ASYMPTOTIC DISTRIBUTON OF EIGENVALUES
AND EIGENFUNCTIONS FOR GENERAL LINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

BY
BUI AN TON

The asymptotic distribution of eigenvalues and eigenfunctions of elliptic oper-
ators has been studied extensively by Weyl, Courant, Carleman, Pleijel and others.
During the last decade, Garding [9] and Browder solved the problem for an
elliptic operator with infinitely differentiable coefficients and null Dirichlet bound-
ary conditions. It is the purpose of this paper to consider the problem for a general
class of elliptic boundary value problems investigated during the last few years by
Agmon-Douglis-Nirenberg [2], Browder [3], [6] and Schechter [14].

Let (4,y) with y = {B,, -+, B,,} be a uniformly regularly elliptic boundary value
problem on S. It is assumed that A is positively strongly elliptic and (4,7y) is
formally positive. If A, is the realization of A as an operator on L*(S) with null
boundary conditions j, then the following results are obtained:

(1) When 4, is self-adjoint:

Nt = X 1~(2n)_"t"/2'" f f dédx as t— + 0.
Ajst S Ja(x,&)<1
Let e(x,y,?) be the spectral function of A,, then:
t"”*'“"'"’"/z’”D;‘Dfe(x, ¥, t) — t—(n+lal+lﬁl)12m AZS‘Daqu(x)Dﬂqu(y) -0
Jj=

ast— + o0; x,yin S and x # y.

D**Pe(x, x,t) ~ (2m) " +1al*18)/2m I(2p)

l"(l +%)F(2p—ﬂl;l—+lﬂ—l-)

m

: f &8 a(x, &) + 1172 dé

for x in S as t— + oo (4mp>n + |a| + | B)).
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A;, ¢; are the eigenvalues and eigenfunctions of 4,.
(2) When 4, is nonself-adjoint, then:

Nn= X 1 ~(2n)""t"/2"'f f dédx as t— + 0.
Rei; st s Jax,&)<1

In §1, we give the notations and definitions; in §2, we state some known results;
in §3 the Green’s function of (4,7y) corresponding to the case of a half-space and
constant coefficients is constructed. In §4, using the parametrix method, we
construct the Green’s function associated with (4,y) when 4 and B; are defined
on S,T" and have infinitely differentiable coefficients. Results for the self-adjoint
case are given in §5 and for the nonself-adjoint case in §6.

1. Notations and definitions. Let E" be the n-dimensional Euclidean space,
S an open subset of E". The points of E” will be denoted by x = (x;,---,x,)
and integration with respect to dx over a subset of E" denotes integration with
respect to Lebesgue n-measure.

For1<j=n, D;= i“@/é’xj. If o =(ay,-++,0,) is any n-tuple of nonnegative
integers, we set:

le|= Zo, D= []D}.
j=1 i=1

The linear partial differential operator 4 = X, <2 a,(x)D* with coefficients
defined on S is said to be uniformly elliptic on S if there exists a constant ¢ > 0
such that:

|a(x,&)| = ¢|&|*™ for every point £eR".

a(x, &) is the characteristic form of 4 and is given by:

ax,§) = X a,(x)&, ¢ in R,

lal =2m

We shall assume throughout for the sake of simplicity that S is bounded and
that its boundary is locally a C®, (n— 1)-dimensional manifold with C* imbedding
in E". In particular, S will satisfy the uniform regularity conditions (Browder [5]).

DEFINITION 1.1. Let j be a nonnegative integer:

WiA(S) = {u:ue L*(S); DueL*S), |«| <j},

where D*u denotes the derivative in the distribution sense.
Wi(S) is a Hilbert space with respect to the inner product:

(u,v); = X (D*u,D), u,vin w(S),
lal <

(u,v) = J.s u(x)v(x) dx

is the usual inner product in L%(S),
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The norm in W/+*(S) is given by:

1/2
[ulsa= (2 107wl so)

al<j
Let y =(B,,**,B,) be a family of m differential operators with coeflicients
defined on S. We assume that the order r; of each B; is less than 2m and we
write:
1Bl=r;
We also assume that the coefficients b, lie in C*(S). For each j, the charac-
teristic form is defined for { e C" by
bi(x,0) = X b(x)".
1Bl=r;
DEerINITION 1.2. A is said to be regularly elliptic on S if it is uniformly elliptic
on S and if for each x of T, the polynomial a(x,AN,+T) in A (Ae C; N, is the
unit exterior normal vector to T at x, T any unit tangent vector to I" at x) has

exactly m roots (counting multiplicities) in the A upper half plane.

DErINITION 1.3. The boundary value problem (A,y) is said to be uniformly
regular if:

(1) A is uniformly regularly elliptic.

(2) For each unit tangent vector Tto I" at x, let Cy be a closed, Jordan rec-
tifiable curve in the A half plane which contains in its interior all the zeros of
a(x,AN, + T) with positive imaginary parts.

For1 £j,k<mj; set:

¢, T) = | A7'by(x,AN, + T)[a(x,AN, + T)]"'dA.
Cr
Then there exists ¢ > 0 such that:
IDet(cjk(x, T))l =2¢>0
for all xeT and all unit tangent vectors to I" at x.

2. DEFINITION 2.1. Let x, be a point of I'; Ay the homogeneous differential
operator of order 2m with constant coefficients

Ay = X ayx,)D°.

lal=2m
Let yo = (Byo,***s Bo) Where:
B, = 2 bjp(xO)Dﬁ.

jo
18l =r;

Then (A,y) is said to be formally positive if the boundary value problem:
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(Ao+thu = f on S, >0,
Bu =0onT, j=1,m

has a unique solution u in C*(S) N L*(S) for every f in C2(E")|s and t >0,
such that:

[y < €|l | acs)

with the constant c¢ independent of u,f.

We shall take the above definition as our basic assumption on (4,7). Alter-
native assumptions which are equivalent to Definition 2.1 may be given in a
more computational form; e.g. as given by Agmon [1]: the polynomial in the
complex variable 4, a(xo,AN, + T) + t has no real roots; it has m roots with
positive imaginary parts and:

| Det( 27 (x0, ANy, + T) [a(xe, AN, + T) + t]“dl) | > 0,
Ce,T

r’j = l’ e, m

C,.r is a closed Jordan rectifiable curve surrounding all the roots with positive

imaginary parts of a(xo,AN, + T)+t considered as a polynomial in 4.
DEFINITION 2.2. (1) Let A, be the operator on I*(S) defined as follows:

D(A,) = {u:u in W*™*(S); Bu=0onT; j=1,--,m},
Au = Au if ueD(4,).

(2) (A4,y) is said to be formally self-adjoint if A, is a symmetric operator
in I*(S); i.e.

(Au,v) = (u,4,v)
for all u,v in D(A,).

THEOREM 2.1. Let (A,y) be a uniformly regularly elliptic boundary value
problem as above, such that A is uniformly strongly elliptic and (A,y) is formally
positive.

Then:

(1) If (A,y) is formally self-adjoint; A, is then a self-adjoint operator on

LX(S).
(2) If t21t,>0; (A, +tI)™" exists on all of I*(S) and:

A, + 7| et

(3) If p is a positive integer such that 2mp > n; (A + tI)? is an operator
of Hilbert-Schmidt type,
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A, + () = fs G0, 0f )y [ in IX(S)

and 9,(x,y,t) e [}(S) x L*(S).

