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1. Introduction. Harrold and Moise [18] have shown that if a 2-sphere in the

standard 3-sphere S3 is locally polyhedral except at one point, then one of its

closed complementary domains is a closed 3-cell. Cantrell [6] has shown that

the other open complementary domain is an open 3-cell and [8], [9] that if an

(« - l)-sphere £ in the standard «-sphere S" is locally flat (see [4] and [5, p. 49]

for definitions) except at one point for « > 3, then £ is flat in S". Fox and Artin

[13] have given the first examples of arcs which are locally flat except at one point.

The main result of this paper is a duality between 2-spheres which are locally

flat in S3 except at one point and arcs which are locally flat in S3 except at one

endpoint. Roughly, if 2 is a 2-sphere which is locally flat in S3 except possibly at

one point p, then we associate with £ any arc in £ which has p for an endpoint.

Conversely, if a is an arc which is locally flat in S3 except possibly at one endpoint

p, then we "blow up" a into a little 2-sphere which tapers down to p just as a

does and we associate this sphere with a. We make this precise in §3.

We extend this result to a duality theorem concerning nearly flat 2-manifolds

in a 3-manifold. As an application of this duality theorem, in §4 we prove a

uniqueness theorem in a class of decomposition spaces. In §5 we extend a result

of Lininger [22] by characterizing a class of crumpled cubes.

In §6 pseudo-half spaces are characterized. An n-pseudo-half space M" is an

«-manifold with boundary such that the interior of M" is homeomorphic to R"

and the boundary of M " is homeomorphic to R"_1. Cantrell [7] and Doyle [11]

have shown that, for n # 3, every n-pseudo-half space is homeomorphic to the

closed half-space PJ. Kwun and Raymond [21] give an example of a 3-pseudo-

half space which is not homeomorphic to the closed half-space P 3. It follows

from [1], [14] that uncountably many topologically different 3-pseudo-half

spaces exist. In Theorem 7 we prove the following:

M" is an «-pseudo-half space if and only if M "is homeomorphic to B"—a

where a is arc in the standard closed n-ball B "such that a intersects its boundary

S"_1 at one endpoint and S"-1 U a is locally flat except possibly at the other

endpoint.
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Harrold [17] has given a sufficient condition for an arc in S3 to be cellular

(see [3] for definition) and Doyle [12] has given a sufficient condition for an arc

in S" to be cellular. McMillan [23] has shown that, for n =£ 4, a subarc of a

cellular arc is cellular. Stewart [26] has given an example of a cellular arc in S3

which is wild at every point. In §7 we prove the following:

If a is an arc in S3 such that a contains a subarc ß both of whose endpoints are

isolated wild points of ß, then a is not cellular.

2. Preliminary results. If Zis locally flat at point x in a triangulated n-manifold

N", then X is locally tame at x. Thus it follows from Bing's Approximation Theorem

[2] that if A", a closed subset of a triangulated 3-manifold N3, is locally flat except

on a set Y, then X is equivalent to a set K which contains Y such that K — Y is

locally polyhedral. Hence if a 2-sphere Z in S3 is locally flat except at one point,

then by [18] one of the closed complementary domains of Z is a closed 3-cell.

Moreover, if X is a 2-sphere or an arc in a 3-manifold N3, then the following

statements are equivalent:

(1) X is locally flat at x,

(2) X is locally tame at x.

Also we will use the facts established in [3], [4] that if Z is an (n— l)-sphere in

S", then the following statements are equivalent:

(1) Z is locally flat at every point of Z,

(2) Z is flat,

(3) Z is bi-collared.

The two theorems in this section seem to be folk theorems in this subject. The

proof of Theorem 1 is standard but the proof of Theorem 2 is often incomplete

so that we will include it here.

