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The asymptotic distribution of eigenvalues and eigenfunctions of elliptic oper-

ators has been studied extensively by Weyl, Courant, Carleman, Pleijel and others.

During the last decade, Girding [9] and Browder solved the problem for an

elliptic operator with infinitely differentiable coefficients and null Dirichlet bound-

ary conditions. It is the purpose of this paper to consider the problem for a general

class of elliptic boundary value problems investigated during the last few years by

Agmon-Douglis-Nirenberg [2], Browder [3], [6] and Schechter [14].

Let (/I,y) with y = {By,---,Bm} be a uniformly regularly elliptic boundary value

problem on S. It is assumed that A is positively strongly elliptic and 04, y) is

formally positive. If Ay is the realization of A as an operator on L2(S) with null

boundary conditions y, then the following results are obtained:

(1)   When Ay is self-adjoint:

N(t) =   £   l~(27i)-"tn/2m   f   f dÇdx   así-+ 00.
Xj¿t J S J a(x,Ç)<l

Let e(x,y,t) be the spectral function of Ay, then:

r(n + M + my2mD?D*e(x,y,t) = r(n + |a| + l*l)/2m Z D"cbj(x)Dßcbj(y)^0

as t -* + oo ; x, y in S and x ^ y.

D"+ße(x,x,t)~(2n)-nt(n + ̂  + ̂ )'2m-^

«■(■♦¿M*-^1*)

f
Je"

r+'[a(*>o + ir2p^

for x in S as t -> + oo (4mp > n + | a | + | ß |).
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kj, ebj are the eigenvalues and eigenfunctions of Ay.

(2)   When Ay is nonself-adjoint, then:

N(t) =    E   l~(27r)""in/2mf   f dÇdx   así-*+ 00.
ReAyáí Js Ja(x,S)<l

In §1, we give the notations and definitions; in §2, we state some known results;

in §3 the Green's function of (A,y) corresponding to the case of a half-space and

constant coefficients is constructed. In §4, using the parametrix method, we

construct the Green's function associated with (A,y) when A and B¡ are defined

on S, T and have infinitely differentiable coefficients. Results for the self-adjoint

case are given in §5 and for the nonself-adjoint case in §6.

1. Notations and definitions. Let E" be the «-dimensional Euclidean space,

S an open subset of E". The points of E" will be denoted by x = (xy,---,x„)

and integration with respect to dx over a subset of E" denotes integration with

respect to Lebesgue «-measure.

For 1 g j g «, Dj = i~ld¡dxj. If a = (<Xy, •••,«„) is any «-tuple of nonnegative

integers, we set:

|«|=   îaj,       D'=    f[D).
j=i j=i

The linear partial differential operator A= 2^>\a\g2maÀx)D'" Wrtn coefficients

defined on S is said to be uniformly elliptic on S if there exists a constant c> 0

such that:

| a(x, 01 = c | f |2m   for every point £ e P".

a(x, £) is the characteristic form of A and is given by :

aix,0 =   E   ajxyr,       etinR".
\a\=2m

We shall assume throughout for the sake of simplicity that S is bounded and

that its boundary is locally a C00, (n — l)-dimensional manifold with C°° imbedding

in E". In particular, S will satisfy the uniform regularity conditions (Browder [5]).

Definition 1.1.   Let j be a nonnegative integer:

Wj-2iS) = {u:ueL2iS); D*ueL\S), |a|g/},

where D'u denotes the derivative in the distribution sense.

Wi,2iS) is a Hubert space with respect to the inner product:

iu,v)j =   2   iD*u,Dxv),   u,v in WJ'\S),
MâJ

iu,v)  = I   u(x)u(x) dx

is the usual inner product in L2(S^.
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The norm in WJ,2(S) is given by:

\l/2

2    \\D"u\\2L2(S))    .

Let y = (B!,-••,Bm) be a family of m differential operators with coefficients

defined on S. We assume that the order r¡ of each B¡ is less than 2m and we

write :

Bj=    I   bjß(x)Dß.

We also assume that the coefficients bjß lie in Cco(S). For each j, the charac-

teristic form is defined for Ç e C by

bj(x,0 =    I bjß(xXß.
\0\=rj

Definition 1.2. A is said to be regularly elliptic on S if it is uniformly elliptic

on S and if for each x of T, the polynomial a(x,XNx+T) in X (XeC;Nx is the

unit exterior normal vector to T at x,T any unit tangent vector to T at x) has

exactly m roots (counting multiplicities) in the X upper half plane.

Definition 1.3. The boundary value problem (A,y) is said to be uniformly

regular if:

(1) A is uniformly regularly elliptic.

(2) For each unit tangent vector Tto T at x, let CT be a closed, Jordan rec-

tifiable curve in the X half plane which contains in its interior all the zeros of

a(x,XNx+ T) with positive imaginary parts.

For 1 ̂ j,k^m; set:

cJk(x, T)= f  X'-1 bk(x,XNX + T)[a(x,XNX + T)]''dX.
JCt

Then there exists c > 0 such that:

|Det(Cj.k(x,T))| ^ c>0

for all xeT and all unit tangent vectors to T at x.

2. Definition 2.1. Let x0 be a point of T; A0 the homogeneous differential

operator of order 2m with constant coefficients

A0=     I   a,(x0)D".
M=2m

Let y0 = (Bio,---,Bm0) where:

Bj0 =     I   b^Df.
\ß\=rj

Then (A,y) is said to be formally positive if the boundary value problem:

1-1..-(
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iA0 + tl)u = f on S,       t >0,

BjU   = 0 on T,       ; = 1,••■,«!,

has a unique solution u in CcciS)r\ L2iS) for every f in C"(£")|s and t>0,

such that:

Hk2<s) = cl/|k2(s)

with the constant c independent of u,f.

We shall take the above definition as our basic assumption on iA,y). Alter-

native assumptions which are equivalent to Definition 2.1 may be given in a

more computational form; e.g. as given by Agmon [1]: the polynomial in the

complex variable k, a(x0, kNXo + T) + t has no real roots ; it has m roots with

positive imaginary parts and:

Det ( j   kJ-lb,ix0,kNX0 + T) [a(x0,kNXo + T) + t]~ 'dk\ > 0,

r,j = l,--,m.

ClT is a closed Jordan rectifiable curve surrounding all the roots with positive

imaginary parts of a(x0, kNX0 + T) + t considered as a polynomial in k.

Definition 2.2.   (1) Let Ay be the operator on L2iS) defined as follows:

DiAf) = {u:u in W2m-\S); Bju = 0 on T;j = l,--,m),

Ayu  = Au   if ue DiAf).

(2) iA,y) is said to be formally self-adjoint if Ay is a symmetric operator

in L2iS); i.e.

iAyii,v) = iu,Ayv)

for all u,v in DiAf).

Theorem 2.1. Let iA,y) be a uniformly regularly elliptic boundary value

problem as above, such that A is uniformly strongly elliptic and (/I, y) is formally

positive.

Then:

(1) // iA,y) is formally self-adjoint; Ay is then a self-adjoint operator on

L\S).
(2) // t = t0 > 0; iAy + ti)'1 exists on all of L2iS) and:

¡(A.+ßD^lser1..

(3) // p is a positive integer such that 2mp > n; iAy + tl)~p is an operator

of Hilbert-Schmidt type,
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(Ay + tl)-pf(x) = J $(p)(x,y,t)f(y)dy  f in L2(S)

and &,p)(x,y,t)eL2(S) x L2(S).

Proof. It has been proved by Agmon [1] that when (A,y) is formally positive

then \(Ay + tl)~l | g ci-1 and moreover if Ay is formally self-adjoint, then Ay

is self-adjoint.

Since 04,y) is a regular elliptic boundaryvalue problem; we have the a priori

estimate :

H»»».» = cqui.+iKA.+tDuf2^-1^2},

\\u\\W2mp,2      ̂      C\\(Ay + tI)"u\\L2.