Proof. It has been proved by Agmon [1] that when (4,y) is formally positive
then ||(4,+ t)™'|| S ct™" and moreover if 4, is formally self-adjoint, then A,
is self-adjoint.

Since (4,7y) is a regular elliptic boundaryvalue problem; we have the a priori
estimate:

”u"Wz'”l"2 = C{"u"Lz-!-"(Av.l_tI)u"WZ"-(p—t).z}’
| |wame2 = C||(4, + tDPu 2.

Therefore (4, + tI)™? is a continuous mapping of I*(S) into W*"?*(S). From
the Sobolev imbedding theorem, the injection mapping:

W2m3(S) - L*(S)

is continuous when 2mp > n. Hence (4, + tI)"? considered as a mapping of
L*(S) to L°(S) is continuous. By the Dunford-Pettis theorem, it follows that
(4, +t)7? is of Hilbert-Schmidt type:

(A, + )P f(x) = fs G, 1,0 )y, f in IZ(S).

3. Let A be a homogeneous linear elliptic differential operator on E" with
constant coefficients, of order 2m.

Lety={B =1, m} be a family of homogeneous linear differential opera-
tors defined on E" with constant coefficients and of order r; <2m—1. Let ¢
be a positive parameter such that (4,y) is formally positive in the sense of Defi-
nition 2.1. In this section, we construct: (1) the Green’s function G(x, y,t) asso-
ciated with (4 + tI,y); (2) the iterates of G. Finally we study the asymptotic
behavior of G, as t— + .

LemMMA 3.1. Let A be a homogeneous, linear elliptic operator of order 2m,
on E" with constant coefficients. Let t be a positive parameter such that A + tI
is positively strongly elliptic. Then A + tI has a fundamental solution E(x,y,t)
given by:

Ex,7,1) = (2m)™" Ln exp(i (x—y, EN[a(®) + 1] e

where the integral is taken as the Fourier transform of a tempered distribution
if 2m<n.
E(x,y,t) is infinitely differentiable for x #y and if t=1*" then:
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D*E(x,y,t) = O(1)t "Ix - yl"'”"'"‘""‘(l + ]‘t(x—y)|")'1
if —n+2m—|a|§0 and
D°E(x,y,t) = O(1)t™*(1 + |e(x—p) | ~*

if —n+2m-— |a| >0, where 0<e<1; N is an arbitrary positive number
(Garding [9)).

THEOREM 3.1. Let v be the solution of the boundary value problem:
(A+thy =0 on E,,
Bjp = B,E on E*™',  j=1,,m,

where (A,7) is a regular elliptic boundary value problem; A and B; are homo-
geneous and have constant coefficients. Then:
(1) o(x,y,t) is infinitely differentiable for x #y and is given by:

W)= E [ expli<2=5,8) VoG a1, 0

r,j=1 En—
with:

Vrj(éaxlaybt) = er(E,t)Hj(E,}’n‘) .Lg C;—lexP(iC1x1) [a(Cng) + t]—ldC1

where C, , is a closed, Jordan rectifiable curve in the {, upper half plane and
surrounding all the m roots (counting multiplicities) of a((,,&)+t=0 for

fixed E,t.
HGyid) = [ exp(—inbye, Ola, & + 17,

Finally Q,; are the elements of the transpose of the inverse of the matrix
(c, ;& ) with:

er(é’t) = f
(2) Let t=1""then Do(x,y,t)=O(1)t*|£—p| "*2mlel=e(1 4 |2 —p|%)~?

if —n+2m—|a|<0and Dv=0(1)y""(1 +|£=$|"™" if n+2m—|«|>0;
0<e<1; N is an arbitrary positive number.

Crl—lbj(CI’é)[a(Ch E)"'t]—ldCl, r’j=19"'sm°

t

Proof. We write:

2m ry
A = E Aq(D)Dg ’ Bj = qu(ﬁ)qu’
q=0 V]

q=

where D denotes differential operators involving only D,,---,D,. Taking the



522 B. A. TON [April

Fourier transform with respect to the tangential variables X = (x,,-,x,) we
are reduced to the initial value problem:

2m
(): aq(é)D‘Hu) V(x,8) =0, x,>0,
q=0

r; . N )
zob.iq(é)quV(xl,é) = Hj(é,t); Xy = 0; ] = 1,...’m’
a=
where:
Vend) =@ % [ exp(-ics, &)t )ds.
En—1

H j(f, t) is similarly defined (r; <2m —1).
We consider a solution of the form

Vxd) = 2n)~! f exp(ix, L) [a(C0 ) + 117 P

Cee

where p({,) is a polynomial of degree less than or equal to 2m and C, , is a closed,
Jordan rectifiable curve in the upper half plane surrounding all the m roots
(counting multiplicities) of a({;,&) + t =0 for fixed ¢,z.

By Cauchy’s theorem, we may assume that p({,) is a polynomial of degree
less than m:

py) = _El Pt
We obtain a system of m equations with m unknowns.
(Zn)_l 21 pr(E) J; Crl-lbj(CIsE)[a(Cl, E) + t]_ldgl = Hj(és t)9 J = ls M.
r= St
We may solve it in a unique fashion. Indeed, we have:

Det( L a8 + 1] “d&;)

— g |
Cyt,[&7]~m2

and the last expression is nonnull by hypothesis for |&| 0. We get:

b, ) [aCs, &) + tlé'l"'"]"dcl)

pr(é) = 'El er(z, t)Hj(éa t) ’

Vet = T QuE0HED [ el x) o, d + 07de,.
J= &t
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We want to take the inverse Fourier transform of V. To prove the summability
of V(x,,&1t) with respect to & we establish the following lemmas.

LeMMA 3.2. The following estimates hold uniformly for t=t,>0:
f(xl’é’ t) = c C;_ICXP(5C1X1)[Q(C1,3) + t]_ldCl
&t

= Ot + |&]™") ™ Yexp(—d|€[x,)

where x, >0, d >0 independent of t and C;, is a closed, Jordan rectifiable
curve in the {, upper half plane surrounding all the m roots of a(¢;,&) + t for
fixed & t. a(l,,&) is a homogeneous polynomial of degree 2m .

Proof. Making the change of variables &=¢'/2"&, ¢, = t'*"(', we get:
Fed) = o [ el ot B + 117
Ce 1

tr/2m—lf(x1t1/2m, Et -1/2m, 1)’
We consider:
JnE) = [ et @b + 117
4

(1) the equation a({,,&) + 1 =0 may be written as c{?"+ P({;,&) =0 where
P({,,&) is a polynomial of degree less than or equal to 2m— 1 in the {, variable
and such that P({,,0) = 1; c is a constant. The roots of a({ &) +1=0 depend
continuously on the parameter & and as & goes to zero they go to the roots of
ct3™ +1=0. Therefore, there is a closed curve C containing all the roots of
a(¢ l,f) +1 =0 for fixed and small &.