Theorem 1. Let oc and ß be arcs in an n-manifold M which are locally flat

except at the common endpoint p such that a. is a proper subarc of ß and let U

be a neighborhood of ß — p. Then there is a pseudo-isotopy cbt(t el) of M onto

itself such that:

(i) 4>o = i,
(2) tbt\{M-U) = l,
(3)cby(a) = p,

(4)cby(ß) = a,

(5) cby\ (M — oi) is a homeomorphism onto M — p.

Theorem 2. Let M be a manifold with boundary F. Add a closed collar

F x [- 1,0] to M by identifying (x,0) with x for xeF. ThenM\J(F x [-1,0])

xM and M U(F x ( - 1,0]) x Int M.

Proof. By Theorem 2 of [4] £ is collared in M, so that there is a homeomor-

phism H:F x [ -l,l]->MU(£x [-1,0]) such that:
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H(x, t) = (x,t),     xeF,te[- 1,0],

H(x,t)eM, xeE, re [0,1].

Let T = H(F x 1). If E is compact, then Y is closed in M and

H(Fx[- 1,1])n(M - H(F x 1')) = Y,

where I' = [0,1). Thus there is a canonical map which pushes E out to E x { — 1}

and which is the identity on M — H(F x I'). However, if E is not compact, Tmay

not be closed in M nor separate M.

For each xeE, let ôx = \p(x,M — H(F x I')), where p is a metric in M. Then

17 = {^Jx eFV6 (x) is a neighborhood of E in M and the triangle inequality insures

that Cl U c H(FxL).

Given a map X: F -* (0,1], we define the spindle neighborhood S(F,X) by:

S(E,A) = {(x,i)eE xl'|xeE and t<X(x)}.

By [4] the spindle neighborhoods form a neighborhood basis for E x 0 in E x I'.

So let SiF,X) be a spindle neighborhood of F x 0 such that S(F,X) <zzH~l(U).

Define G'.F X [- 1,1]-*M U(F x [- 1,0]) by G(x, i) = W(x, rA(x)) and let

X = GiF x 1). Then X is closed in M and

GiFx[- 1,1]) n(M - G(E x /')) = X.

Thus there is a canonical map which pushes E out to F x { - 1} and which is the

identity on M — GiF x I'). Moreover, IntM is mapped onto M U(E x ( — 1,0]).

We conclude this section with several lemmas.

Lemma 1. Let K be a disk in P3 that is locally polyhedral except at an

interior point p. Then there is a polyhedral disk D with boundary F such that

D.C\K = E and F separates pfrom BdK in K.

Proof. This is a generalization of Lemma 1 of [18] and the proof is essentially

the same.

Lemma 2. Let K be a disk in R3 that is locally flat except at an interior

point p. Then there is a homeomorphism g:B3-+P3 such that:

il)giSl)e=K,
(2)g(0,0,l) = p,
(3) g(B3-S2)e^R3-K,

(4) g(S2) is locally flat except at p,

(5) (K-g(S2+))Ug(Si) is locally flat.

Proof. It follows from a remark above that we can assume with no loss of

generality that K is locally polyhedral except at p. By Lemma 1 there is a polyhedral

disk D with boundary E such that D C\K = F and E separates p from BdK in K.

Let P be the closed complementary domain of E in K such that P contains p
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Since the 2-sphere Z = PuZ) is locally polyhedral except at p, it follows from

Theorem 1 of [18] that Z is collared in one of the closed complementary domains

of Z in R3. This establishes the existence of g with the required properties.

Let B" be the closed unit n-ball centered at the origin in R" and let

Br(x) = ClFr(x) be the closed n-ball of radius r centered at x. For the rest of this

section and in Theorem 4, we will use the following definitions:

a  = (0,0,1),

b = (0,0,-1),

J = [(0,0,1/2), (0,0,1)],
Do = {(x,y,z)eB z = l/2},

zèl/2},
z Z 112}.