Therefore (Ay + tl) ~p is a continuous mapping of L2(S) into W2mp'2(S). From

the Sobolev imbedding theorem, the injection mapping :

W2mp'2(S)-*Lœ(S)

is continuous when 2mp>n. Hence (Ay + tl)~p considered as a mapping of

L2(S) to L°(S) is continuous. By the Dunford-Pettis theorem, it follows that

(Ay + ti)'" is of Hilbert-Schmidt type:

(Ay + tiypf(x) = js ^(p)(x,y,i)/(y)dy,  / in L2(S).

3. Let A be a homogeneous linear elliptic differential operator on E" with

constant coefficients, of order 2m.

Let y = {Bj, j = 1, • ■ -, m} be a family of homogeneous linear differential opera-

tors defined on E" with constant coefficients and of order r¡ < 2m — 1. Let t

be a positive parameter such that 04, y) is formally positive in the sense of Defi-

nition 2.1. In this section, we construct: (1) the Green's function G(x,y,t) asso-

ciated with (A + tl, y) ; (2) the iterates of G. Finally we study the asymptotic

behavior of G(p) as t -» + co.

Lemma 3.1. Let A be a homogeneous, linear elliptic operator of order 2m,

on E" with constant coefficients. Let t be a positive parameter such that A + tl

is positively strongly elliptic. Then A + tl has a fundamental solution E(x,y,t)

given by:

E(x,y,t) = (2nyn f   exp(¿<x-y,O)[a(0 + f] ~ldt
Je»

where the integral is taken as the Fourier transform of a tempered distribution

if 2m <n.
E(x,y,t)   is infinitely differentiable for x ^ y and if t = x2m then:
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DxEix,y,t) = 0(l)T_e|x - y|-" + 2«-H-»(i + \t(x-y)\Nyi

if —n + 2m — \a\ — 0 and

D*E(x,y,t) = 0(l)x-\l + Irix-y)^)"1

if — n + 2m — |a| > 0,  where 0<e<l;   N  is  an arbitrary positive number

(Garding [9]).

Theorem 3.1.   Let v be the solution of the boundary value problem:

(A + tl)v = 0   on E"+ ,

BjV = BjE   on E"'1,      j = l,--,m,

where (A,y) is a regular elliptic boundary value problem; A and B¡ are homo-

geneous and have constant coefficients. Then:

(1)   v(x,y, t) is infinitely differentiable for x^y and is given by:

m p

v(x,y,t)=   £  (27t)~n expii(x-y,c;})Vrjitxy,yy,
r,j = l JE"-1

t)dH

with:

Vrja,Xy,yy,t) = QrJilt)Hjilyy,t)   f     Ff W«i*i)MCi,o + *TXdZi

where Ci¡t is a closed, Jordan rectifiable curve in the Cy upper half plane and

surrounding all the m roots icounting multiplicities) of a(£,,|) + t = 0 for

fixed |,i.

Hjilyy,t) =   f    expi-iyyety^jiiyMaiZy^ + ty'dcly.
JE'

Finally Qrj are the elements of the transpose of the inverse of the matrix

icrjil,t)) with:

rjilt) =   f      CT1*/í:».Í)WÍi.Í) + >]"I»«i,       r,j = l,-,
Jcit,

m.

(2) Let t = x2m then D'vix,y,t) = 0(l)T-E|x-y|-B+2m-|a,|-e(l 4- \x-y\N)-1

if -«4-2m-|a|g0 and D*v = 0(1)t~c(1 + |x-y|*)_1 if « + 2m-|a|>0;

0 < e < 1; N is an arbitrary positive number.

Proof.   We write:

A   =   £ Aq(Ù)D\, Bj =   2 Bjq(Û)Dl,
î=0 q=0

where Ù denotes differential operators involving only D2,--,D„. Taking the
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Fourier transform with respect to the tangential variables x = (x2,---,xn) we

are reduced to the initial value problem:

2m

I  £   aq(l)D\ +  tl\ V(Xy,l)    =    0, Xy  > 0,

2 bJq(l)D¡V(xy,l) = H jilt);      xy =0;j = l,-,m,
q = o

where :

V(xy,0 = (2n)-("-1)l2   f      exp(-Kx,0)v(xy,x)dx.
Je»-¡

Hj(t\, t) is similarly defined (r,- < 2m — 1).

We consider a solution of the form

V(xl,0 = (2n)-i   f      exp(¿x1C1)Kíl!|)4-f]-1p(CiKi,

where p(Ci) is a polynomial of degree less than or equal to 2m and Cîj( is a closed,

Jordan rectifiable curve in the upper half plane surrounding all the m roots

(counting multiplicities) of a(d,f) + t = 0 for fixed |, t.

By Cauchy's theorem, we may assume that p(d) is a polynomial of degree

less than m:

KCi) = s pxr-
r=l

We obtain a system of m equations with m unknowns.

or1 s p/i) f  er'&xCi.Dixci.l) + »]-1dCi = h/I,o;   j = i,-,m
r=l       jcLt

We may solve it in a unique fashion. Indeed, we have:

Det( j   CÎ_1ft/Çi.ô[a(Ci.î') + 0"VlCtj

m||[V>+<»-»^Delff rr'b/J;1,|')[a(C1,|')+/||'|-2'n]-1íÍCi)

and the last expression is nonnull by hypothesis for 111 ?¿ 0. We get :

m

Prit)    =      2   QriitWjilt),
J = l

m /•

F(x1,|,f)= S Qrlilt)Hjilt) Cr'expOdxOKCi.ö + i]-1^!.
j = i Jci>t



1966] ASYMPTOTIC DISTRIBUTION OF EIGENVALUES AND EIGENFUNCTIONS 523

We want to take the inverse Fourier transform of V. To prove the summability

of Vixy,t\,t) with respect to | we establish the following lemmas.

Lemma 3.2.    The following estimates hold uniformly for i^(0>0:

fixy,i,t)= \ cr1«p(<Ci*i)Eo(Ci.ö+i]"1«i
Jci,t

= 0((l + |||2m-rr1)exp(-c/|||x1)

where xt >0, d > 0 independent of t and C%it is a closed, Jordan rectifiable

curve in the £, upper half plane surrounding all the m roots of a((.,£) + t for

fixed t\,t. i»(£i,0 is a homogeneous polynomial of degree 2m.

Proof.    Making the change of variables | = t1/2m£', Ç, = i1/2Ti, we get:

fixait) = t"2*-1 f  cí^Piiíixitíl2m)íaiíi,t)+ir*«i
««•î'.i

=   <r/2m"1/(x,i1/2m,|r1/2m,i).

We consider:

/(x,,|,l) =    f Cl'^XpiiCyXyXaiCuO + iy'dC^
Jc%

(1) the equation a(d,|) +1=0 may be written as c£2m + P(Ci,f) = 0 where

P(£i,|) is a polynomial of degree less than or equal to 2m— 1 in the £, variable

and such that P(£,,0) = 1; c is a constant. The roots of a(Ç,,f) +1=0 depend

continuously on the parameter | and as | goes to zero they go to the roots of

c£2m + 1=0. Therefore, there is a closed curve C containing all the roots of

ß(d»f) + 1 = 0 for fixed and small |.

For 111 < 1, we have :

/(x„e,i) = J" cr'wpCfaiWWCi.ö+i]"1«!

so:

|/(x,,|,1)| SM,

|/(x.,|,t)| jiiilf-1.

(2) To study the behavior of/(x,,|, 1) as ||| goes to infinity, we make the

change of variables | = t|';Ci = tÇ1 with t = |||. Then

/(x1,|,l) = |||r-2mí        exP(iC1Tx1)[a(í1,í') + T-2m]-1ciC1.

JC* t-2nt

Consider the equation a(Ç.,|') + T_2m= 0 for large t. The roots of the equation

considered as a polynomial in £, depend continuously ont"1 and so as x goes

to infinity they go to the roots of a(Çt,|') = 0; | \' | = 1. Therefore there exists
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a closed curve C¿- in the upper half plane surrounding all the roots of

fl(Ci,l') + t"aw-0 for large x

f(xy,ll)=x'-2m f    Cr1expOCiTx1)[a(C1,e') + t-2m]-1^1.
Jct'

On the curve C¿., we have, |a(Ci,|)| è c> 0. On the other hand

\a(Cy,V) + t~2m\ = \a(tiy,'n\ - x~2m. For sufficiently large x, | a(d,?') + T_2m|

^ Cj > 0. Therefore for large <J

|/(x1,|,l)|gMexp(-íí|e|x1)|||'-2m

where d = Inf¿ieC|. (ImCi) > 0, M is a constant and

\f(xy,lt)\ = Mexp(-d\l\xy)\l\-2m,       \1\>1.

