INTERSECTIONS OF COMBINATORIAL BALLS AND OF EUCLIDEAN SPACES

BY
L. C. GLASER(1)

1. Introduction. Poenaru [5] and Mazur [4] gave the first examples of contractible compact combinatorial 4-manifolds with boundary which were not topological 4-cells, but whose products with the unit interval were combinatorial 5 -cells. Curtis [1] and Glaser [3] gave similar examples for $n \geqq 5$. In the latter result the product of the pseudo n-cell M^{n} with an interval was shown to be a combinatorial $(n+1)$-cell rather than just merely topological. In addition, it was shown in [3], that for $n \geqq 5, M^{n}$ was a compact combinatorial n-manifold with boundary not topologically I^{n}, but could be expressed as the union of two combinatorial n-cells whose intersection is also a combinatorial n-cell. Unfortunately the techniques used in [3] gave no hope of lowering the result to $n=4$.

The purpose of this paper is to give another example of a pseudo 4-cell W with the property that $W \times I \approx I^{5}$, but in addition W also can be expressed as the union of two combinatorial 4-cells whose intersection is also a combinatorial 4-cell. This also gives an example of two Euclidean 4 -spaces intersecting in an Euclidean 4-space so that the union is not topologically E^{4}.
2. Definitions. We will use the standard terminology I^{n}, E^{n}, and S^{n} for the unit n-cell, Euclidean n-space and the n-sphere respectively. If M is an n-manifold, then int M and $\operatorname{Bd} M$ will denote the interior and boundary of M, respectively. All manifolds and all mappings or homeomorphisms will be considered in the combinatorial sense. Topological equivalence will be denoted by $=$, and we will use \approx to denote combinatorial equivalence. We will use technique of collapsing polyhedra, denoted by \searrow, and the notion of regular neighborhoods as in Whitehead [7] or Zeeman [8].
3. Construction. In this section we will give an example of a certain contractible 2-complex K and an embedding of K in a combinatorial 4-manifold W with boundary so that $\pi_{1}(\mathrm{Bd} W) \neq 1$ and W can be considered as a regular neighborhood of $K . W$ will be the pseudo 4-cell promised in the introduction.
K is obtained by attaching two disks along a figure eight. Let us consider the figure eight as four line segments α, β, γ and δ and three vertices a, b, and c as indicated in Figure 1. The two disks are attached by the formula $\beta \gamma \gamma^{-1} \delta^{-1} \delta \alpha$
(1) Work on this paper was supported by NSF Contract GP-4055.
and $\delta \alpha \alpha^{-1} \beta^{-1} \beta \gamma$. The resulting 2 -complex K is also indicated in Figure 1. We observe that K iss a contractible noncollapsible 2 -complex by noting that we can easily get K as a deformation retract of a 3 -cell and that K has no free edges.

Let T be a solid two-holed 3-dimensional torus in E^{3}. Let us consider two simple closed curves Γ_{1} and Γ_{2} embedded in $\operatorname{int}(T \times\{1\}) \subset T \times[0,1]$ as indicated in Figure 2. W will be formed by attaching two 2 -handles to the boundary of $T \times[0,1]$ along the curves Γ_{1} and Γ_{2}.

Figure 1
More precisely, let j be an embedding of Bd $I^{2} \times I^{2} \rightarrow \operatorname{int}(T \times\{1\})$ such tha $j\left(\operatorname{Bd} I^{2} \times 0\right)=\Gamma_{1}$ and k an embedding of $\operatorname{Bd} I^{2} \times I^{2} \rightarrow \operatorname{int}(T \times\{1\})-j\left(\mathrm{Bd} I^{2} \times I^{2}\right)$ such that $k\left(\operatorname{Bd} I^{2} \times 0\right)=\Gamma_{2}$, where $0 \in \operatorname{int} I^{2}$. Also let us choose j and k, so that in forming the tubular neighborhoods $j\left(\mathrm{Bd} I^{2} \times I^{2}\right)$ and $k\left(\mathrm{Bd} I^{2} \times I^{2}\right)$ we do not have any twisting as we go around each of Γ_{1} and Γ_{2} respectively.