G0 = {(x,y,z)eB

P0 = {(x,y,z)eS2

Lemma  3. Let e > 0, let

A = (BdB2(b)) u {(x,y,z) e B2(b)\z<-e},

and let d e lntD0. Then there is a homeomorphism h ofB2(b) onto itself such that:

(1) h\A = l,
(2) h(S2) = S2,

(3) h(D0) = B2,

(4) h(d) = 0.

Lemma 4. Let

A = (BdB2(b)) V(R3_ C\(B2(b) - F,(0))).

Then there is a map cb of B2(b) onto itself such that:

(1) cb\A = l,

(2) c6(0 x Bl) = a,
(3)<b(B2) = S2+,

(4) cb\(B2(b) — (0 x Bl))  is  a   homeomorphism   onto  B2(b) — a.

Lemma 5. Let G be a closed 3-cell and let fy,f2:B -»G ("-»" means

>ionto,'>) be homeomorphisms such that f¡(a) = f2(a) and f¡(b) = f2(b). Then

there is a homeomorphism h:G^»G such that:

(1) b|BdG = l,

(2) «/,|(0xB1)=/2|(0xB1).

Proof. Define g: S2 -»S2 by g=/2-1/i|S2. Extend it to a homeomorphism

g:B3^»B3 by radial extension. Then g\(0xB1) = \. Define h:G^»G by

h=f2gfy~1.Then

h | BdG =f2gfy- » | BdG =/2(/2- %)fy- ' | BdG = 1,

hfy\(0 x B1) = (f2gf{')f |(0 x Bl) =f2g\(0 x B1)

= /2|(0xB1).
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Lemma 6. 7/£. and £2 are disjoint 2-spheres in S3, A = [£,,£2] and a is

an arc in S3 such that £¡ O a = p¡, a point, and £¡ Ua is locally flat, i = 1,2,

then (A, A na)«(S2 x 1,1 x I).

Proof.   We identify S3 with the one-point compactification of P3. Let

C = B2x [0,l]U(0x [1,2]) UB2 x [2,3].

Let G; be the closed complementary domain of £; which does not contain A, i = 1,2.

Let /: C-^G, UaUG2 be a homeomorphism such that f(B2 x [0,1]) = G„

/(0 x [1,2]) = a O A,f(B2 x [2,3]) = G2 and so that /|(B2 x [0,1]) and

/|(B2 x [2,3]) induce the same orientation on S3. Evidently / is a locally flat

embedding of C into S3.

It follows from the Annulus Theorem in S3 (see for example [24], [15]) that

there is a stable homeomorphism h: S3 -»S3 such that hf(x,t)=f(x,t + 2) for

all x e B2, te Lit follows from Lemma 7.1 of [5] that there is a homeomorphism

g: S3 -s»S3 such that gf is the inclusion C <= R3 <= S3. Let g, be a homeomorphism

of C1(S3 - C) onto S2 x I such that g,(0 x [1,2]) = 1x1. Then g¿g\A) is a

homeomorphism  of iA,A na) onto (S2 x /, 1 x /).

Lemma 7. //£, and £2 are flat 2-spheres in S3 and a is an arc in S3 such

that £¡ O a = q, an endpoint of a, and £¿ Ua is locally flat at q,i = 1,2, then

there is a homeomorphism h:S3-»S3   such that «(£,) = £2 and «(a) = a.

Proof. Since £, and £2 are flat and a is locally flat at q, there is a flat 2-sphere

£3 in S3 such that £, U £2 <= £, an open complementary domain of £3, £3 n a = p,

an interior point of a, £3Ua is locally flat at p and ß = a n[£3,£,] is locally

flat. By Lemma 6 there is a homeomorphism « :([£3, £,],/?) -»([£3,£2],/?). Without

loss of generality h | £3 = 1, so we can extend n to S3 — £ by the identity. Since £,

and £2 are flat, their closed complementary domains are closed 3-cells and we

can extend h to a homeomorphism of S3 onto itself with the desired properties.