M is independent of Xy,t.

Combining (1), (2) we get the lemma.

Lemma 3.3.    1. The following estimates hold uniformly for t = to>0

end*) = f   cruuKuötuCCui)+ty'dCy = o(d + |i|'+'o(i + |I|2t')
Jci„

where r = l,--,m; r¡<2m and C^x is a closed Jordan rectifiable curve in

the Çy upper half plane surrounding all the m roots of a(d,|) + t = 0 for

fixed ç,t. bj(^y,l); a(Çy,Ç) are homogeneous polynomials of degree r¡,2m

respectively.

2.   Let QrJ(t, i) be the elements of the transpose of the inverse of the matrix

(crj(tt)) then:

Qrj(l,t) = 0((l + \l\2m)(l + \l\r^)-1).

Proof.   The proof is similar to that of Lemma 3.2. We will not repeat it.

We return to the proof of Theorem 3.1. From Lemmas 3.2, 3.3 and noting that

H jilt) = 0(1 + |er>)(l + III2"*)"1) we obtain:

F(x1,|,i) = 0((l + |||2",)-1)exp(-d|||x1)

where d>0; Xy >0; t = t0 >0.

For Xj > 0, V(xy, |, i) is integrable with respect to | we have :

(27t)"i;(x, i) =

î    f     exp(Kx,0)Qrj(tt)HJ(lt) f     Ci'^MidXyKa^y^ + ty'dCydl
r,j = lJE"-l Jc|,t

We study the regularity of v(x, t). The results are stated in the following lemma :

Lemma 3.4.   Let v(x,t) be given by the expression:
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t>(x,i)  =

S i»" f     exp(/<x,e»or/l,í)»/-!»í)í    ír1exp(¿CiX1)[a(C1,0 + í]_1^14
r,j = l JE""1 »'c?,,

where QrJ;Hj are defined in Theorem 3.1, then:

(1) t>(x,r) is infinitely  differentiable for x # 0.
(2) DX05x,i) = O(l)r£/2m|x

and DxviO,x,t) = Oil)re,2mil +

bitrary positive integer.

-n — loti + 2m—£/
(l + lx^)-1 i/-«-|a| + 2mg0

x^)-1 otherwise. 0<e<l and N is an ar-

Proof.   (1) First we consider the case when x, >0. We may take the dif-

ferentiation under the integral sign. Indeed:

KTjHxy,t,a + ß) = tQrjilt)Hjilt)    f   Cr1+^xpO"Ci*i)[a(Ci,l) + 0_1dii.
Jci,t

Krj(l,xy,t,a + ß) = 0(\l\1+ß(l + \l\2m-i)-1exp(-d\l\xy)),

hence for xt >0; v(x,t) is infinitely differentiable.

(2)   We now study the regularity of t>(x, r) as x, goes to zero.

For Xy > 0, we have:

m        p

xpDx+ßv(xy,x,t) = (2n)-n    2 exp(i{x,0)DlKrj(lxy,a + ß,i)dl.
r,j = l   JE"-'

Making the change of variables | = i1/2m|',Ci = i1/2Ti, we get:

(27r)nx^/>0[+fyx1,x,/)

=   2  t(x+ß+n-p)'2m'1 exp(i(xtU2m,0)D¡KrJ(c;,Xytil2m,a + ß)dC.
r,j = l •/£"->

Consider the expression DpiKrj(l,Xytll2m,a + ß). We have:

\DpsKrj(l,Xyt1/2m,a + ß)\£M   for |||gl.

M is a constant independent of xift.

Making the change of variables f = t|'; Ç, = i"Cí with x = |||; we get:

D\Krjilxytmm,a + ß) = x "I**-™ D\.KrjiV,Xyt 1/2mx,a+ ß)

so:

|Df/Crj.(|,x1i1/2m,a + i?)|gM||||a| + ,/'|-2m+1-p   for \£\^.l.

If|a| + |ß| + n + l-2m^0, we take p = n + l + \a\ + \ß\ - 2m and:

| D¡KrJi¿t,Xyt1/2m,a + ß) I g Mil + 111")"1   for all f.

Since xpDx+ßvixy,x,i)=0 for x=0 and p = n +1 a| +10| + 1 -2m = 0, we obtain:
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D"+ßv(xy,x,t) = 0(l)rt/2m\x\-n-w-M + 2m'Xl + \x\N)-1;       x-i^O.

If |aj + \ß\ + 1 + n-2m<0, we take p = 0, then:

\D¡Krj(lxytll2m,a + ß)\^M\l\-n       for ||| ^1.

Therefore :

|Z>|Kr/|,xlI1/2m,a + )3)| ̂  M(l + II]")-1       for all &

We get:

Dx+ßv(xy,x,t) = 0(l)/"e/2m(l + |jc|w)_1       for X! = 0.

The lemma is proved.

Theorem 3.2. Let A be a positively strongly elliptic operator on E",

homogeneous, of order 2m, with constant coefficients. Let By, •■■,Bm be m homo-

geneous, differential operators on E" of order r¡ < 2m — 1 with constant

coefficients. Let t be a positive parameter such that (A,y) is formally positive.

Then G(x y,t) is given by the expression:

G(x,y,t)=(2nyn f   exp(i<x-.y,¿>)í>(É) + »I"*^ + v(x,y,t)
Je»

where the integral is taken as the Fourier transform of a tempered distribution

if 2m < n;v(x,y,t) is given by Theorem 3.1.

(1) G(x,y, t) is infinitely differentiabie for x^y,
(2) D0tG(x,y,i) = O(l)r£/2m|x-y|n + 2m-|0[|-<:(l + \x-y\N)~l if 2m-n g |ot|

and

D"G(x,y,t) = 0(l)t'El2m(l + Ix-y]")'1,    if 0 si |a| < 2m-n,

where 0 < s < 1 and N is an arbitrary positive number.

Proof.   The theorem follows immediately from Lemma 3.1 and Theorem 3.1.

Theorem 3.3. Let G(x,y,t) be the Green's function defined in Theorem 3.2

and 2m > n; then:

(1) x±y, t1-n,lmG{x,y,t)-+0 as t-> + oo,

(2) i1_n/2mG(x,x,0~(27t)"nJ'£n[a(O + l]"1^ + O(l)t-£/2m as /-» + oo.

Proof. Let t = x2m and make the change of variables J = t|'; tt — xCy • We

obtain:

G(x, y, t) = x"~ 2mE(xx, xy, 1) + v(x, y, t).

We consider the expression v(x,y,t). From Lemma 3.4, we have:
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m fi

v(x,y,t) =    Ei""'-"        exp(i<:xx-xy,0)Qrj(ll)Hj(lyy,t)
r,j = i Je»-1

■ f CrWiCjWi) [a(ty,l) + lYldtydt
JC|

On the other hand; Hj£tyui) = 0(i)x'1+i'2m'\l + |||2m-^)-1. When x # y

then by the Riemann-Lebesgue theorem, we have:

x2m~"G(x, y,t)-*0   as í -> + oo.

Theorem 3.4.   Let G(p)(x,y,t) be the pth iterate of the Green's function G

defined by Theorem 3.1. Let p be such that 2mp > n; then:

(1) Ifxïy, tp-"l2mG(p)(x, y, t) - 0 as t -» + oo,

(2) tp-"/2'"G(p)(x,x,0 = (27:)-n ]E„[a(0 + iypd^ + 0(1)1'E/2m,     0<s<l,

t-* + oo.

