## Correction to the paper

## ON THE ZEROS OF POLYNOMIALS OVER DIVISION RINGS

## BY

## B. GORDON AND T. S. MOTZKIN(1)

On p. $226(116(1965), 218-226)$ it is stated that the curve $\xi_{2}^{3}=\left(\xi_{1}+1\right)^{3}-\xi_{1}^{3}$ has exactly nine points in $Q(\sqrt{ }-3)$. However, one of these is at infinity; hence $N(f)=16$ rather than 18 for this example. An example of a quadratic polynomial over $D$ with $16<N(f)<\infty$ is

$$
f(x)=\left(\xi_{3}-\xi_{2}^{2}\right) e_{1}+\left(\xi_{1}^{2}-\xi_{2} \xi_{3}-1\right) e_{2}+\left(\xi_{4}^{2}-1\right) e_{3} .
$$

To find the roots of $f(x)$ we consider the system

$$
\begin{aligned}
& \xi_{3}=\xi_{2}^{2} \\
& \xi_{1}^{2}=\xi_{2} \xi_{3}+1 \\
& \xi_{4}^{2}=1
\end{aligned}
$$

Eliminating $\xi_{3}$ we obtain

$$
\begin{equation*}
\xi_{1}^{2}=\xi_{2}^{3}+1 . \tag{1}
\end{equation*}
$$

Euler [1] proved in 1738 that the only solutions of (1) in $\boldsymbol{Q}$ are

$$
\left(\xi_{1}, \xi_{2}\right)=(0,-1),( \pm 1,0), \text { and }( \pm 3,2) .
$$

Hence by a theorem of Billing [2], there are only finitely many solutions of (1) in $\boldsymbol{Q}(\sqrt{ }-3)$. These include the eleven pairs $\left(\xi_{1}, \xi_{2}\right)=(0,-\omega),( \pm 1,0)$, and $( \pm 3,2 \omega)$, where $\omega$ is any cube root of unity. Corresponding to each $\left(\xi_{1}, \xi_{2}\right)$ there is a unique value of $\xi_{3}$, and two values for $\xi_{4}$. Thus $22 \leqq N(f)<\infty$.

## References

1. L. Euler, Opera omnia, Ser. 1, Vol. 2, Teubner, Leipzig, 1915; pp. 56-57.
2. G. Billing, Über kubische diophantische Gleichungen mit endlich vielen Lösungen, Comment. Math. Helv. 9 (1936), 161-165.
(1) NSF Grants GP-5497 and GP-4519.