For Ifl <1, we have:

FenE1) = f £ texplix, 1) [a(Cy, &) + 1771,

SO:
'f(xb'f’l)l é M9

lf(xl,z,t)l < Mt:)/Z"'-l'

(2) To study the behavior of f(x,,&,1) as |$| oes to infinity, we make the
change of variables & =1&';¢, =1{, with 7= |E| Then

fGn b1y = [&]r2m j exp(iL v ) [aCy, ) + 72",

Cg,,-zm

Consider the equation a({,,&’) + t ™2™ =0 for large t. The roots of the equation

considered as a polynomial in {, depend continuously on ™! and so as t goes
to infinity they go to the roots of a({;,&")=0; |&’| = 1. Therefore there exists
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a closed curve C, in the upper half plane surrounding all the roots of
a(¢, &) + 7™ =0 for large 7

feend = "'_szc , ¢ texp(i¢ytx,) [a(C 1, &) + 2] Nde

On the curve C,, we have, |a({;,&)|2c>0. On the other hand
|a(¢y, &) + 77" 2 |a(¢,&")| — <™. For sufficiently large 1, |a((;,&") + ™"
2 ¢, > 0. Therefore for large ¢

[f(x1,&1)| < Mexp(—d|&|x))|&[~*"

where d = Inf; ce: Im{;) >0, M is a constant and

a

’f(xl,f,t)léMexp(—dIElxl)lfl"’z"', |§|>1-

M is independent of x,,¢.
Combining (1), (2) we get the lemma.

LeMMA 3.3. 1. The following estimates hold uniformly for t 21t,>0
¢ (&1) =fc¢ ¢ OaLd + 7 L = 0 + [E ) + [ €Y

where r=1,---,;m; r;<2m and C;, is a closed Jordan rectifiable curve in
the {, upper half plane surrounding all the m roots of a({,,&)+t=0 for
fixed &t. bj(Cl,E); a(l,,& are homogeneous polynomials of degree rj,2m
respectively.

2. Let Q,,(E, t) be the elements of the transpose of the inverse of the matrix

(c,j(f, 1)) then:
Q&0 =0((1 + &™)+ [&[*™™.
Proof. The proof is similar to that of Lemma 3.2. We will not repeat it.
We return to the proof of Theorem 3.1. From Lemmas 3.2, 3.3 and noting that
Hy& =001+ &1 +|&*)") we obtain:
V(xy,&,8) = O((L + | E[*™ ™" exp(—d| €] x,)

where d>0; x; >0; t=1,>0.
For x; >0, V(x,,&,1) is integrable with respect to & we have:

Q2n)"v(x,t) =

E [ omce 0,600 @n [ G temttie) o, b+ 7 dtiat.

r,j=1JEn
We study the regularity of v(x,?). The results are stated in the following lemma:

LEMMA 3.4. Let v(x,t) be given by the expression:
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v(x,t) =
;m::?n)— E”_IexP(K’e,E»er(é,t)Hj(E, t)J;{ &7 texp(ix4) [a(C1,3)+ ‘]ﬁd(ldé

where Q,;; H; are defined in Theorem 3.1, then:

(1) v(x,t) is infinitely differentiable for £ #0.

(@ D(0,%,8)=0() ™ |#|™" 12 4 [£]) 7 if —n—|a|+2m <0
and D%(0,%,1) = O(1)t"**"(1 + | £|")™! otherwise. 0<e<1 and N is an ar-
bitrary positive integer.

Proof. (1) First we consider the case when x; > 0. We may take the dif-
ferentiation under the integral sign. Indeed:

Krj(a X1s t,a+ ﬁ) Eaer(E9 t)Hj(éa t) J;g c';._ ! +ﬂexp(iClxl) [a(Cl ’ 3) + t]- ! dCl ’

K G xpta+ B) = O(E[*PA + &™) exp(~d|&]x,)),

hence for x; > 0; v(x,t) is infinitely differentiable.
(2) We now study the regularity of v(x,t) as x; goes to zero.
For x; >0, we have:

D" Po(x, %, 1) = (2m) " T exp(i<£, E)D K, (&, x1,0 + B, 1) dE .

r,j=1 JE»~
Making the change of variables & = ¢t'/2"¢" ¢, = t"/*™¢ | we get:

Qr)"2PD**Pu(x,,%, 1)

Y fetptn-p)/2m-1 L . exp(i<£t'*" EY)DEK, (&, x,t'*", a + B)dé.

r,j=1
Consider the expression DK, (&, xt"/*" a + B). We have:
| D3K, (&, x> 0+ p)| <M for |E|<1.

M is a constant independent of x,,¢.
Making the change of variables & = t€’; {, =t} with 1= lf I; we get:

DEK, (&, x "> o + B) = ¢ **PHP7Im+ I DR K (& x,t "1 0 + B)
SO.
| DIK, (&, x "> a + B)| < M| | *IP1=2m* 1P for |&| 2 1.
If || +|B| +n+1—-2m20, we take p=n+1+|a|+]|B| —2m and:
| DIK, (&, x,t'* 0+ B)| S M(1 + |€|)™" for all &.

Since £2D**#o(x,%,1)=0for £=0and p = n +|a|+|B|+ 1 —2m 2 0, we obtain:
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D**Py(x;,%,0) = O(1)e™/2m | 2| T leIm B 2mme(g 4 2|7 X 20

1f |a|+|ﬁ| +1+n—-2m<0, we take p=0, then:

| DIK, (& x>0+ B)| < M|E|™  for |E|21.
Therefore:

| DIK, (&, %, 0 + B)| < M(1L + |E|")™"  for all &.
We get:

D**Pu(xy,%,0) = O(1)t™**™(1 + |£[)™"  for x; 2 0.
The lemma is proved.

THEOREM 3.2. Let A be a positively strongly elliptic operator on E",
homogeneous, of order 2m, with constant coefficients. Let B,,---,B,, be m homo-
geneous, differential operators on E" of order r; < 2m — 1 with constant
coefficients. Let t be a positive parameter such that (A,y) is formally positive.
Then G(x y,t) is given by the expression:

G, 3) = @0 | explica =y, 9)[a®) + 117 d& + o3

where the integral is taken as the Fourier transform of a tempered distribution
if 2m < n;v(x,y,t) is given by Theorem 3.1.

(1) G(x,y,t) is infinitely differentiable for x +# y,

(2 DG(x,y,0)=0()t " |x—y[|"* 2"l e (1 + | x—y|") ™" if 2m—n £ |af
and

D*G(x,y,t) = O()t~**"(1 + |x—y )™, if 0<|a|<2m—n,
where 0 <e <1 and N is an arbitrary positive number.
Proof. The theorem follows immediately from Lemma 3.1 and Theorem 3.1.

THEOREM 3.3. Let G(x,y,t) be the Green’s function defined in Theorem 3.2
and 2m > n; then:

) x#y, ' *"G(x,y,t) >0 as t - + ©,

(2) 7Gx, x,6) ~ (21) " [ gL a(€) + 1]71dE + O(1)t™*™ as t—> + 0.

Proof. Let ¢ =1>" and make the change of variables & =t¢’; {, = t{;. We
obtain:

G(x,y,1) = "7 *"E(1x,7y,1) + v(x, y,1).

We consider the expression v(x,y,?). From Lemma 3.4, we have:
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i) = I 1 explies—eh, )06 DH Gy

r,j=1

: fc {texp(ityxy) [ay, &) + 117 dt,dé.
g

On the other hand; H/(&,y,,) = O()c* ' 72" *(1 + |&|*"~")™'. When x #y
then by the Riemann-Lebesgue theorem, we have:
2" "G(x,y,t) >0 as t— + o0.

THEOREM 3.4. Let G,(x,y,t) be the pth iterate of the Green’s function G
defined by Theorem 3.1. Let p be such that 2mp > n; then:

(1) If x#y, PG y(x,y,0) > 0 as t > + o,

(2) PG (%%, 0) = 2n) ™" [p[a(€) + 1]7PdE+ Ot ", O0<e<l,
t— + 0.