Proof.    We construct the iterates of G. We know that:

G,2)(x,y,t) - G(x,z,í)G(z,y,í)dz,       x#J>.
Je»

The integral is well defined. We also have:

FxG(x,z,t) = (27r)-("-1,/2exp(-i<z,Ô)f   exp(i(*i-2iKi)[ö(fi»!) + í]_1*i
Je'

+ exp(-i(z,0)V(xy,Zy,lt)

with:

F(x1,z1,|,0=    I  QuiltyRjilztA CÍ-'expíiCixJCflíCi.^ + t]"1^!-
r,j = l JC|>(

Consider the Fourier transform of G(2)(x,y, t) with respect to the tangential

variables x.

FxG(2)(x,y,t) = (2nY1-")l2   Í      exp(-i(x,0)Gl2)(x,y,t)dx,       x*y,
Je»-i

= (27t)(1~")/2   i       j   exp(-¿<i,|»G(x,z,í)G(y,z,í)íízí/i.
Je»-¡Je»

By Fubini's theorem we may interchange the order of integration. We obtain:

F*G>2)(x,y,t) =       FxG(x,z,t)G(y,z,t)dz,
Je»

t*g(2)(*> y> 0

= (2it)(1-")/2 f   f exp(-¿<z,|»exp(¿^1(x1-z1))[a(^,|) + f]-1G(y,z,0^lí/z

+ (27r)(1-")/2f  exp(-¿<z,0)F(|,x1,z1,OG(>',z,í)áz.
Je»
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From Theorem 3.2; Lemmas 3.2; 3.3; it follows that all the integrals are well

defined. The first integral of the above expression may be written as follows:

(2«)»-»W*f   exp(-i<f,e»G(y,z,0 f exp[i£1(x1-z1)][a(£1,e) + í]"1 d^dz.
Je- Je1

Denote by fe(z1,x1,i,Ô= J£lexp[i^1(x1-z1)][a(^i,l) +t]-1^!» Then:

(2«)<1-">/2f   expi-Kz,0)Giy,z,t)kizy,Xy,et,t)dz
Je-

= i2n)(1-n)l2( fe(z.,x.,|,0 f      expi-Kz,0)Giy,z,t)dzdzy
Je" Je--*

kizy,Xy,l,t)FiGix,y,t)dzy
Je*

= i2n)(i-n)l2\kizy-xy,lt)expi-i<y,cy)\exp[inyizy-yy)][ainy¿) + t]-1dnydzy
Je1 Je1

+ (27i)(1-")/2f kizy-Xy,l,t)expi-Ky,lf)Viï,yy,Zy,t)dzy.
Je*

Consider the first term. It is easy to see that fe(w, f, i) is integrable with respect

to u. Applying Fubini's theorem, we get:

(27i)-"/2exp(-/<y,Ô)   f exp[iclyixy-yy)][a^y,l) + ty2dyly
Je*

expiir}xZy)kizy-Xy,l,t)dzy = (27r)~1/2exp(í'»j1x1)[a(M1,|) + í]~1 .
Je*

since

We consider:

(2^)(1-B)/2   f expi-Kz,0)Vilxy,Zy,t)Giy,z,t)dz.
Je"

As before we may write it as

^   Vil,xy,zy,t) i(2n)il-n)l2j^   exp(-Kz,0)G(y,z,t)dz\dzy.

The integral in the bracket is the Fourier transform of G with respect to the

tangential variable z. We obtain:

f    i exp(-i<y,|»exp[¿^1(z1-y1)] ViÍ,yy,Zy,t)[a^y,c¡) + t] -'dÇydzy
Je* Je*

+       expi-i(y,C))Vit;,t,yy,Zy)Vi¿l,t,yy,Xy)dzy.
Je*
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Denote the first integral by hy(c\,Xy,yy,t) and the second one by h2(l,Xy,yy,t);

then:

FxGl2)(x,y,t) = (27r)(1-n>/2exp(-i<.p,|»f  exp^ix, -y,)][fl(i„|) + i]"2^,
Je1

+    hy(lXi,yy,t) +  h2(lXy,yy,t) + g(lXy,yy,t)
with

S(lxy,y„t) =       exp(-i(y,iy)k(zy-Xy,Z,t)V(i,Zy,yy,t)dzy.
Je1

If Am > n, we want to take the inverse Fourier transform of FxGi2). First we

establish the following lemma:

Lemma 3.5.   Let s(lx¡,yy,t);   hy(l,Xy,yy,t),   h2(l,Xy,yy,t) be as above;

then the following estimates hold uniformly for t ^ r0 > 0

(1)  S(l,Xy,yy,t)   =   Oííl + m4"')-1),
—  -   -« -      '*|4Bn-i>(2) hy(t,Xy,yy,t)     =    0((1 +

(3) h2(l,Xy,yy,t)      =     0((1   +
r1),

4-)-1).

Proof. Making the change of variable f = i1/2m|' and taking into account

the results of Lemmas 3.2, 3.3, we get the above estimates immediately. We

return to the proof of the theorem. If Am > n, we may take the inverse Fourier

transform of FXG(2) with respect to f. We obtain:

G(2)(x,y,t) = i»"" f exp(-Kx-y,0)[a(C) + ty2dc;
Je»

+    O)"-""2      Í        eXp(Kx,ïy){hy(l,Xy,yy,t) + h2(lXy,yy,t)}dl
Je»-1

If Am < n, we construct FxG(3)(x,y, t) etc. step by step. We take only the first

term and we have to make an estimate of the error involved in terms of the para-

meter t, for large  t.

From the proof of Theorem 3.3, we have:

S(lXy,yy,t)     =     0(l)T-4'"+1-£(l  +  |e|4m-1)-1,

hy(lxy,yy,t)  = OÍDr-^^-d + lll4-1)-1,
h2(i,xy,yy,t)  = Oiljt-^-Xl + ier-1)-1.

Therefore if Am> n, we have :

Gl2)(x,y,t) = (2n)-n f exp(i<x - y, O) [«(£) + i]_2^ + 0(l)r2+("-£)/2'".
Je»

More generally if 2mp > n,

Gip)(x,y,t) = (2ny f exp(Kx-y,O)[a(0 + trPdi + O(l)rp+i'l-^2m .
Je»



530 B. A. TON [April

The conclusion of the theorem follows immediately.

4. In this section the Green's function cS(x,y, t) corresponding to the elliptic

boundary value problem {A + tI,Bj, j = l,»»»,m} where A and Bj are defined

respectively on S and on Y and have infinitely differentiable coefficients is con-

structed. We will:

(1) Construct the Green's function G associated with the elliptic boundary

value problem {A + tI;Bj; j = l,---,m] where A and Bj are defined on En+,E"~l

respectively, with infinitely differentiable coefficients.

(2) Seek an integral representation of a function u(x), infinitely differentiable

function with compact support in E\ Up"-1 in terms of iA + tI)u,BjU.

(3) Get the function fS using (1) and (2).

Lemma 4.1.   Let Hjy(xl,x—y,t) be given by the expression:

HJy(xy,x-y,t)

= 2 f   exP(i<x-y,e»erj-(y,e,o f   R~W«i*j[^.Ci.ô+fl'I.»iw.!
r = l   JE"-* JCçt

where a(y,Ç,,f) is the characteristic form of the homogeneous regularly elliptic

operator Ay with coefficients evaluated at y; C», is a closed curve in the Ci

upper half plane surrounding the roots of a(y,(,,|) + t = 0 for fixed |,t.

grj(y, f,r) are the elements of the transpose of the inverse of the matrix:

(crjiy,l,t) = Jc   a_1fc/i;,C1,l)[a(y,Ci,l) + tr'rfCi).

bjiy,Ç) is the characteristic form of the differential operator Bjp  of order r}

and with coefficients evaluated at y.

HJSlixy,x—y,t) is infinitely differentiable for x#y and:

iBk - Bki,)HniO,x-y,t) = 0(l)r£/2m|x-y|-" + 2-%    k,j = 1, -,m,

AHjSiXy,x-y,t) = Oil)t-el2m\x-y\-n+2-*,       x, >0.