3. Duality theorems. Let J be the set of pairs (a,p) where a is an arc in S3

and p is an endpoint of a such that a is locally flat except possibly at p and let &

be the set of pairs (£,p) where £ is a 2-sphere in S3 and p is a point of £ such that £

is locally flat except possibly at p. Two sets or pairs of sets embedded in a manifold

are equivalent (denoted by o) if there is a global homeomorphism carrying one

set or pair of sets onto the other. Let J „. and Sf\ be the sets of equivalence classes

of J and S? in S3, respectively.

Let (a,p)eJ. Let £ be any 2-sphere in S3 such that £ intersects a only at the

endpoint which is not p and such that £ U a is locally flat at every point of £.

Let eb be a map of S3 onto itself such that eb(a) = p and eb | (S3 — a) is a homeo-

morphism onto S3 — p. Such a map exists by Theorem 1. Define *P: J ^if by

¥(a,p) = (<#£), P).
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Let (Z,p)ey. We noticed in §2 that one of the closed complementary domains

G of Z is a 3-cell. Let g be a homeomorphism of B3 onto G such that g(l) = p.

Define TiSr^S by r(Z, p) - (g(I), p).

Theorem 3. ^F and T are well defined up to equivalence class and *P induces

a one-to-one correspondence VPH!: J*-?>&\ such that its inverse is T*, the function

induced by T.

We will generalize this result to 2-manifolds in a 3-manifold in Theorem 4.

The proof of Theorem 3 will then follow from Theorem 4.

Now let N be some fixed 3-manifold. Let si be the collection of sets in N each

of which is the union of a locally flat 2-manifold K and a set of disjoint arcs

a¡, i = l,---,m, such that a¡ intersects K at one endpoint and K (Ja¡ is locally

flat except at the other endpoint for each ¡. Let JÍ be the collection of nearly

flat 2-manifolds M in N (i.e., M is wild at a finite number of points). Let sé\ and Ji *

be the sets of equivalence classes of sé and J¿ in N, respectively.

Let K \J(yy^cti)estf and let p¡ be the wild endpoint of a,,i = l,---,m. Let cb

be a map of N onto itself such that c/>(a¡) = p¡,i = l,---,m, and c6|(N — [J"'«;)

is a homeomorphism onto N — U"'p¡. The existence of such a map follows from

Theorem 1.   Define  ^:sé->Jl  by  V(K U(lJ7a;)) = cb(K).

Let Mel and let p¡ be the wild points of M, i = !,-■•,m. Let g¡: B3->N be

homeomorphisms with disjoint images such that:

(1) gi(Sl) cz M,

(2) g¡(a) = p¡,

(3) gi(B3 -S2)czN-M,

(4) g¡(S2) is locally flat except at p,

(5) K = (M - Ijr&fA)) V(\Jmygi(D0)) is locally flat.

Let a¡ = &(./), i = l,.-.,m. Define T:JC-*sé by T(M) = K KJ(\J"a¡).

Theorem 4. ¥ and T are well defined up to equivalence class and *P induces

a one-to-one correspondence *?*: sé^-^Jt* such that its inverse is T%, the

function induced by T.

Proof, (i) *P is well defined up to equivalence class and induces a function

*P#: si*-* JÍ*. Indeed, given the diagram with the solid arrows:

Ky U (Ijra/) <*=       ==> X2 U(U7a? )

»       M2

where Xx ^(Jp*/)» K2 U(UTa?)6^ ar>d My,M2eJl, we will show that we

can fill in the dotted arrow.
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Letp/bethewildendpointofa/, i = l,---,m, j = 1, 2.Thereisahomeomorphism

f:(N,Ky udjT«,1), \Jip})MN,K2 U(UT«,2), \JÏPÏ)-

Without loss of generality/(a?) = a,, i = 1, •••,«!. By the definition of W, for each

j = 1,2, there is a map ebj of N onto itself such that <£,(a/) = p\, i = 1, •••,«.,

ebj\(N - (J7a/)'s a homeomorphism onto N — \Jplp{ and ebj(Kj) = M¡.