Proof. We construct the iterates of G. We know that:
Goy(x,y,1) = f G(x,2z,0)G(z,y,0)dz, x#y.
Ell

The integral is well defined. We also have:
FiGm20) = Qo) exp(—i6 D) [ explitr—2)E)[atE, & + 17 dty

+ exp(—i(z', E>) V(xl,zla Ea t)
with:

V(xy,z,Et)= X er(fat)Hj(E,zpt) J; Ci“eXP(iClxl)[a(Cl,E) +t] ."dCI .
&

r,j=1

Consider the Fourier transform of G,y(x,y,t) with respect to the tangential
variables £.

FGand = @00 [ exp(-ik8,E)Gawnnds,  x#7,
En-
= @t [ [ exn(—i¢8,8) 60,20 60,2, 0dzds.
En—-1JEn
By Fubini’s theorem we may interchange the order of integration. We obtain:

F£G(2)(xa Y, t) = J‘ F.QG(xa Z, t) G(ys z, t)dz s
En
F.QG(Z)(x, Y, t)
=@ [ [ exp(= iz, E)explie, (v, —z ) ates, ) + 117 GO, 2,04 d2

+ @R[ exp(— i B VE 3121, G020z
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From Theorem 3.2; Lemmas 3.2; 3.3; it follows that all the integrals are well
defined. The first integral of the above expression may be written as follows:

@[ exp(=ic2,8) 6020 [ explitixy-2)1[a(E )+ 07! dEuda.
Denote by k(z,,x;,t,&) = j’E‘exp[iél(xl—z,)][a(fl,f)+t]"‘d.fl. Then:

(2m) 1 ~mI2 fEnexp(— i(£,&)) G(y, 2,0 k(z4, %4, &, 0)dz
= @Qm)" "2 fE k(z1%1,4,0) Ln_‘ exp(—iK2,&)) G(y, 2z, 1)d2dz,
= J; k(zy, x4, & ) F,G(x, y,0)dz,
= @0 " k(zy =21, 8. 0exp(= <5, &) expliny (e, — v Latn,. &)+ “Hnidz,

+ @O ke = G0 XP(— 5, D) VE vz .

Consider the first term. It is easy to see that k(u, &, ) is integrable with respect
to u. Applying Fubini’s theorem, we get:

@0 exp(=iC5,0) [ explie, v~y Ia(e1, O + 117,
since
[ exptinz ke, =, 8,0z, = @m) explingx[ani, ) + 117
We consider:
Qn)t -2 f exp(—iC2, &) V(& %1, 21, D) Gy, 2, 1)dz
E'I

As before we may write it as

f V(E’ xla Zl’ t) {(Zn)(l —n)/2f exp(_ l<2’ E))G(.V, Z, t)df} dzl .
Et En-1

The integral in the bracket is the Fourier transform of G with respect to the

2

tangential variable 2. We obtain:

[, [[exot=ics.emslici(zi=y)1 Ve yiozi D [atEund + 1~ dEsd,

+ Llexp(_ i<ﬁ’£>) V(z’ L yl’zl) V(E’ t, yl’xl)dzl .
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Denote the first integral by h,(§,x,,y,,?) and the second one by h,(,x,,;,0);
then:

FiGy(x,),1) = (275)(l —")lzexP(_ iy, E>)f£l exp[i&,(x, —y)][a(¢,, é) + t]_zdél

+ hl(ésxl’yl’t) + hZ(E’xlayl,t) + g(E,xl’yl’t)
with

gErvint) = [ exp(—iC. eI =5 LD VG2 p1s 0z,

If 4m > n, we want to take the inverse Fourier transform of F;G,,. First we
establish the following lemma:

LemMMA 3.5. Let g(f’xl’yl’t); hl(éaxl,yl’t)’ hZ(E,xl’yl’t) be as above;
then the following estimates hold uniformly for t=1t,>0

(l) g(Eaxl’ypt) = 0((1 + IE!‘M)_I)’

@ k& x,y0 = 0 +|E*™™H,

@) k& x,y,0 = O(L+|E*™7).

Proof. Making the change of variable & = ¢'/*"¢" and taking into account
the results of Lemmas 3.2, 3.3, we get the above estimates immediately. We
return to the proof of the theorem. If 4m > n, we may take the inverse Fourier
transform of F,G(,) with respect to £. We obtain:

1/2m

Gay(x, 3,1) = (2m)™" E"exp(-i(x—y,€>)[a(€)+t]"zdé

+ @mt 72 Lﬂ_fm(i(ff}) {h(G %0900 + hy(€ %1, y1, D)L,

If 4m < n, we construct F G ,(x, y,t) etc. step by step. We take only the first
term and we have to make an estimate of the error involved in terms of the para-
meter ¢, for large ¢.

From the proof of Theorem 3.3, we have:

@, x1, 91,1 = O™+ (1 4 |E[*m~1)1,

hl(& X15 Y1 ’t) = 0(1)7_4"”. ! —2(1 + I E |4m-1)— ! s

hZ(E’ X1, Y1t) = 0(1)7"‘4"” ! a+ I E |4m_ 1)‘1 .

Therefore if 4m > n, we have:

G631 =(2m) " f exp(i<x =y, EN[a(®) + 1]72dE + O(1) 2+ =02,

More generally if 2mp > n,

G5 = @)™ | expliCx=3, 8D + 177 + O+ 005m .
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The conclusion of the theorem follows immediately.

4. 1In this section the Green’s function %(x, y,t) corresponding to the elliptic
boundary value problem {4 + tI, B, j= 1,---,m} where 4 and B; are defined
respectively on S and on I' and have infinitely differentiable coefficients is con-
structed. We will:

(1) Construct the Green’s function G associated with the elliptic boundary
value problem {4 + tI;B;; j =1,---,m} where A and B; are defined on E% ,E"~!
respectively, with infinitely differentiable coefficients.

(2) Seek an integral representation of a function u(x), infinitely differentiable
function with compact support in E% UE""! in terms of (4 + thu,Bju.

(3) Get the function ¥ using (1) and (2).

Lemma 4.1. Let Hj(x,,X—),t) be given by the expression:

Hj(x,,X=9,1)
= 21 . exp(i<®—5,E))0,,5,&,1) fc ¢y Yexp(ilyx,) [a($,84, &) + ] dC,dE
r= n-1 E,t

where a($,(,,&) is the characteristic form of the homogeneous regularly elliptic

operator Ay with coefficients evaluated at y; Cg, is a closed curve in the (,

upper half plane surrounding the roots of a($,(,,&) + t = 0 for fixed &,t.
Q,j()‘),f,t) are the elements of the transpose of the inverse of the matrix:

(c,j(ﬁ, &) = f 01,05, L, O[5, L0, D) + t]“dcl).
2.t

bi(9,8) is the characteristic form of the differential operator B;; of order r;
and with coefficients evaluated at .
Hjy(x,,X—7,t) is infinitely differentiable for X # j and:

(Bk - Bkﬁ)Hjﬁ(O")e—ﬁ9 t) = O(l)t—alzm Ix._j}l-n+2—'e, k’j = 19 Y ()
AHj(x,,£=3,8) = Ot~ **" |£—-5|™*27%,  x,>0.