Proof. Hjp(xy,x—y, t) is well defined and for Xy > 0 is infinitely differentiable

(Lemmas 3.2, 3.3). We study the case when xx ->0. Let p be a positive integer

and consider:

(x-y)pDxD{Hn(xy,x-y,t)

= 2 exp(i<x-y,Ô)
r = i Je--*

■ D^xQrj(ly,t) £    Ci-1+ß™mixi)la(HiA) + í]"1 dt\dl.
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The expression Dp{ } is integrable at the origin when x, -»0. We have only

to consider it at infinity.

D¡^xQrJ(y,Lt) jc   Cf+r_1 KP,i„l) + í]_1^i)

=   t^ + W-'>-pXI2mDp^xQrjiy,ll)jc     irl*9W*Cut) + lTitKtï

Making the change of variables f = x\\', £, = t£', with x = 11|; we get:

D^xQrJiy,ii)Jc cri+ß[aiUui) + ir'í/c.)

ta+í-,í-'of.{í'ux^»i'.t-2*)jf cr'^^Ct.io+t-^r^Cij»

So:

\ JcLt

= |(«+.«-'i-'W»-0(l)|rî|-"-*+W + ">'   for large |||.

If we take p = - r,- + « + | a | + | ß \ ;> 0, the expression (x -y)"ÙxD\Hjy is well

defined. When x=y, it is equal to zero. We may replace exp(/<x— y,|» by

exp(i<x-y,|» - 1 which is less than |x-y|1_£|£| _E+1. We get:

DxHJyiO,x-y,t) = 0(l)r£/2m|x-y|rj-n-|a|-|il| + 1-\

It follows that if rk g r¡:

iBk-Bky)HJ9iO,x-y,t) = O^r^lx-yl-^2-'.

When rk > r}\ consider

m        /»

BkHJyixux-y,t) = 2 exp(i<x-y,Ô)Or/y,|,0
r = i Je--*

■   f    Cr1exp(íCiX1)Mx,C1,|)[a(y,C1,|) + í]-1í/C1í/e.
Jcî,t

It is well defined for X! >0, has a discontinuity at (x,,x—y) = 0 and:

BkHJyixu0,t) = 0.
xi = 0

The integrand is nonnull for x = y; Xy >0.

Consider: BkHjy(xx — y\,x — y,t). We have:

BkHJP(\x-y\,x-y,t) = 0.
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bk(y,íy,t) is infinitely differentiable; taking the Taylor's development of bk in

powers of x — y for x neat y, up to the order n + rk + 2 and putting in the above

integral, we obtain:

BkHj}(xy,x-y,t) = BkiHJ9(xy,x-y,t) +        exp(i{x-y,0)P)k(ly,Xy,t)dl
Je»-1

+ f      exp(Kx-y,0)P2k(lx,t,y)dl
Je»-'

The integrals are well defined for xt > 0 and the last expression is majorized by

Mt~e/2m\x-y\~e+rj+1 for x^O. The expression P}k&Xy,y,t) is not in-

tegrable when Xi =0.   Since BkHj£\x — y\,x — y,t)\x=p = 0 we must have:

P)k(l0,y,t) = 0.

It follows then that:

(Bk-Bk9)HJ9(xy,x-y,t) = 0(l)t-cl2m\x-y\-^2-'

for all j, k.

We note that (x — y)n~2AHjf(xy,x — y,t) is uniformly continuous in x — y

for Xj > 0 and is equal to zero for x = y. So for large t when | x — y I — t~ei2^Zm+2^i

we have :

\(x- y)"-2AHjP(Xy,x- y,t)\ = Mt~s

for some positive number s.

On the other hand, we have :

\{x -yT+2m-l+°AHj>(xux-y,t)\ = Mt-°l2m.

So for | x - y\ > re/2(2m+2), we get:

| (x - yf-2AHjP(Xy,x -y,t)\ = Mt ~^m .

Hence for large t and xy > 0, we obtain:

(x-y)"-2AHjP(Xy,x-y,t) = 0(l)rv/2m, 0< v < 1.

Lemma 4.2.   Let Hj9 be as above, then:

BkfHJ9(0,x-y,t)  = 0   lfk+j,

Bj9Hjf(0,x-y,t)  = 5p.

Proof.   It follows immediately from the definition of fl,.

Lemma 4.3. Let {A; Bj;j = !,-••,m} be a uniformly regularly elliptic

boundary value problem where A and B¡ are defined on E", E"'1, have in-

finitely differentiable  coefficients and are homogeneous of orders 2m, rj re-
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spectively. Let Az, Bjz be the operators obtained from A; B¡ by taking the values

of the coefficients at the point z. Let G(z)(x,z,t)be the Green's function associated

with [Az + tl; Bjz; j = 1,•••,«.} constructed in §3, (Theorem 3.2).

Let

a0(x,z,t) = (A-Af)G{z)(x,z,t),       x^z; x,z in B+,

(1) ccj(x,z,t) = iBj-BJz)Glz)ix,z,t),     j = l,-,m,

a(x,z,i) - (a0,--,aj,

ßoAx,y>t) = iA-Ap)Hkpix,y,t),

(2) ßJkix,y,t) = iBj-BJP)Hkyix,y,t),      j = l,-,m,

AfcAO   =   (ß0k,-,ßmk),

Hky is given by Theorem 4.1.

(3) w(x,z,t) = ivix,z), hix,z),-,hmix,ê)).

Define the linear transformations:

T0w(x,z,f) = a(x,y,i)v(y,z)dy,
Jb*

Tkw(x,z,t) =   f    ßk(x,y,t)hk(y,2)dy,
Jr0

with:

m

Tw = T0w +   2 (Tkw),
*=i

B+ = {x:|x|<l, xt>0};   T0 = {x:|x| < 1, xt = 0}.

Then the integral equation:

w(x, z, t) + Twix, z, t) + a(x, z, í) = 0

may be solved by the Neumann series for sufficiently large t and:

vix,z,t) = oa^-'^ix-zp-'-xi + ií^x-z)!")-1,

hjix,ê,t) = 0(l)r£/2m|x-z|-',+2-e(l + |í1/2m(x-f)|T1.

t = x2m  <e<l; N any positive integer.

Proof.   We have from Theorem 3.2:

a0(x,z,i) = 04 - Az)G(z)(x,z,t) = Oœr-'lx-zl1-"-^ + \Qc-zflYl.

ztf.z.t) = iBj - BJz)Gtz)ix,z,t) m Oil)x~' |^-z|-"+2-'(l + lOe-f)!*)-1.
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Finally from Lemma 4.1:

ßJk(x,y,t) = 0(l)T-£|x-j>|-" + 2-\

Consider the series:

w(z,x,t) = oe(x,z, t) + Tot + T2cc + •••.

It may be written as:

v(x, z, i) = <x0(x, z,t)+ a0(x, y, t) <x0(y, z, t)dy
Jb+

+ E        ß0k(x, y, t)cck(y, z)hj(x, z,t) = ccj(x, z,t) +      cc0(x, y, t)ccj(y, z, t)dy
k = i Jr0 Jb*

m        i*

+ E ßJk(x,y,t)cck(y,z)dy+---,       j = l,--,m.
k = l   Jta

The first series is majorized by:

0(1)t-e/2m|x_z|i-„-E +0(ty-'/2"[   ¡x—^l1-»--   ly-zl1-"-'^

+ 0(l)ftlm  \     |^-j)|-" + 2-e|z-j|-" + 2-£#+-,

which is uniformly convergent for large t; x,z in B +. The second series is ma-

jorized by:

0(l)í-£/2'"|x-z|2-"-£ + 0(l)í-c/mf     \x-y\1-n-e\y-z\1-n-Bdy
J B *

+ o(i)t-£/mf   |jc->;|-"+2-£|z-j|2-B-td>)-r--,

which is also uniformly convergent for large t.

The proof of the theorem is completed.