Define W as $I^{2} \times I_{j}^{2} \cup T \times[0,1] \cup_{k} I^{2} \times I^{2}$.
Lemma 1. W can be considered as a regular neighborhood of a combinatorial embedding of K in W.

Proof. Divide $T \times\{1\}$ into seven 3-cells $B_{1}, B_{2}, \cdots, B_{7}$ as indicated in Figure 2. Let us denote the figure eight forming the core of $T \times\left\{\frac{1}{2}\right\}$ by α, β, γ and δ as we did in defining K. This is also indicated in Figure 2. Let us triangulate $\operatorname{Bd}(T \times[0,1]) \approx 2 T$ so that $\Gamma_{1}, \Gamma_{2}, j\left(\operatorname{Bd} I^{2} \times I^{2}\right), k\left(\operatorname{Bd} I^{2} \times I^{2}\right), B_{1}, B_{2}, \cdots, B_{7}$ are subcomplexes of our triangulation. We also triangulate each copy of $I^{2} \times I^{2}$ so that $j^{-1}\left(j\left(\operatorname{Bd} I^{2} \times I^{2}\right)\right)$ and $k^{-1}\left(k\left(\operatorname{Bd} I^{2} \times I^{2}\right)\right)$ are subcomplexes of their respective 4 -cells. Next we want to extend the triangulation of $\operatorname{Bd}(T \times[0,1])$
which we now will consider as $2 T$ to $T \times[0,1]$ so that the figure eight $\alpha \beta \gamma \delta$ is a subcomplex of $T \times[0,1], K \subset T \times[0,1]$ and so that $W \searrow K$.

In considering $\operatorname{Bd}(T \times[0,1])$ as $2 T$ let $B_{1}^{\prime}, B_{2}^{\prime}, \cdots, B_{7}^{\prime}$ denote the corresponding 3-cells of the other copy of T. Now we triangulate $T \times[0,1]$ so that the cones $a\left(B_{1} \cup B_{1}^{\prime}\right), b\left(B_{4} \cup B_{4}^{\prime}\right)$ and $c\left(B_{7} \cup B_{7}\right)$ are subcomplexes of $T \times[0,1]$. Let us denote these cones as C_{1}, C_{4} and C_{7}^{\prime} respectively. Each of $B_{2} \cup B_{2}^{\prime}, B_{3} \cup B_{3}^{\prime}$, $B_{5} \cup B_{5}^{\prime}$ and $B_{6} \cup B_{6}^{\prime}$ can be considered as a copy of $[0,1] \times S^{2}$. For notational purposes we will denote this as $[0,1]_{i} \times S^{2}, i=2,3,5,6$. Let f_{2} be a simplicial homeomorphism taking $[0,1]_{2}$ onto $\gamma ;$ similarly, $f_{3}:[0,1]_{3} \rightarrow \delta, f_{5}:[0,1]_{5} \rightarrow \beta$

Figure 2
and $f_{6}:[0,1]_{6} \rightarrow \alpha$. Let g_{i} be the simplicial map taking $[0,1]_{i} \times S^{2}$ onto the appropriate segment by taking $[0,1]_{i} \times S^{2} \rightarrow[0,1]_{i}$ and then following this by f_{i}. Let M_{i} denote the mapping cylinders of $g_{i}, i=2,3,5,6$. Now map each $[0,1]_{i} \times S^{2} \subset M_{i}$ homeomorphically onto $[0,1]_{i} \times S^{2} \subset 2 T$. Next extend the map so that $a\left(\{0\}_{2} \times S^{2}\right), a\left(\{0\}_{3} \times S^{2}\right), b\left(\{1\}_{2} \times S^{2}\right), b\left(\{1\}_{3} \times S^{2}\right), b\left(\{0\}_{5} \times S^{2}\right)$,
$b\left(\{0\}_{6} \times S^{2}\right), c\left(\{1\}_{5} \times S^{2}\right)$ and $c\left(\{1\}_{6} \times S^{2}\right)$ agrees with the corresponding complexes in the cones constructed above. Finally extend each homeomorphism so that M_{i} maps homeomorphically into $\mathrm{Cl}\left(T \times[0,1]-C_{1}-C_{4}-C_{7}\right)$ in a natural manner. This now gives our desired triangulation of $T \times[0,1]$.