Proof. H;y(x,,%—p,t) is well defined and for x; > 0 is infinitely differentiable
(Lemmas 3.2, 3.3). We study the case when x, = 0. Let p be a positive integer
and consider:

(#—=P)PD*DiH jy(x,,%—$,1)

=% [ explict -8

r=1 JEr-1

: Dg{E“Q,,(é,ﬁ, 0 |G exp(itix) [ + 417 dcl}dé.
&t
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The expression D5{ } is integrable at the origin when x; - 0. We have only

to consider it at infinity.

D%{E“Q,j(ﬁ,é, o[ D+ z]"dcl}
&,

= et LD [ L a0 117 .
Ce,

Making the change of variables & = t&’, {; =t} with == | &|; we get:

DE{E’Q,;()", e[ o a8 + 1]-1dc,}

Ce,y

ta+ﬁ—r,-ng,!Emer(j)’él’ 1:-2m) Cl—l+ﬂ[a(ﬁ’£b£/) + t—Zm]—ldCl} .

CE'

So:

D’;’{E‘Q,;(ﬁ,f,t) o P a(5,00, ) + 171,

Ce,t
= (@mrmPZm (1) | 8| TPt BL for large |€].

If we take p= —r; + n+ |a| +|B| 2 0, the expression (£—$)?D*D{H ; is well
defined. When £=37, it is equal to zero. We may replace exp(i(X—7,&>) by
exp(i(£—$,&)) — 1 which is less than [£—3|""¢|&| ~**'. We get:

DaHiﬁ(O’)e—j’3 I) = O(l)t-elzm |.£‘—j}|'f_""|“|_|ﬁ|+l—c‘
It follows that if r, <r;:
(By — Big)H 5(0,2—5,1) = O(1)t™*/2"|g—p|"+27e,

When r, > r;; consider

B"Hfﬁ(xl X —j}’ t) = ?1 [ exP(iOe '_j;a E))Qr](j}’ Ea t)

C;_leXP(iQxl)bk(f,CuE) [a(3,¢4, E) + 1] ﬁd(lda'

Cer

It is well defined for x, > 0, has a discontinuity at (x,,£—7)=0 and:

ByH ;5(x,,0,1)

= 0.

x1=0

The integrand is nonnull for £ =p; x, > 0.
Consider: B.H;y(|% — $|,%— $,1). We have:

B,‘H”(lf—fr|,£—j‘:,t)|£=9 = 0.
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by(,(1,8) is infinitely differentiable; taking the Taylor’s development of b, in
powers of £ — y for £ near $, up to the order n + r, + 2 and putting in the above
integral, we obtain:

BHi(x,,8—5,1) = BygHo(x,,%—,1) + L _xp(i<E =9, 0P (L, 5, %1, D
+ fE - exp(i(ﬁ —j}, E)) szk(és X, t’j})dé .

The integrals are well defined for x, > 0 and the last expression is majorized by
Mt~ |g—p|7***1  for x, 20. The expression P}(& x,,7,f) is not in-
tegrable when x, = 0. Since ByHy(|£ — 7|,£ — $,0)|¢=y = 0 we must have:

P}k(éso’f’,t) = 0.
It follows then that:
(Bx — Big) Hjg(x1, 2= 3, 1) = O(1)t~ /2" | g —p|™"+?~e

for all j, k.

We note that (£ — )" 4H i9(x1,X — $,t) is uniformly continuous in £ —
for x, > 0 and is equal to zero for £ = y. So for large ¢ when | £ — §| < 172"+,
we have:

|(% = )" 2AH (x1, %~ 9| < M1~

for some positive number s.
On the other hand, we have:

[ (£ =921 AH jy(x,, £ — §,1)| < Me™2™,
So for | £ — §| > 172G+ D we get:
|(£ = 9" "2 AH j(x,, % — §,1)| < Mt ™4™,
Hence for large ¢t and x, > 0, we obtain:
(&= P)"24H j(x,, £ — ,1) = O(1)t~¥2™, O<v<l.
LemMA 4.2. Let Hj, be as above, then:
ByH;(0,£—p,1) = 0 if k#]j,
BjyH (0,2 —p,t) = 0.
Proof. It follows immediately from the definition of H;.

LemMA 4.3. Let {A; Bj;j=1,---,m} be a uniformly regularly elliptic
boundary value problem where A and B; are defined on E', E"™*, have in-
finitely differentiable coefficients and are homogeneous of orders 2m,r; re-
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spectively. Let A,, B;, be the operators obtained from A; B; by taking the values
of the coefficients at the point z. Let G,\(x,z,t) be the Green’s function associated
with {A, +tI; B;,; j=1,---,m} constructed in §3, (Theorem 3.2).

Let

ao(x,z,8) = (A — A4,)Gy(x,2,1), x#2z; X,z in Bt,
1) aix,z,f) = (B;— B;)Gy(%,2,8), j=1,---,m,
o(x,2,8) = (0lgy***5%p)s
Box(x,9,8) = (4 — Ap)Hy(x,7,1),
¥)] Bn(%,5,8) = (B; — By)Hy(%£,9,1), j=1,--,m,
B(%,3,0) = (Boks**s Bua)»
H,, is given by Theorem 4.1.

A3) w(x,z,t) = (v(x,2), h(X,2), ,h(%,2)).

Define the linear transformations:

Tonts,2,0) = [ ooy 00024y,

Tonts,2,0) = [ B9 0mG, 0%,
with:
Tw = Tyw + ﬁl (Tw),
B* = {x:|x| <1, x,>0}; To={xi|x|<1, x,=0}.
Then the integral equation:
w(x,z,1) + Tw(x,z,t) + a(x,z,t) =0
may be solved by the Neumann series for sufficiently large t and:
o(x,z,8) = O()f™ ™| x—z|" "1 + |/ *"(x—2)|") 7!,
hy(%,2,6) = O(1)*/*" |£—2|"’”"(1 + |t"2"‘(5é—2) |"’)'l ,

t=1>" <e<1; N any positive integer.

Proof. We have from Theorem 3.2:
“o(x’ z, t) = (A - Az)G(z)(x: 2 t) = O(I)T-zl X—=z |1-”-.(1 + l(x—z) |N).1 ’
ay%,z,t) = (B; — B;,)G(,)(%,2,) = O(1)«"* |£—2|"'“"(l + l(x-z)l")‘l.
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Finally from Lemma 4.1:
Bu%:5:1) = O™ [£—p| ™27
Consider the series:
w(z,x,) = a(x,z,8) + Ta+ T?a + «--.

It may be written as:

D(X, Z, t) = aO(x’ z, t) + J‘ “o(x, Vs t)“o(y, z, t)dy
B*

+ 2 | putes.omG. o0 =280 + f 2,7, 00,0y, 2, Ddy
= 0 +

m
+ ,‘2_:, . Bi(%, 9, 004(P, Ddp + -+,  j=1,---,m.

o

The first series is majorized by:

O(I)t—ellmlx_zll—n—z +O(l)t—£/2mf |x_y|l—n—e |y_z|1-,,_3 dy
B+

+ O(l)t-zlm f Ix_ﬁl-n+2—z|2_j~)l—n+2—cdj} + e,
To

which is uniformly convergent for large t; x,z in B *. The second series is ma-
jorized by:

0(1):‘3/2"!';2-2'2—"—2_'_ O(I)I-e/mJ~ |x_y| l—n—al y_zl l—n—edy
B+

+ o(l)t -e/mJA |j_ﬁl—n+2—c|2_ﬁ|2—n-cdﬁ+_”’
To

which is also uniformly convergent for large ¢.
The proof of the theorem is completed.

