and

lk(c, X) ate "nice", no matter how badly Ty and T2 are locally knotted or linked

together in the middle section of T, if we repeat the same construction the resulting

W is indeed x Ia.

In the following we apply some of the techniques of [8]. It is easy to see that

each of lk(a, X) and lk(c, X) is merely two circles, Cy and C2 say, joined by an

arc A = xy (refer to Figure 2). We will say that the embedding of X in the interior

of a combinatorial 4-manifold M* is nice at a if lk(a, X) in lk(a, M4) x S3 is

such that there exist a 2-sphere S2 in lk(a, M4) separating Ct and C2 and meeting A

in a single point z e int A. Similarly for the vertex c. We note in the given cons-

truction that we have embedded X in W so that the circles corresponding to Cy

and C2 in each of lk(a, X) and lk(c, X) are linked in lk(a, W) and lk(c, W) re-

spectively.

Theorem 3. Let X c int M* and suppose M* \ X. // the embedding of X

is nice at a and c, then M* x I*.

Proof. Let us write lk(a, X) = Cy U A U C2 and lk(c, X) = C{ U A' U C2.

There exists a 2-dimensional polyhedron P such that:
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(i)    Cy cz P cz lk(a, M4);

(ii)   P\x;

(iii) P C\A = x;

(iv) PnC2=0.

Such a P is not difficult to get and the actual construction of such a polyhedron

is given in the proof of Theorem 8 of [8]. Similarly there exists a P' such that:

(i)    C'yCzP' clk(c,M4);

(ii)   P' \x';

(iii) P' nA' = x';

(iv) P' nc2 = 0.

Now C¡ intersects either y or ô in a single point x and C\ intersects one of a or ß

in x'. Recall we used ot,ß,y and ô in defining X (refer back to Figure 1). For notation-

al purposes let us suppose that Cy n y i=-0 and C'y n a ^0. Now we have

the following: M4 \K / X U aP / X \J aP U cP'. Since P \ x and P' \ x'

we have aP\ax UP and cP' \ ex' u P'. Therefore,

X U aP U cP' \ C1(X - aCy - cC[) U P U P'

which we will denote by X'.

Let us consider the top half of X'. ex' is now a free edge and hence we can

collapse the right half and back part of the top half to the remainder U P. Then

we can collapse P \ x and the remaining complex of the top half to <5. Similarly,

in considering the bottom half of X', we have that ax is a free edge on this half

and hence we can collapse this half to ß. Hence we have X' \ <5 U ß \b. We now

have obtained a sequence of elementary collapses and expansions going from M4

to b; hence by Lemma 3 of [8], M4 x I4.

Corollary 3. // X c int M" (n = 5) and M" \ X, then M" x I".

Proof. Since n — 5 we can get Ct to bound a disk P in lk(a, M") and Cy to

bound a disk P' in lk(c, M") with the same properties as the P and P' of Theorem 3.

We can also prove Corollary 3 by making use of [6]. That is M" x 7 = J"+1

and hence M" can be embedded in a combinatorial triangulation of E". Since X

can be embedded in E3, say as X', and n ^ 5, the corollary of [6] says that the

regular neighborhoods of X' and X in E" are combinatorially equivalent and

hence M" x I".
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