Let F_{i} be the submapping cylinder of M_{i} gotten by restricting g_{i} to $\left(\Gamma_{1} \cup \Gamma_{2}\right) \cap\left([0,1]_{i} \times S^{2}\right), i=2,3,5,6$ and L_{i} the subcone of C_{i} gotten as the cone over the appropriate vertex on $\left(B_{i} \cup B_{i}^{\prime}\right) \cap\left(\Gamma_{1} \cup \Gamma_{2}\right), i=1,4,7$. The embedding of K in W is gotten by considering the subcomplex $\left(I^{2} \times 0\right)_{j} \cup L_{1} \cup F_{2} \cup$ $F_{3} \cup L_{4} \cup F_{5} \cup F_{6} \cup L_{7} \cup_{k}\left(I^{2} \times 0\right)$. Since $C_{i} \downarrow L_{i}, i=1,4,7, \quad M_{i} \searrow F_{i}$, $i=2,3,5,6$ and each $I^{2} \times I^{2} \searrow I^{2} \times 0$ and the collapses are such that they match up on the corresponding parts, we get that $W \searrow K$.

Theorem 1. $\quad \pi_{1}(\mathrm{Bd} W) \neq 1$.
Proof. $\pi_{1}(\mathrm{Bd} W)$ can be obtained by looking at the fundamental group of $E^{3}-\left(K_{1}+K_{2}+\Gamma_{1}+\Gamma_{2}\right)$ as indicated in Figure 3 and adding in the relations corresponding to curves slightly above each of K_{1}, K_{2}, Γ_{1} and Γ_{2} respectively.

Figure 3
The resulting group has the following presentation:
generators: a, b, x, y, and z relations:

1. ($\bar{a} \bar{x} \bar{a} \bar{y} \bar{a} y a x a)(x \bar{a} \bar{x} \bar{a} \bar{y} a y a x a \bar{x})(\bar{a} \bar{x} \bar{a} \bar{y} a y a x a) \bar{a}=1$,
II. $\bar{x}(x \bar{a} \bar{x} \bar{a} \bar{y} a y a x a \bar{x}) \bar{a} z a(x \bar{a} \bar{x} \tilde{a} \bar{y} \tilde{a} y a x a \bar{x})=1$,
III. $\bar{y}(\bar{b} y z b \bar{z} \bar{y} b) y(b y z b \bar{z} \bar{y} b y z \bar{b} \bar{z} \bar{y} b)=1$,

$$
\begin{aligned}
& \text { 1V. } \bar{y}(\bar{b} y z b \bar{z} \bar{y} b y z \bar{b} \bar{z} \bar{y} b)(b \bar{a} y a x b \bar{z})(\bar{b} y z b \bar{z} \bar{y} b y z b \bar{z} \bar{y} b)=1, \\
& \Gamma_{1}: \bar{x}(\bar{a} \bar{y} a)(\bar{a} \bar{x} \bar{a} \bar{y} \bar{a} y a x a) x \bar{a}=1, \\
& \Gamma_{2}: \bar{z} \bar{y} b(\bar{b} y z b \bar{z} \bar{y} b)=1, \\
& K_{1}:(x \bar{a} \bar{x} \bar{a} \bar{y} a y a x a \bar{x}) \bar{a} \bar{b}=1, \\
& K_{2}: \bar{a}(\bar{b} y z b \bar{z} \bar{y} b y z \bar{b} \bar{z} \bar{y} b) \bar{b}=1 .
\end{aligned}
$$

We note that relations I-IV give $\pi_{1}\left(E^{3}-\left(\Gamma_{1}+\Gamma_{2}+K_{1}+K_{2}\right)\right)$, adding in relations K_{1} and K_{2} give $\pi_{1}\left(2 T-\left(\Gamma_{1}+\Gamma_{2}\right)\right)$, and adding in relations Γ_{1} and Γ_{2} gives $\pi_{1}(\mathrm{Bd} W)$.