THEOREM 4.1. Let {A;B;; j=1,---,m} be a uniformly regularly elliptic
boundary value problem where A,B; are defined on E% ,E"~" and have infinitely .
differentiable coefficients. If G,(x,z,t) is the Green’s function associated with
the constant coefficients problem {A,+tI;B;,;j=1,---,m} constructed in
Theorem 3.2; then:

G(x’ z, t) = G(z)(x’ z, t) + fB"G(Y)(X’ Vs t)l’(y, z, t)dy + kzlj;‘ Hky(xlaj"’ t)hk(j\)’ 2)
= o

is the Green’s function associated with the elliptic boundary value problem
{A+1; B;;j=1,---,m}. Hy are the kernels defined by Lemmas 4.1, v, h, are
the solutions of the system of integral equations of Lemma 4.3. :
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= {xix,>0; |x|<1}; To={x:x, =0;|x|<1}.
Proof. We verify that
A+1tDHG(x,z,t) = 6,
B;G(x,z,t) = 0, x;=0;j=1,,m
(1) Consider (4 + tI) G(x,z,t). We have:
(A +1tDG(x,2,t) = (A, + tI)G,)(x,2,1) + (A — A,)G(x,2,1)

+ kzl (4 — Ap)Hyy(x, 9, Ohy(9,t, 2)dp

+ A+t ( L +G,.(x, y,H)v(y, z, t)dy) .

(2) Let ¢(x) be an infinitely differentiable function with compact support in
B*. We have:

f (4 +tDG(x,z,0¢(x)dx = ¢(z) + f (4—A4,)G(x,t,2) p(x)dx
B* +
+ kzl , (A= APHiy(x, 9, Ohi(3, 2, )$(x)dpdx

+ L A+ ( L _Gy(x,3,0002, ,)dy) S0

(3) Consider the last integral. Since ¢(x)e CX(B*) we may write it as:

f f G,(x,1,)0(y, 2, D) [16 + DGR dydx
|a| =2m JB*

e f B+.{ [1¢(x) + DI(d.(x)(N]Gy(x, y, ) o(y, z, ydxdy

by Fubini’s theorem. Integrating by parts, we obtain:

[ ], 4+ 06,3000,z 0009axdy
B*JB*
=f f (4, + tDG,(x, 3, ) ()0, 2, Ddxdy
B+JB*
+ [ [ (4= 46,5000 00()dxdy
B+JB+

- f S0,z i)y + f f (4 — 4,)G,(x, 3,00y, 2, Dp()dydx
B+ B+JB+
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by Fubini’s theorem.
(4) But v, h; satisfy the equation:

0 = v(x,2,1) + (4—4,)G,(x,2,1) + fB"(A _Ay)Gy(x’ Y, )u(y,z)dy

+ z (A - Ay)Hky(X,f’, t)”k(j"& z, t)dj;'

k=1 ro

Hence: (A +t)G(x,z,t)=96,.
(5) We show that B;G(x,z,t)=0 if x, =0; j=1,---,m. We have with x,z
in B*:

BjG(x’ 2z, t) = B}sz(xa Z, t) + (B] - sz)Gz(x5 z, t) +[ Bij(xs Y, t)v(y, z)dy
B+

+ T f B,Hyg(x, 5, D07, 1)d5.
k=1 JIg

The differentiations under the integralssign are valid (Theorems 3.2, 4.1). The last
integral may be written as:

fr (B; — Bj) Hig(x, 9, )hy(5,2,1)d5 + f.— B oH (%, 9, D9, 2,)d5.
[] ()
Let ¢(£)e C2(T'y). Consider:
[ [ Byt s.0m.z.00d545.
| Y o
By Fubini’s theorem, we have:
[ [ Botistns. om0z 000545.
ToJTo
We know that B H;y(2,5) = 6,0y so as x; =0, we get:
on [ (320835
o
(6) On the other hand, v and h, satisfy the equation:

(B~ BpG5,2.0) + [ (8= B)Gy(25.000,2.005

+ E BijkP(x’j",t)hk(j”z’t)dj} + hj(z’xat) = 0; ] = 1,"',m~

k=1J o

So B;G(#,2,t)=0, j=1,---,m.
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LEMMA 4.4. Let {A;B;;j=1,---,m} be a uniformly regularly elliptic
boundary value problem where A and B; are defined on E', E""! and have
infinitely differentiable coefficients. A and B; are homogeneous differential
operators. Let G,(x,z,t) be the Green’s function corresponding to the constant
coefficients problem {A,+tI; B;,; j=1,---,m}. G, is given by Theorem 3.2.

Let H;y(x,y) be the kernels given in Lemma 4.1. Set:

aoj(%,9) = (A — Ay)H;y(x,9),
¢y a,{(%,9) = (B, — B,))H;(*,5),
aj(x,j}) = (ao,', °t% “mj),

Bo(x,2) = (4 = 4,)G.(x,2),

(2) ﬂ,()e, Z) = (Br - Brz) Gz(x’ Z) ’
ﬁ(x,z) = (ﬂO&'",ﬂm)s
(3) Wj(xsj’) = (vjahp R hmj)°

Define the transformations:

Twied) = [ Bez)oe iz,

Tow,(x.5) jrak(x, hyz,$)dz,

Tw; + £ Tw; = Swi(x,5).
k=1

Then the integral equation:
wix,y) + Fwix,y) + 0j(x,) =0,  j=1,-,m,

may be solved by the Neumann series for large t and for x,y in
B*UT = {x:|x|<1; x; 20}.
Moreover:

v(x,9) = O 25| 2L+ [(x - PN,
hu(£,9) = O " |£—p| " 271+ |E-p|H7
0<e<1; N is a positive integer.
Proof. From Lemma 4.1, we have:
%j(%,9) = (4 — ApH(x,5) = O(l)t_dzmlx_f’l_”z—‘,
4,%5) = (B, — BYH(%,5) = O 2" 25|27,

From Theorem 3.2, we get:
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ﬁ O(x: Z)
B(%,2)

Consider the series:

(A= A4,)G,(x,2) = Oy~ ¥ |x—z|™"*1,
(B,- - B,,)G,(J?, Z) = O(l)t‘zlzm I)e_ fl-n-i-l—g.

ai(x,9) + Fai(x,9) + So; + .

It may be written as:

ao(x%,9) +L+ Bo(x,2,0) 00 1(z,§)dz + é:l l_oazo,‘(x, o2, p)dz + -
and:
o (%,9) + f B(%,z,8) a0 (z,9)dz + § f Up(X, D)o (2,9)d2 + ---.
B* k=1 JIo
They are majorized by the series:

O(I)t—aIZmIX___j}l—n+2—e+ O(I)t-c/m J‘ I)e_fl-n-l-Z—a lﬁ—fl_"+2_‘dz
B+

+ O(l)t—s/mf Ix\__zl—n+2—¢|2_j}l—n+2—ad2+ .
I'o

which is uniformly convergent for large ¢.
The lemma is proved.

LeMMA 4.5. Let H;y(x,%) be the kernels constructed in Lemma 4.1 for the
constant coefficients problem {A,+tI; B;y; j=1,---,m} Let G,(x,z,t) be the
Green’s function associated with the elliptic boundary value problem
{4, +1; Bj,; j=1,---,m}. The differential operators A, B; are homogeneous
and have infinitely differentiable coefficients.