Theorem 4.1. Let {A;Bj; j = l,---,m] be a uniformly regularly elliptic

boundary value problem where A,B¡ are defined onE\,En~x and have infinitely

differentiable coefficients. If G(z)(x,z, f) is the Green's function associated with

the constant coefficients problem {Az + tI;Bjz;j = l,---,m} constructed in

Theorem 3.2; then:

G(x,z,t) = G(z)(x,z,t)+       Gly)(x,y,t)v(y,z,t)dy+  S       Hkf(xy,y,t)hk{y,z)
J B* k = iJr0

is the Green's function associated with the elliptic boundary value problem

{A + tl; Bj-,j = l,.-.,m}. Hk$ are the kernels defined by Lemmas 4.1, v, hk are

the solutions of the system of integral equations of Lemma 4.3.
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B+ = {x:Xi>0; |x|<l};   r0 = {x:xy = 0;|x| < 1}.

Proof.   We verify that

(A + tT)G(x,z,t) = ôz,

BjG(x,z,t) = 0,       Xy =0; j = l,—,m.

(1) Consider (A + tl)G(x,z,t). We have:

(A + tI)G(x, z, t) = (Az + tI)G(z)(x, z, t) + (A- Az)Gz(x, z, i)

m       fi

+   E        (A-Ap)Hky(x,y,t)hk(y,t,z)dy
k = i Jr0

+ (A + tl) (j    Gy(x, y, t)v(y, z, t)dy\ .

(2) Let 0(x) be an infinitely differentiable function with compact support in

B+. We have:

(A+tT)G(x,z,t)cb(x)dx = cb(z)+ \    (A-Az)Gz(x,t,z)cp(x)dx
JB* Jb+

m       /*

+   S (A-Ap)Hkp(x,y,t)hk(y,z,t)cb(x)dydx
k=l   Jb*

+ J   iA + ti)(j ^ Gy(x, y, t) v(y, z, t)dy\ cb(x)dx .

(3) Consider the last integral. Since $(x)eC"(B+) we may write it as:

Z      f   Í Gy(x,t,y)v(y,z,t)[tcb + DXâ&MxMdydx
\a\=2m  Jb*Jb*

=   S     i    i [tcb(x) + D"x(áx(x)cb(x)y]Gy(x,y,t)v(y,z,t)dxdy
\n\=2mj B + Jb +

by Fubini's theorem. Integrating by parts, we obtain:

|     |   (A + tI)Gy(x,y,t)v(y,z,t)cb(x)dxdy
J b*Jb*

= ||    (Ay + tI)Gy(x,y,t)cb(x)v(y,z,t)dxdy

+ (A-Ay)Gy(x,y,t)v(y,z)cb(x)dxdy
Jb+Jb*

=       <t>(y)v(y,z,t)dy + (A-Ay)Gy(x,y,t)v(y,z,t)cb(x)dydx
Jb* Jb*Jb+
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by Fubini's theorem.

(4)   But v, hj satisfy the equation:

0 = v(x,z,t) + iA-Af)Gzix,z,t)+       (A-Ay)Gy(x,y,t)v(y,z)dy

+

Í   iA-<
m     /•

2        (A- Ap)Hky(x,y,t)hk(y,z,t)dy.
k = í JTo

Hence :   iA + tI)G(x, z, t) = 6z.

(5) We show that B;G(x,z,í) = 0 if x, =0; j = l,--,m. We have with x,z

in ß+:

BjGix, z,t) = BJzGzix, z, t) + iBj - BJz)Gz(x, z, t) + \   BjGyix, y, t)v(y, z)dy
Jb*

m       p

+   2        BjHkyix,y,t)hkiy,z,t)dy.
k=i Jr0

The differentiations under the integral sign are valid (Theorems 3.2, 4.1). The last

integral may be written as:

i   iBj - BJy)Hkyix,y,t)hkiy, z,t)dy + f BJfHkyix,y, t)hkiy, z, t)dy.
Jr-o Jr0

Let ebix)eC?(r0). Consider:

BJyHkpix,y,t)hkiy,z,t)ebix)dxdy.
Jr0Jr0

By Fubini's theorem, we have:

Bj9Hky(x,y,t)hk(y,z,t)eb(x)dxdy.
Jr0Jr0

We know that BJyHkp(x,y) = ôJkôp so as x^O, we get:

¿y*      h(y,z,t)eb(y)dy.
Jr0

(6) On the other hand, v and hk satisfy the equation:

(Bj - BJz)Gz(x,z,t) +  f  (Bj - BjP)Gy(x,y,t)v(y,z,t)dy
J B +

m      /»

+   2        BjyHkp(x,y,t)hk(y,z,t)dy + hj(z,x,t) = 0;      j = l,-,m.
k = l J To

So BjG(x,z,t) = 0, j = !,■■■,m.
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Lemma 4.4. Let {A;Bj;j = 1,••■,m} be a uniformly regularly elliptic

boundary value problem where A and Bj are defined on £",£B_1 and have

infinitely differentiable coefficients. A and B¡ are homogeneous differential

operators. Let Gz(x,z,t) be the Green's function corresponding to the constant

coefficients problem  {Az + tl; Bjz; j = 1,•••,m). Gz is given by Theorem 3.2.

Let Hjp(x,y) be the kernels given in Lemma 4.1. Set:

<*oj(x,y) = (A - Ap)Hjp(x,y),

(1) otrj(x,y) = (Br-Bry)HJy(x,y),

<Xj(x,y) = (a0j,---,amJ),

ß0(x,z) = (A-Az)Gz(x,z),

(2) ßr(x,z) = (Br-Brz)Gz(x,z),

ß(x,z) = (ß0,-,ßm),

(3) vv/x,j?) = (Vj,hj,---,hmj).

Define the transformations:

TWj(x,y)    = ß(x,z)vj(z,y)dz,
Jb*

TkWj(x,y)   =       ak(x,z)hjk(z,y)dz,
Jt0

m

Twj+ D Tkwj = Jwj(x,y).
k=l

Then the integral equation:

Wj(x, y) + Jwj(x,y) + otj(x,y) = 0,       j = 1, — ,m,

may   be   solved   by   the   Neumann   series for   large   t   and for   x,y in

B+UT = {x:|x|<l; xx^0}.

Moreover:

Vj(x,y)    =  0(l)r£/2m|x-j;| -+»-(1 + \fr-fif)-1,

hjk(x,y)   = 0(l)r£/2m|x-j|-n + 2-£(l + |(x-j)|,v)-1    ,

0 < e < 1; N is a positive integer.

Proof.   From Lemma 4.1, we have:

«oj(x,y) = (A-Ap)HJy(x,y)  = 0(l)r£/2m|x-j|-" + 2-£,

xrj(x,y)   = (Br-BrP)Hjp(x,y)= 0(l)re/2m|x-j|-"+2-£.

From Theorem 3.2, we get:
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ß0(x,z) = (A-Az)Gz(x,z) = 0(l)r£/2m|x-z|-', + 1-£,

ßr(x,z) = (BT-Btz)Gz(x,z) = 0(l)r£/2m|x-z|-" + 2-£.

Consider the series:

<*jix>y) + s<*jix,y) + S*j + ■■••

It may be written as:

*oj(*>y) +       ß0ix,z,t)aojiz,y)dz +   2 aokix,z)aJkiz,y)dz + —
Jb* fc = l J r0

and:

*rjix,y) +       ßrix,z,t)a0jiz,y)dz +   2        arkix,ê)ajkiz,y)dê+ —.
Jb+ k = i Jr0

They are majorized by the series:

0(l)r£/2m|x-y|-n + 2-£+0(l)r£/m  í   |x-z|-n + 2-£|y-z|-', + 2-£i/z
Jb*

+ 0(l)r£/m f   |x-z|-n + 2-£|z-y|-" + 2-£i/z+-
Jr0

which is uniformly convergent for large i.

The lemma is proved.

Lemma 4.5. Let HJzix,z) be the kernels constructed in Lemma 4.1 for the

constant coefficients problem {As + tl; Bjz; j — l,---,m\ Let Gz(x,z,i) be the

Green's function associated with the elliptic boundary value problem

{Az + tl; BJz; j = 1, ••-,m}. The differential operators A, Bj are homogeneous

and have infinitely differentiable coefficients.

Let:

Hjix,y) = Hjpix,y) +      Gz(x,z,f)f/z,y)c/z + 2        Hkzix,z)hkjiz,y)dz
Jb* k = i Jr0

where x>¡ and hkj satisfy the system of integral equations of Lemma 4.4. Then:

iA + tI)Hjix,y)  =0,     x in B+ = {x:xy > 0, |x| < 1},

Br//r(0,x,y) = 5„

BrHj(0,x,y) = 0   ifrïj.