Now Γ_{1} gives that $\bar{a} \bar{x} \bar{a} \bar{y} \bar{a} y a x a=\bar{a} y a x a \bar{x}$. This relation applied to I gives $1=1$. By K_{1} we have $x \bar{a} \bar{x} \bar{a} \bar{y} a y a x a \bar{x}=b a$. Applying this to II gives that $\bar{x} b z \dot{b}=1$ or $z=\bar{b} x b$. Using Γ_{2} and K_{2} in III we get $\bar{y}(\bar{z} \bar{y} b y) y a b=1$. Using K_{2} and the fact that $z=\bar{b} x b$ in IV we get $1=1$.

Using $\Gamma_{2}, \bar{z} \bar{y} b y=\bar{b} y z \bar{b} \bar{z} \bar{y} b$ in K_{2} gives that $\bar{a}(\bar{y} \bar{b} y z) y z \bar{b} \bar{z} \bar{y}=1$. Next applying the new relation III $\bar{y} \bar{b} y z=y a b \bar{y}$ and $z=\bar{b} x b$ to the preceding relation for K_{2} we then get $x \bar{b} \bar{x} b \bar{y}=\bar{a} \bar{y} a$.

Writing Γ_{2} as $\bar{z} \bar{y} b y=\bar{b} y z \bar{b} \bar{z} \bar{y} b$, replacing z by $\bar{b} x b$ and using the fact that $x \bar{b} \bar{x} b \bar{y}=\bar{a} \bar{y} a$ we get that $\bar{x} b \bar{y} b y=y \bar{b} \bar{a} \bar{y} a b$.

In considering III, $\bar{z} \bar{y} b y=y \bar{b} \bar{y} \bar{y}$, if we replace z by $\bar{b} x b$ and $\bar{x} b \bar{y}$ by $b \bar{x} \bar{a} \bar{y} a$, we get $\bar{x} \bar{a} \bar{y} a b y=y \bar{b} \bar{a} \bar{y}$.

Finally, using $\Gamma_{1}, \bar{a} \bar{x} \bar{a} \bar{y} \bar{a} y a \times a=\bar{a} y a \times a \bar{x}$ in K_{1}, gives that $x^{2} \bar{a} \bar{x} \bar{a} \bar{y} a \bar{x} \bar{a}$ $=b$.
Our group now has the following presentation:
I. $\quad 1=1$,
II. $z=\bar{b} \times b$,
III. $\bar{x} \bar{a} \bar{y} a b y=y \bar{b} \bar{a} \bar{y}$,
IV. $1=1$,
$\Gamma_{1}: \bar{a} \bar{x} \bar{a} \bar{y} \bar{a} y a x a=\bar{a} y a x a \bar{x}$,
$\Gamma_{2}: \bar{x} b \bar{y} b y=y \bar{b} \bar{a} \bar{y} a b$,
$K_{1}: x^{2} \bar{a} \bar{x} \bar{a} \bar{y} a \bar{x} \bar{a}=b$,
$K_{2}: x \bar{b} \bar{x} b \bar{y}=\bar{a} \bar{y} a$.
If we replace the first x in K_{2} by using relation III, and replace the \bar{x} by using Γ_{2} we get that $a b \bar{y} \bar{b} y \bar{b} \bar{a} \bar{y} a b y=1$. Using the fact that the x from III equals the x from Γ_{2}, that is, that $\bar{a} \bar{y} a b y=b \bar{y} b y \bar{b} \bar{a}$, the preceding relation just becomes $1=1$.