Let:

Hix) = Hyw9)+ [ etz + T | Hit Dhe2)az

where v; and hy; satisfy the system of integral equations of Lemma 4.4. Then:
(A+tDHx,9) = 0, xin B*={x:x,>0, |x|<1},
B.H/(0,%,9) = &,
BH{0,%,9) = 0 if r#j.
Proof. The proof is long but easy and is similar to that of Theorem 4.2.

THEOREM 4.2. Let u(x) be an infinitely differentiable function with compact
support in E% U E"~'. Then u has the following integral representation:



1966] ASYMPTOTIC DISTRIBUTION OF EIGENVALUES AND EIGENFUNCTIONS 539

wx) = [ Gpo@+muo)y + T [ Hx=5.0Bu0.5.
" i=t Jen-

{A,B;; j=1,--,m} is a uniformly regularly elliptic boundary value problem;
A and B; are defined on E" ,E"™' with infinitely differentiable coefficients.
G(x,y,t) is the Green’s function associated with {A+tI; B;; j=1,---,m} and is
given by Theorem 4.1. The kernels H; are given by Lemma 4.5.

Proof. We consider the boundary value problem:
(A+thu(x) = f(x) on EZ,
Bu(%) = g(%) on E*™', j=1,--,m.

Since u is infinitely differentiable and has compact support in E% UE"™!;
f and g; also have compact supports.

We may write u(x) as u(x)=uv(x) + w(x) where v(x) is the solution of
(A+th(x) =f(x) on E}, Bp(£)=0 on E"", j=1,--,m, and w(x) is the
solution of the boundary value problem: (4 + tI)w(x) =0 on Ef, Bw(x) = g;
on E*",j=1,---,m. Let G(x,y,f) be the Green’s function associated with the
elliptic boundary value problem {4 + tI; B;; j =1, ---,m} given by Theorem 4.2.
We get:

o) = [ Gn050My.

Now we construct w. Let H;(x,y) be the kernels given by Lemma 4.5; then w
is given by the expression:

w(x) = X OH(x=9,0d5.

j=1 J En-
The conclusion of the theorem follows immediately.

THEOREM 4.3. Let %(x,y,t) be the Green’s function associated with the uni-
formly regularly elliptic boundary value problem (A,y) where A is defined on
a bounded open subset S of E" with infinitely differentiable coefficients;
y =(By, -+, B,,) is a family of differential operators defined on the boundary I'
of S with infinitely differentiable coefficients. A and B; are homogeneous dif-
ferential operators.

(A,v) is assumed to be formally positive in the sense of Definition 2.1. Let
G(x,y,t) be the Green’s function of Theorem 4.1 (i.e. corresponding to the case
of a half space). Then:

g(x,y:t) = G(x’y’t)_u(x,y’t)’ yin S,
uGoy,t) = X #pT), ¢ 1),
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¢, are the diffeomorphisms corresponding to the uniform regularity of S and:
i(x,y,8) = X Hj(x,2,0B;G(y, £,1)dZ
j=1JTlo
Hy(x,2,t) is given by Lemma 4.5
Io = {z:z,=0; |z| <1}.
Proof. There is no loss of generality in assuming that y=01is in S. Let G(x, 1)
be as in Theorem 4.1. Then G(x,t) is a fundamental solution of the elliptic

operator A +tI.
If u is the solution of the boundary value problem:

(A+t1)u(x) =0 on S,
Bj(x)u = B,G(x,t) on r; j=1,...’m’

then ¥(x,t) = G(x,t) — u(x,1t).

S is a bounded domain which is uniformly regular. It may be covered by a
finite number of open sets N, and there exists a family of infinitely differentiable
unctions #;, with compact supports in N,, and such that:

T ni(x)=1, xinS.
k
We have:
(A + D (u(x)n(x)) = g (x) (A + thu(x) + z a,5(x)D*uD’n(x).

la| + 8] =2m;la] <2m

Similarly for Bj(un,f).
We consider the boundary value problem:

(A+thun? = f, on N,AS,
Bjun?) = gi+hy on N, NT; j=1,,m,

where:
filx) = )y a,5(x)D"uDPyi(x),
lal<2m;la] +18] =2m
hy(x) = z b;p(x)D*uDPni(x).

lal <rj;lal +18] =r;
Using the diffeomorphisms ¢,(x) we map N, into the positive half ball. Set:

i1(x) = (; (W) (Bu(x)); Fe(%); Zju(x); Py are similarly defined.
Using the same notations for the transplanted operators, we get:

(A +tDi(x) = fix) on B* ={x:x,>0; [x]| <1},
B;ii(0,8) = Z;(0,8) + hy(0,8), onT;j=1,-,m.
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£ is an infinitely differentiable function with compact support in B* U T,.
Applying Theorem 4.2; we obtain:

a9 = [ A0Gen0dy+ T [ He= 5000 + hn5)es.

o
Since X,ni(x) =1, we have:
ix)= X @(x) = X H(x—y,1)B;G(0,7,t)dy.
k Jj=1 JIo
The theorem is proved.

5. THEOREM 5.1. Let %,, be the 2pth iterate of the Green’s function & defined
in Theorem 4.3. Let A, be the realization of A under null boundary conditions y
as an operator on I*(S). If (A,y) is formally self-adjoint and A;, ¢; are respec-
tively the eigenvalues and eigenfunctions of A,; then: for 2mp > n:

DiD3F,,(x,y,1) = ? D (x)D°p(»)(4; + 1) %% I“I ) l B I =2m.

Proof. Let 2mp>n, then (4,+tI)"? is of Hilbert-Schmidt type. Since

(4,7) is formally self-adjoint, it follows from Theorem 2.1 that A4, is self-adjoint;
A;+t>0, we have a complete orthonormal system of eigenfunctions ¢;.
Consider:

(A, + D)%) = f [ Swroroearaz, 1in 2.
S JS
We get:
Gy + 07,0 = f T 09z,
Using Parseval’s formula, we obtain:
U+ 07 S 000= [ operx )Tz 0dz

= g(Zp)(x’ Y, t) .
Let 9,, x(x,y,1) = 2}‘ =1(4;+ t)—2p¢j(x)¢j(y) then:

IIA

1
E Gy +07] ¢ byons

” gzl’," - gZp”Wvazxwz»mz
]

s ) ()'i+t)-2p+2—>0 as l, k- o,
k

gZp,k(xsy’t)"g(Zp)(x’y’t) ill W2m.2x W2m,2 .
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In particular; DD, 4(x,y,t) > DiD5%, (x,y,1) in I> x I’ and we get:
DiDY%,,(x,3,1) = I (4;+1)"*"D% (x)DP¢(y).
J

LeMMA 5.1. Let 9 (x,y,t) be the pth iterate of the Green’s function defined
in Theorem 4.3. Then if 2mp>n+|a| +|ﬂ[,

xX#Yy, t""("”“'”’"’”‘D:ngp(x,y,t) -0 ast— + oo,
O HHBDZmpat by (¢ x,1) = (2m)™" f E*a(x, &) + 1] 77d¢
En

as t— + oo; for x,y in S.