Proof.   The proof is long but easy and is similar to that of Theorem 4.2.

Theorem 4.2. Let u(x) be an infinitely differentiable function with compact

support in E\ UP"-1. Then u has the following integral representation:
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u(x,t)=\     G(x,y,t)(A + tI)u(y)dy +   E    f      Hj(x-y,t)Bju(0,y)dy.
Je»+ y = i Je»-1

{A,Bj;j = l,-",m} is a uniformly regularly elliptic boundary value problem;

A and Bj are defined on £",E"-1 with infinitely differentiable coefficients.

G(x,y,t) is the Green's function associated with {A+ ti; B¡; j = l, •••,m} and is

given by Theorem 4.1.    The kernels Hj are given by Lemma 4.5.

Proof.   We consider the boundary value problem:

(A + tl)u(x) = f(x)   on El,

Bju(x) = gj(x)   on E"'1,   j = l,---,m.

Since u is infinitely differentiable and has compact support in E"+ UE"'1;

f and g; also have compact supports.

We may write u(x) as u(x) = v(x) + w(x) where v(x) is the solution of

(A + tl)v(x) =f(x) on En+, Bjv(x) = 0 on En~\ j = l,—,m, and w(x) is the

solution of the boundary value problem: 04 + r/)w(x) = 0 on £"., Bjw(x) = gs

on E""1, j = l,---,m. Let G(x,y,t) be the Green's function associated with the

elliptic boundary value problem {A + tl; By, j = 1, •••,m} given by Theorem 4.2.

We get:

v(x) =   I     G(x,y,t)f(y)dy.
Je»

Now we construct w. Let Hj{x,y) be the kernels given by Lemma 4.5; then w

is given by the expression :

m      p

w(x)= I hj(y)Hj(x-y,t)dy.
j = i Je»-1

The conclusion of the theorem follows immediately.

Theorem 4.3. Let@(x,y, t) be the Green's function associated with the uni-

formly regularly elliptic boundary value problem (A,y) where A is defined on

a bounded open subset S of E" with infinitely differentiable coefficients;

y = (By,--,Bm) is a family of differential operators defined on the boundary T

of S with infinitely differentiable coefficients. A and B¡ are homogeneous dif-

ferential operators.

(A,y) is assumed to be formally positive in the sense of Definition 2.1. Let

G(x,y,t) be the Green's function of Theorem 4.1 (i.e. corresponding to the case

of a half space). Then:

<S(x,y,t)= G(x,y,t)-u(x,y,t),       y in S,

u(x,y,f) =   2 û(cj)~1(x),c])k1(y),t),
k
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ebk are the diffeomorphisms corresponding to the uniform regularity of S and:

M(x,y,r) =   2 Hjix,z,t)BjGiy,z,t)dz
i-t Jto

Hjix,z,t) is given by Lemma 4.5

T0 = {z: z.=0; |z|<l}.

Proof. There is no loss of generality in assuming that y = 0 is in S. Let G(x, r)

be as in Theorem 4.1. Then G(x, r) is a fundamental solution of the elliptic

operator A + tl.

If u is the solution of the boundary value problem :

iA + tI)uix) = 0   on S,

Bjix)u = BjGix,t)   on T; j = l,---,m,

then 'Six, t) = G(x, i) - u(x, i).

S is a bounded domain which is uniformly regular. It may be covered by a

finite number of open sets Nk and there exists a family of infinitely differentiable

unctions nk with compact supports in Nk, and such that:

2 «2(x) = 1,       x in S.
k

We have:

(A + tl) (u(x)«2(x)) = «2(x) 04 + tl)uix) + 2 aa0(x)DxuDpn2k(x).
]t\ + \ß\=2m;\x\<2m

Similarly for Bj(ur¡l).

We consider the boundary value problem:

iA + tI)un2 =fk   on NknS,

Bjiml) = gjk + hJk   on Nk n T; j = 1, •••, m,

where :

A(x) = 2 axßix)DxuDfn2jix),
|iI<2Bi;|a| + |P| =2m

hjkix)= 2 bjßkix)DxuDßn2ix).
W<rj;W\ + W=rj

Using the diffeomorphisms ebk(x) we map Nk into the positive half ball. Set:

ük(x) = (nl(u))(epk(x)); fk(x); gjk(x); h~jk are similarly defined.

Using the same notations for the transplanted operators, we get:

(A + tl)ük(x) = fk(x)   on B+ = {x:xy > 0; |x| < 1},

Bju(0,x) = gjk(0,x) + fijk(0,x),   on T; ;' = 1,•••,m.
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fk is an infinitely differentiable function with compact support in B+ U T0.

Applying Theorem 4.2; we obtain:

ük(x) = f    fk(y)G(x, y, t)dy +  Z    f    Hj(x - y, t) {gJk(y) + hJk(y)}dy.
Jb* §m\ .lr0

Since  ~Lknl(x) = 1, we have:

m       /•

ü(x) =   Z ük(x) =   Z Hj(x-y,t)BjG(0,y,t)dy.
k j = i Jr0

The theorem is proved.

5. Theorem 5.1. Let @2p be the 2pth iterate of the Green's function 'S defined

in Theorem 4.3. Let Ay be the realization of A under null boundary conditions y

as an operator on ^(S). If 04, y) is formally self-adjoint and Xj, cbj are respec-

tively the eigenvalues and eigenfunctions of Ay; then: for 2mp> n:

D"xD^2p(x,y,t)  =   2ZD"4>j(x)DßcbJ(y)(Xj + t)-2p;        \ot\,\ß\=2m.
j

Proof. Let 2mp> n, then (Ay + tl)~p is of Hilbert-Schmidt type. Since

(A,y) is formally self-adjoint, it follows from Theorem 2.1 that Ay is self-adjoint;

Xj 4-1 > 0, we have a complete orthonormal system of eigenfunctions cbj.

Consider:

((Ay + tl)-pf,cbj)=  f   f   &lp)(x,y,t)f(y)cbj(z)dydz,  f in L2(S).
Js Js

We get:

(Xj + t)-pcpj(y) =j   ^(p)(z,y,t)cbj(z)dz.

Using Parseval's formula, we obtain:

Z (Xj + t)~ 2p 4>j(x)cbj(y): =   f &(p)(z, x, t) <3lp)(z, y, t)dz
j Js

= @(2p)(x, y,t).

Let &2p,k(x,y,t)= 2Zkj = y(Xj + t)-2p<bj(x)<bj(y) then:

p2P,k - y2p\\w^»w™ =   Z (Xj + ty2p\\ Cbj ||^,2,
k

I

S   I. (Xj + t)-2p+2-+0   as I, fc->oo,

2m,2 .. y»/ 2m,2hp,k(x,y,t)-+yi2p)(x,y,t)   in W2m'2xW
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In particular; DxDß/a2pkix,y,t)^> DxxDßy&2pix,y,t) in L2 x L2 and we get:

DxxD^2pix,y,t) =   2 ikj + t)-2pD'ePjix)Dßebjiy).
j

Lemma 5.1.   Let @pix,y,t) be the pth iterate of the Green's function defined

in Theorem 4.3. Then if 2mp > « + | a | + | ß |,

x*y, tp-{n+M + m)l2mDxxD^pix,y,t) -* 0   as t^ + oo,

Je-
pdt

as t-* + oo ; for x,y in S.

Proof. We prove the lemma for | a | = | ß | = 0; the general case may be treated

in the same fashion. Let G be the Green's function associated with the elliptic

boundary value problem {A + tl;y} on a half space with infinitely differentiable

coefficients. From Theorem 4.2, we have

G(x,y,<)= Gyix,y,t) +       Gzix,z,t)v<z,y,t)dz +  2 HJzix-z,t)hjiz,y)dz
JB* j = i Jr0

x, y in B+ .

Gy is the Green's function associated with the constant coefficients problem

[Ay + tl; Bjy; j = l,»»»,m} on a half space.