Now using III, $x=\bar{a} \bar{y} a b y^{2} a b \bar{y}$ we get:

$$
\begin{aligned}
& \text { III }=\Gamma_{2}: \bar{a} \bar{y} a b y=b \bar{y} b y \bar{b} \bar{a}, \\
& K_{1}:\left[\bar{a} \bar{y} a\left(b y^{2} a b \bar{y}\right)\right]^{2} \bar{a}\left(y \bar{b} \bar{a} \bar{y}^{2} \bar{b}\right)^{2} \bar{a} y=b, \\
& \Gamma_{1}: \bar{a}\left(y \bar{b} \bar{a} \bar{y}^{2} \bar{b}\right) \bar{a}\left(b y^{2} a b \bar{y}\right)=\left(b y^{2} a b \bar{y}\right) a\left(y \bar{b} \bar{a} \bar{y}^{2} \bar{b}\right) \bar{a} y .
\end{aligned}
$$

Here we have used in K_{1} and Γ_{1} the fact that III also gives $\bar{a} \bar{y} a=x$ y $\bar{b} \bar{a} \bar{y}^{2} \bar{b}$.

Setting $\bar{a} y=\beta$ and $\alpha=y \bar{b} \bar{a} \bar{y}^{2} \bar{b}$ we get:
$\Gamma_{1}: \bar{a} \alpha \bar{a} \bar{\alpha}=\bar{\alpha} a \alpha \beta$,
$K_{1}:(\bar{a} \bar{\beta} \alpha)^{2} \bar{a}\left(\alpha^{2}\right) \beta=b$.
Also $x=\bar{a} \bar{\beta} \bar{\alpha}$.
Using Γ_{1} to solve for β and applying this to K_{1} we have $b=\bar{a} \alpha a \bar{\alpha} a \alpha \bar{a} \bar{\alpha}$. We now have b and β in terms of a and α; and hence y in terms of a and α also. Thus we now have only two relations to consider. Namely, $\alpha=y \bar{b} \quad \bar{a} \bar{y}^{2} \quad \bar{b}$ and $\bar{a} \bar{y} a b l y$ $=b \bar{y} b y \bar{b} \bar{a}$. Writing y and b in terms of a and α we get the following group presentation:

$$
\begin{aligned}
& \text { generators: } a, \alpha, \\
& \text { relations: }
\end{aligned}
$$

$\bar{\alpha} a \bar{\alpha} \bar{a} \alpha \bar{a} \bar{\alpha} a \alpha \bar{a} \alpha a \bar{\alpha}=\bar{a} \alpha a \bar{\alpha} a \alpha \bar{a} \bar{\alpha} a \bar{\alpha} \bar{a} \alpha \bar{a}$

$$
=a \bar{\alpha} \bar{a} \alpha \bar{a} \bar{\alpha} a^{2} \bar{\alpha} \bar{a} \alpha \bar{a} \bar{\alpha} a \alpha \bar{a} \alpha a \bar{\alpha} a .
$$

Now if we add the relation that $\bar{\alpha} a=\bar{a} \alpha$, the first equality becomes $\alpha^{5}=a^{5}$ and the second $\bar{a} \alpha^{3} \bar{a}^{2} \bar{\alpha}=a \bar{\alpha}^{3} a^{2} \bar{\alpha}^{3} a^{2} \alpha$. Adding the relation $\alpha^{5}=a^{5}=\left(a^{2} \alpha^{2}\right)^{2}=1$, we get the group

$$
\left\{a, \alpha \mid \bar{\alpha} a=\bar{a} \alpha, \alpha^{5}=a^{5}=\left(a^{2} \alpha^{2}\right)^{2}=1\right\} .
$$

Replacing a^{2} by u and α^{2} by v we get

$$
\left\{u, v \mid v^{2} u^{3} v^{2}=u^{2}, u^{5}=v^{5}=(u v)^{2}=1\right\}
$$

This group can be shown to have a nontrivial representation in P_{5} by letting $u \rightarrow$ (12345) and $v \rightarrow$ (12354). If we desire to check that this does indeed give a nontrivial representation of the original group, we have the following:

$$
\begin{gathered}
\alpha \rightarrow(15243), \quad \beta \rightarrow(254), \quad a \rightarrow(14253), \quad b \rightarrow(12543), \\
x \rightarrow(14352), \quad y \rightarrow(12453) \quad \text { and } z \rightarrow(14523) .
\end{gathered}
$$

4. Main results. In this section we will discuss some additional properties of the pseudo 4-cell W and show how the particular chosen 2-complex K leads to the desired results.