Proof. We prove the lemma for |«| = | 8| = 0; the general case may be treated
in the same fashion. Let G be the Green’s function associated with the elliptic
boundary value problem {4 + tI;y} on a half space with infinitely differentiable
coefficients. From Theorem 4.2, we have

G 3= Gar) + [ GnanuGynds + X [ Hy—s0h(a9az
B+ j=1 JrIo
x,y in B*.
G, is the Green’s function associated with the constant coefficients problem
{A,+1tI; B;,; j=1,---,m} on a half space.
We show that:
lim #7"2"G (x,y,t) = lim °7">"G, (x,y,1).

t=>+ oo t=+ o

First consider the case 2m > n. With ¢t = t2™, we have:

@ [ Gmniunznndz = 0 [ |y=z[' 70 @+ se-n[) ez
Bt B+

sz-"f H(x—2,t)hi(%,y, t)d2=0(1)t"|x,|'”f |2=3[ "2 + |G- 15,
o T'o
So:

lim '7"2"G(x,y,0) = lim t'7"*"G(x, ,1).

t=+ 0 t=*+o

Now if 2m < n, from Theorem 4.1; we have:

G(xay’t) = G(y)(xsy,t) (1 + O(l)t—s)
SO

. —-n/2 . -
lim @7"2"G,(x,y,t) = lim ¢ ”/sz(p,,,(x, y,1).
t=>+ o t=+o0

On the other hand;
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G(x,y,1) = G(x,y,0) + {3 (i '(x), 9% ()s1)
with

o(x,p,0) = X H(x—2,0)B;G(Z,y,t)dz.
j=1 JIo

An argument as above gives:

lim #7"2"G\(x,y,0) = lim """ G(x,y,1).

t=>+o0 t=>+ o

The conclusion of the lemma follows from Theorem 3.4.

THEOREM 5.2. Let A, be the realization of the positively strongly elliptic
operator A under null boundary conditions y =(B,,--,B,,) as an operator on
IX(S). The operators A and B; are defined on a bounded open set S and on the
boundary T respectively and have infinitely differentiable coefficients.

(4,7) is assumed to be uniformly regularly elliptic, formally self-adjoint
and formally positive in the sense of Definition 2.1. Let A;,¢; be the eigenvalues
and eigenfunctions of A,. Then:

6 NO® = X 1~(Qn) """ f f dédx ast— + .
S Ja(x,8)<1

A5t
@) gl DIzmpapByy gy = t-(..+|az|+|m)g:§ ' D% (x)D’b(y) = 0
ast— oo for x,yinSand x#y.
(3) D**Pe(x, x,1) ~ (2m) "M@ 121 HIED2mME (1 b, 4, B) f5”6“+”[a(x, &)+ 1]72Pd¢

as t— oo for x in S and 4mp>n+|a|+|ﬁ|.
I'(2p)

n n + |a| + |B| '
F(l + 2—m-) F(Zp - _"_EZF’_)

Proof. One can show easily that:

K(n: m,p,a, B) =

Z} A+ = fs G 2% X, t)dx .
J

Consider the sequence of integrable functions t**™">"%, ,(x,x,1). For large ¢,
we have from the previous lemmas: t*? ""/2"'|.‘9(2p)(x, X, t)| <M for all x in S
and M is a constant independent of x and ¢t. We apply the Lebesgue dominated
convergence theorem and we get:
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(2P n/2m fs G 2%, X, )dx ~ (2m) ™" L L ) [a(x,8) + 1]7*7d&dx

as t— + oo.

Applying the Tauberian theorem of Hardy-Littlewood [10], we get the results
for N(1).

We may write:

Ganter) = T (4 + 024, y) = L @+ 0 Pde(x, 3, 1)

where e(x, y, 1) is the spectral function. Taking into account the results of Lemma
5.1 and applying the Tauberian theorem of Hardy-Littlewood again, we get the
results stated in the theorem.

6. The case of a nonself-adjoint regular elliptic boundary value problem
is considered. The study of the asymptotic distribution of eigenvalues for the
nonself-adjoint case has been carried out by Carleman [8] and Keldych [11]
for second order elliptic equations.

THEOREM 6.1. Let {A; B;; j=1,---,m} be a uniformly regularly elliptic
boundary value problem where A and B; are defined on a bounded open subset
S of E" and on the boundary I" with infinitely differentiable coefficients. (A,y)
with y = (B, -+, B,,) is assumed to be formally positive in the sense of Definition
2.1. Let A, be the realization of A under null boundary conditions y as an oper-
ator I*(S). If 2mp > n where 2m is the order of A, the operator (4, + try=2¢
is of trace class. Let 1; be the eigenvalues of A, then:

tr(A+t)™%* = X (l,-+t)"2" = f G 2p(X, x,0)dx.
J s

G 25X, Y, 1) is the 2pth iterate of the Green’s function associated with A, + tI
on S.

Proof. With the above hypothesis, it has been proved in §2 that (4, + ¢tI)™*°
is of Hilbert-Schmidt type, so (4, + tI)” 2P js of trace class. Let ¢ ; be the gener-
alized eigenfunctions of 4,. They form an orthonormal basis in I*(S). Denote
by P; the orthogonal projection of L*(S) onto the subspace of L*(S) spanned
by {;, -, ¢,}; consider the operator: T; = P,(4 + tI)"*’P;.

It takes the subspace spanned by {¢,,-:-,¢;} into itself. The subspace is of
finite dimension and we have:

tr(T) = ZJ: A+ 0727,
k=1

(T, — T,)) = tr(T,) — te(T,) = 3 (4 +07% .
j=m
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Denote by |||T|| the trace norm of an operator of finite rank. (Ruston [13].) Then:
IT-Tlll 5 X |2+,

Since (4, + tI)"? is of Hilbert-Schmidt type: X ,|1,+ t|'2" < oo, It follows
that T— € in the trace norm topology and:

tr(%) 2“, (A; + 1y 722,

We now show that € = (4, + tI)"??. We know that (4, + tI)"?? is a compact
operator and T;— (4, + tI)"?? in the operator norm topology. Since T;— .S
in the trace norm, it converges to 7 in the operator norm; hence €= (4, + ty~2»
and:
tr(4, + t)™?? = X (A; + )~ %2,
J

We may write € = 13 + i%, where €3=(€*—%)/2, €;=(€—~*)/2i, Since €, €,
are self-adjoint, we may apply results of §5 to get

tr(4, + tI)y~?F = 2 “;+ )% = fs G 2p)(%, X, t)dx.
J

THEOREM 6.2. Let (4,y) be a uniformly regularly elliptic boundary value
problem with infinitely differentiable coefficients and formally positive in the
sense of Definition 2.1. If A, is the realization of the positively strongly elliptic
operator A as an operator on I*(S) under null boundary conditions y and ;
are the eigenvalues of A, then:

Ni)= X 1~Qn)""*™w(S) ast— +

Rei; <t

where w(S) = [sw (X)dx and wy(x) = [ox.<1dE.

Proof. Set A;=a;+if;; f()= X;(a;+ 1) *Pand g() = X,;(4,; + 1) 2P,

Let h() =f(O) — () = Z;{(a; + )22 — (4; + )77}

It has been proved by Browder [4] that the spectrum of A, is contained inside
an algebraic curve |Im{|< c(Rel)* with p=(2m —1)[2m, we get:

[h®] £ Z (@;+ 727 oy~
i
The eigenvalues have an accumulation point at infinity, hence there exists a
number N such that:

loy| <t?Soyey, 0<d<1.
We have:

oyl +072" £ T+ 07, |h)| £ ca®TS ().
N+1 N+1
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It follows that: Lim t**™™?" X (a; + £) 7% = lim¢ 2?7"*" X4, + ) 2.

By an argument as in Theorem 5.2 and applying the Tauberian theorem of
Hardy-Littlewood we get:

N)= X 1~1"*™y(S)-(2n)™" as t— + ©.

Rei =<t
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