We show that:

lim    t"-nl2mGpix,y,t) = lim    tp-nl2mGp^x,y,t).

(-»+00 (-» + 00

First consider the case 2m> n. With t = x2m, we have:

x2m-

2m—n
X

"f  Gzix,z,t)viy,z,t)dz =  0(1)t-£  f  ly-zl1""-« (1 + \xix-y)\N)-ldz ,
Jb* Jb*

Í HjZ(x-z,t)hJ(z,y,t)dz = 0(l)x-°\xy\-'' f ^-yX'^'Xl + ̂ î-yf^dî.
Jr0 Jr0

So:

lim    i1-"/2mG(x,y,í) =   lim   í1"n/2mGw(x,y,/).
<-»+00 t-» + 00

Now if 2m < «, from Theorem 4.1; we have:

Gix,y,t) = Gw(x,y,0   (1 + 0(1)0
so

lim   i"-n/2mG(p)(x,y,0 = lim    í"-"/2mG(p)>/x,y,í).
f-» + 00 í-» + 00

On the other hand:
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&{x,y,t) = G(x,y,t)+ Z SïA-'W.&'GO,*)

with

v(x, y,t) =  Z Hj(x — z, t)BjG(z, y, t)dz.
; = i Jr0

An argument as above gives:

lim   f/2m9íp)(x,y,t) = lim    t"''"2mG(x,y,t).
(-♦ + 00 f-» + 0O

The conclusion of the lemma follows from Theorem 3.4.

Theorem 5.2. Let Ay be the realization of the positively strongly elliptic

operator A under null boundary conditions y = (By,--,Bm) as an operator on

L2(S). The operators A and Bj are defined on a bounded open set S and on the

boundary T respectively and have infinitely differentiable coefficients.

(A,y) is assumed to be uniformly regularly elliptic, formally self-adjoint

and formally positive in the sense of Definition 2.1. Let Xj,cbj be the eigenvalues

and eigenfunctions of Ay. Then:

(1) N(t) =    Z  l-Orr'2'"   f   f dÇdx   as i-> + oo.
AjSf JS Jn(*,S)<l

(2) r(n + M + W)]2mD:Dßye(x,y,t) = r(n + |ot| + l"l)Z   D"4>j(x)D%j(y)^0
Xj£t

as t-> co for x,y in S and x # y.

(3) D"+ise(x,x,t)~(2n)-ntin^"^ml2mK(n,m,p,a,ß) f ?+ß[a(x,0 + l]-2"^
Je»

as t -> oo for x in S and Amp > n + | a | + | ß |.

r(2p)
K(n,m,p,a,ß) = '(»Üi»-'-*^)'

Proof.   One can show easily that:

Z (Xj + ty2p =   f $i2p)(x,x,t)dx.
j Js

Consider the sequence of integrable functions t2p~nl2m@(2p)(x,x,t). For large t,

we have from the previous lemmas: t2p~nl2m\'S(2p)(x,x,t)\ ^ M for all x in S

and Misa constant independent of x and t. We apply the Lebesgue dominated

convergence theorem and we get:
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t2p-"'2m¡  g(2p)(x,x,i)dx~(2n)-n f   f   [aix,¿l)+l]-2pd!;dx
Js Js Je«

as t -> + oo.

Applying the Tauberian theorem of Hardy-Littlewood [10], we get the results

for Nit).

We may write:

aW*,y,0=  2 ikj + t)-2pebjix)epjiy) =   f \k + ty2pde'x,y,k)
j Jo

where e(x, y, i) is the spectral function. Taking into account the results of Lemma

5.1 and applying the Tauberian theorem of Hardy-Littlewood again, we get the

results stated in the theorem.

6. The case of a nonself-adjoint regular elliptic boundary value problem

is considered. The study of the asymptotic distribution of eigenvalues for the

nonself-adjoint case has been carried out by Carleman [8] and Keldych [11]

for second order elliptic equations.

Theorem 6.1. Let {A; Bj-, 7 = 1,•••,«.} be a uniformly regularly elliptic

boundary value problem where A and Bj are defined on a bounded open subset

S of E" and on the boundary T wir« infinitely differentiable coefficients. 04,y)

with y = iBy,---,Bm) is assumed to be formally positive in the sense of Definition

2.1. Let Ay be the realization of A under null boundary conditions y as an oper-

ator L2iS). If 2mp > n where 2m is the order of A, the operator iAy + tl)~2p

is of trace class. Let k¡ be the eigenvalues of A, then :

tr04 + tiy2p =   2Zikj + ty2p=   ( y(2p)(x,x,t)dx.
j Js

&i2p)(x,y,t) is the 2pth iterate of the Green's function associated with Ay + tl

on S.

Proof. With the above hypothesis, it has been proved in §2 that (Ay + tl)~p

is of Hilbert-Schmidt type, so (Ay + tl)~2p is of trace class. Let ebj be the gener-

alized eigenfunctions of Ay. They form an orthonormal basis in lf(S). Denote

by Pj the orthogonal projection of L2(S) onto the subspace of L2(S) spanned

by {ej>y,—,ebj}; consider the operator: T} = P¡(A + tI)~2pPj.

It takes the subspace spanned by {eby,---,ebj} into itself. The subspace is of

finite dimension and we have:

tr(T;)   =   2 (kk + t)-2p,
k = l

tr(Tn - Tm) = tr(T„) - tr(TJ =   2 (kj + t)
j=m

-lp
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Denote by |||T||| the trace norm of an operator of finite rank. (Ruston [13].) Then:

|||T„-Tm||| g   Z l^. + fl-2".
m

Since (Ay + tl)~p is of Hilbert-Schmidt type:   Zy|Ay + i|"2p< oo. It follows

that T-* f€ in the trace norm topology and :

tt(T)I.(Xj + t)-2p.
j

We now show that% = (Ay + tl)~2p. We know that (Ay + tl)~2p is a compact

operator and Tj->{Ay + tT)~2p in the operator norm topology. Since Tj-*J

in the trace norm, it converges to x in the operator norm; hence #= (Ay + tl)~2p

and:

tr04y+r/)-2'= Z (Xj + t)~2p.
j

We may write <€ = xR + Kf, where #Ä = {V*-<g)l2, ^¡=(^-^*)¡2i, Since »„«i

are self-adjoint, we may apply results of §5 to get

tt(Ay + tI)-2p= Z (Xj + t)~2p=  Í <$(2p)(x,x,t)dx.
i Js

Theorem 6.2. Let (A,y) be a uniformly regularly elliptic boundary value

problem with infinitely differentiable coefficients and formally positive in the

sense of Definition 2.1. // Ay is the realization of the positively strongly elliptic

operator A as an operator on L2(S) under null boundary conditions y and Xj

are the eigenvalues of Ay then:

N(t) =    Z     1 ~ (2nynfl2mwa(S)   as t-+ + oo
ReAySi

where wa(S)= $swa(x)dx and wa(x) = ja,x<i)<ydc;.

Proof.   Set Xj = a, + ißj-, f(t) = ¿Zj(otj + t)~2p and g(t) = Zj(Xj + t)~2p.

Let hit) =f(t) - git) = ¿Zj{(otj + ty2p - (Xj + ty2»}.

It has been proved by Browder [4] that the spectrum of Ay is contained inside

an algebraic curve  |lmC| ^ c(ReC)'i with p = (2m —l)/2m, we get:

\h(t)\=  Z(a,. + i)-2'-1|aJ.r\
j

The eigenvalues have an accumulation point at infinity, hence  there exists a

number N such that:

\otN\<ts=otN+1,       0<«5<1.

We have:

Z ¡«jHaj + ty2'-1 =   Z ¿»-"'(otj + ty2" ,     |ft(0| ^ ct(*-1)Sf(t).
N+Í N+l
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It follows that:   lim t2p-n,2m E,(a, + t)~2p = limi 2p-"'2m E/A, + r)"2".

By an argument as in Theorem 5.2 and applying the Tauberian theorem of

Hardy-Littlewood we get:

Nit) =2     1 ~ tn,2mwaiS) ■ i2ny   as r ̂  + oo.
ReA gr
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