Lemma 2. Suppose K is a contractible -subcomplex in the interior of a combinatorial 4-manifold M and W is a regular neighborhood of K in M. If K can be combinatorially embedded in E^{3}, then W can be embedded in E^{4} and $W \times I \approx I^{5}$.

Proof. By [1, Proposition 2] $W \times I^{2}=I^{6}$. Since $\mathrm{Bd}\left(W \times I^{2}\right)$ is homeomorphic to S^{5} triangulated as a combinatorial 5 -manifold and $2(W \times I) \approx \mathrm{Bd}\left(W \times I^{2}\right)$, $W \times I$ can be combinatorially embedded in a combinatorial triangulation of
E^{5}. Let K^{\prime} be a combinatorial embedding of K in $E^{3} \subset E^{5}$. Since the regular neighborhood of K^{\prime} in E^{3} is necessarily a combinatorial 3-cell, the regular neighborhood N of K^{\prime} in E^{5} is a combinatorial 5-cell. By the corollary of [6], this implies that $W \times I \approx N \approx I^{5}$. The fact that $2 W \approx \operatorname{Bd}(W \times I) \approx S^{4}$ gives that W can be combinatorially embedded in E^{4}.

Theorem 2. There exists a pseudo 4-cell $W \neq I^{4}$ such that $W \subset E^{4}$, $W \times I \approx I^{5}$ and $W \approx X \cup Y$, where $X \approx Y \approx X \cap Y \approx I^{4}$.

Proof. W is the pseudo 4-cell of $\S 3$. Since $\pi_{1}(\mathrm{Bd} W) \neq 1$ we have $W \neq I^{4}$. Since $W \searrow K$ and K can be embedded in E^{3}, the fact that $W \subset E^{4}$ and $W \times I \approx I^{5}$ follows from Lemma 2.

Let A be the middle polyhedral arc going from the vertex b to the vertex c in the top disk used in the construction of K. Similarly, let B be the middle polyhedral arc going from the vertex a to the vertex b in thebottom disk. If we separate K along the polyhedral $\operatorname{arc} B \cup A$ we end up with two collapsible complexes which we will denote as K_{1} and K_{2}. Hence $K \equiv K_{1} \cup K_{2}, K_{1} \cap K_{2} \equiv B \cup A$ and each of K_{1}, K_{2}, and $K_{1} \cap K_{2}$ collapses to a point. Let W^{\prime} be a regular neighborhood of K in W under the secondary centric subdivision of W. Let X^{\prime} be the regular neighborhood of K_{1} and Y^{\prime} the regular neighborhood of K_{2} under this subdivision. Now $X^{\prime} \cap Y^{\prime}$ is combinatorially equivalent to the regular neighborhood of $K_{1} \cap K_{2} \equiv B \cup A$. Since $X^{\prime} \searrow K_{1} \searrow 0, \quad Y^{\prime} \searrow K_{2} \searrow 0$, and $X^{\prime} \cap Y^{\prime} \searrow$ $B \cup A \searrow 0$ we have $X^{\prime} \approx Y^{\prime} \approx X^{\prime} \cap Y^{\prime} \approx I^{4}$ by the results of Whitehead [7]. Again using [7] we have that $W \approx W^{\prime}$ and hence the conclusion to the theorem.

Corollary 1. For $n \geqq 4$ there exist pseudo n-cells $W^{n} \neq I^{n}$ such that

$$
W^{n} \times I \approx I^{n+1}
$$

and $W^{n} \approx X^{n} \cup Y^{n}$, where $X^{n} \approx Y^{n} \approx X^{n} \cap Y^{n} \approx I^{n}$.
Proof. The result for $n=4$ is just Theorem 2 and for $n \geqq 5$ follows from [3].
Corollary 2. For $n \geqq 3$ there exists open contractible combinatorial n manifolds $O^{n} \neq E^{n}$ such that $O^{n} \approx U^{n} \cup V^{n}$, where $U^{n} \approx V^{n} \approx U^{n} \cap V^{n} \approx E^{n}$.

Proof. The result for $n \geqq 5$ follows from [3]. For $n=4$ we use $U \approx$ int X, $V \approx$ int Y and $O^{4} \approx$ int W of Theorem 2 . We have that $O^{4} \neq E^{4}$ since $\pi_{1}(\operatorname{Bd} W) \neq 1$. That is, if $O^{4}=E^{4}$ then simple closed curves near "infinity" could be shrunk near "infinity", but the collar of Bd W is not simply connected.

For $n=3$, the result has been known for some time, but apparently is not too well known. Hence for completeness, the example will be included here. Consider the double Fox-Artin arc A in S^{3} intersecting the 2 -sphere S^{2} in the point p as indicated in Figure 4. Taking U^{\prime} and V^{\prime} as the two components of $S^{3}-S^{2}$, one can easily express each of $U^{\prime}-A$ and $V^{\prime}-A$ as a monotone increasing sequence of open 3-cells. Let C^{\prime} be a small double collar of S^{2} so that $C^{\prime} \cap A$ is an open
straight line segment and let $C=C^{\prime}-A$. Then taking $U=\left(U^{\prime}-A\right) \cup C$ and $V=\left(V^{\prime}-A\right) \cup C$ we have $S^{3}-A=U \cup V$ where $U \approx V \approx E^{3}$ and $U \cap V \approx E^{3}$ since $U \cap V \approx C \approx\left\{S^{2}-p\right\} \times(-1,1)$. We get that $S^{3}-A \neq E^{3}$ since $S^{3}-(A+B)$ is not simply connected, where B is the simple closed curve in dicated in Figure 4. That is, if $S^{3}-A=E^{3}$, then simple closed curve near "infinity" (here this means curves in an arbitrarily small neighborhood of A in S^{3}) could be shrunk missing B and this will not always be possible.

Figure 4
Clearly in the construction of W we could have altered slightly our embeddings of Γ_{1} and Γ_{2} in int T, say link Γ_{1} or Γ_{2} with itself differently, add local knots, or link Γ_{1} with Γ_{2}, and still get a contractible 4-manifold with boundary which also collapses to K. Also, it is interesting to note that in some sense the given embeddings are the simplest possible in order to get an example where $\pi_{1}(\operatorname{Bd} W)$ $\neq 1$. In fact the crucial part of the construction is the linking of Γ_{1} over a and the linking of Γ_{2} over c. Moreover, our next result says that as long as $\operatorname{lk}(a, K)$ and $\mathrm{lk}(c, K)$ are "nice'", no matter how badly Γ_{1} and Γ_{2} are locally knotted or linked together in the middle section of T, if we repeat the same construction the resulting W is indeed $\approx I^{4}$.
In the following we apply some of the techniques of [8]. It is easy to see that each of $1 \mathrm{k}(a, K)$ and $1 \mathrm{k}(c, K)$ is merely two circles, C_{1} and C_{2} say, joined by an $\operatorname{arc} A=x y$ (refer to Figure 2). We will say that the embedding of K in the interior of a combinatorial 4-manifold M^{4} is nice at a if $1 \mathrm{k}(a, K)$ in $\mathrm{lk}\left(a, M^{4}\right) \approx S^{3}$ is such that there exist a 2 -sphere S^{2} in $\operatorname{lk}\left(a, M^{4}\right)$ separating C_{1} and C_{2} and meeting A in a single point $z \in$ int A. Similarly for the vertex c. We note in the given construction that we have embedded K in W so that the circles corresponding to C_{1} and C_{2} in each of $1 \mathrm{k}(a, K)$ and $\mathrm{lk}(c, K)$ are linked in $1 \mathrm{k}(a, W)$ and $\mathrm{lk}(c, W)$ respectively.

Theorem 3. Let $K \subset \operatorname{int} M^{4}$ and suppose $M^{4} \searrow K$. If the embedding of K is nice at a and c, then $M^{4} \approx I^{4}$.

Proof. Let us write $\operatorname{lk}(a, K)=C_{1} \cup A \cup C_{2}$ and $\operatorname{lk}(c, K)=C_{1}^{\prime} \cup A^{\prime} \cup C_{2}^{\prime}$. There exists a 2-dimensional polyhedron P such that:
(i) $C_{1} \subset P \subset 1 \mathrm{k}\left(a, M^{4}\right)$;
(ii) $P \downarrow x$;
(iii) $P \cap A=x$;
(iv) $P \cap C_{2}=\varnothing$.

Such a P is not difficult to get and the actual construction of such a polyhedron is given in the proof of Theorem 8 of [8]. Similarly there exists a P^{\prime} such that:
(i) $C_{1}^{\prime} \subset P^{\prime} \subset 1 \mathrm{k}\left(c, M^{4}\right)$;
(ii) $P^{\prime} \searrow x^{\prime}$;
(iii) $P^{\prime} \cap A^{\prime}=x^{\prime}$;
(iv) $P^{\prime} \cap C_{2}^{\prime}=\varnothing$.

Now C_{1} intersects either γ or δ in a single point x and C_{1}^{\prime} intersects one of α or β in x^{\prime}. Recall we used α, β, γ and δ in defining K (refer back to Figure 1). For notational purposes let us suppose that $C_{1} \cap \gamma \neq \varnothing$ and $C_{1}^{\prime} \cap \alpha \neq \varnothing$. Now we have the following: $M^{4} \downarrow K \nearrow K \cup a P \not \subset K \cup a P \cup c P^{\prime}$. Since $P \searrow x$ and $P^{\prime} \searrow x^{\prime}$ we have $a P \searrow a x \cup P$ and $c P^{\prime} \searrow c x^{\prime} \cup P^{\prime}$. Therefore,

$$
K \cup a P \cup c P^{\prime} \searrow \mathrm{Cl}\left(K-a C_{1}-c C_{1}^{\prime}\right) \cup P \cup P^{\prime}
$$

which we will denote by K^{\prime}.
Let us consider the top half of $K^{\prime} . c x^{\prime}$ is now a free edge and hence we can collapse the right half and back part of the top half to the remainder $\cup P$. Then we can collapse $P \searrow x$ and the remaining complex of the top half to δ. Similarly, in considering the bottom half of K^{\prime}, we have that $a x$ is a free edge on this half and hence we can collapse this half to β. Hence we have $K^{\prime} \searrow \delta \cup \beta \searrow b$. We now have obtained a sequence of elementary collapses and expansions going from M^{4} to b; hence by Lemma 3 of [8], $M^{4} \approx I^{4}$.

Corollary 3. If $K \subset$ int $M^{n}(n \geqq 5)$ and $M^{n} \searrow K$, then $M^{n} \approx I^{n}$.
Proof. Since $n \geqq 5$ we can get C_{1} to bound a disk P in $\operatorname{lk}\left(a, M^{n}\right)$ and C_{1} to bound a disk P^{\prime} in $\operatorname{lk}\left(c, M^{n}\right)$ with the same properties as the P and P^{\prime} of Theorem 3.

We can also prove Corollary 3 by making use of [6]. That is $M^{n} \times I=I^{n+1}$ and hence M^{n} can be embedded in a combinatorial triangulation of E^{n}. Since K can be embedded in E^{3}, say as K^{\prime}, and $n \geqq 5$, the corollary of [6] says that the regular neighborhoods of K^{\prime} and K in E^{n} are combinatorially equivalent and hence $M^{n} \approx I^{n}$.

Bibliography

1. M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819-820.
2. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990.
3. L. C. Glaser, Contractible complexes in S_{n}, Proc. Amer. Math. Soc. 16 (1965), 1357-1364.
4. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221-228.
5. V. Poenaru, La décomposition de l'hypercube en produit topologique Bull. Soc. Math.

France 88 (1960), 113-129.
6. T. Price, Equivalence of embeddings of k-complexes in Euclidean n-space for $n \leqq 2 k+1$, Abstract 614-121, Notices Amer. Math. Soc. 11 (1964), 564.
7. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939), 243-327.
8. E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341-358.

Rice University,
Houston, Texas