Define g:N^»N by

■ i ?i Pi,

eb2feb-yx(x), xeN-\J:Pî,
g(x)

x = p\, i = !,-■■, m.

Evidently g is a homeomorphism and

mi-\$P\)   =   ̂ 2Í^\My-\J¡pl)

= <P2ÂKt - \JM)

=   <¡>l{K2 - lj>.2)

=   M2-\JmyP2.

Thus g(Mj) = M2 and so M, is equivalent to M2.

Now define ¥*: sé ̂  J¿ ^ by

«F,[X u(U';ai)] = W-K udj?«,))].

(ii) r is well defined up to equivalence class and induces a function

r*: Ji^-^sé^.

Indeed, given the diagram with the solid arrows:

My   <^ ===>    M2

^1^(ljT«/)^ = =>^2U(U>t2)

where M„M2e^ and Ky \J(\J"¡a¡), K2 U((J?«2)e.*/, we will show that we

can fill in the dotted arrow.

Let p¡, i = l,---,m, be the wild points of M}, j = 1,2. There is a homeomorphism

« : (TV, M„ \jïpl) MN, M2, y7pf).

Without loss of generality «(p?) = pf, i = 1, ■■-,m. By the definition of T, for

each j = 1,2, there are homeomorphisms g{: B3 -> N with disjoint images such

that

(1) g\S 2)cz M j,

i2)gHa) = pJ„
i3)g,iB3-S2+)ezzN-Mj,
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(4) gj(S2) is locally flat except at pj,

(5) K; = (M;-U7g/(Po))U(Urg/(D0)) is locally flat,

(6)a/ = g/(J).
Let q{ = gj(0,0,i), i = \,-,m, j = 1,2.

Without loss of generality h(g\(D0)) cz gf(G0 - D0). Let /,: B3 ~»gf(B3) be a

homeomorphism such that :

(7) /i(«) = Pi

(8) /f(D0) = Kg¡(D0)),

(9) f(B2) = g2(D0),

(I0)f(0)- qf.
Since gf(S2) is locally flat except at pf, we can extend / to a homeomorphism

/• : B2(b) -* TV such that the images are disjoint and

f:\Cl(M2 - g2(S\))) cz ((Int RÍ) n fl2(b)).

Choose e > 0 such that

/," HCKM, - g,2(S2))) <= {(x, >>, z) e B2(b) | z < - «}.

It follows from Lemma 3 that there is a homeomorphism r¡ of N onto itself such

that:
(11) ̂ (N-ZÍB^b)))^,

(12) rf(M2) = M2,

(13) r^LKi) n/,(B2(fc)) = K2 nf(B2(b)),

(14) r^,1)) = qf.
Now r¡(h(oL¡)) may not be equal to a?. However, r¡hg¡ and gf are homeomor-

phisms of G0 onto gf(G0) such that r¡hg¡(a) = gf(a) = pf and 1-^(0,0,1)

= g,2(0,0,£) = cy?. Thus it follows from Lemma 5 that there is a homeomorphism

s¡ of JV onto itself such that:

(15)si\(N-gf(G0))=l,
(16) sirihg¡\j = g2 | J.

Define hy-.N^N by Ax = srarm---s1r,A. Then A,(X, U((j7a,')) = X2U(|j7a2)so

that Xi U((j7a/) is equivalent to K2 U((j7<x2).

Now define T*: J»-»^, by T*[M] = [r(M)].

(iii) r*^ = 1. Indeed, given the diagram with the solid arrows:

KyU(\Jy¡)-> M

K2^([jX

where K^ u({Jy"oil), K2KJ([Jïoif)esé and MeJt, we will show that we can

fill in the dotted arrow.
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Let p, be the wild endpoint of of and let q, be the other endpoint, i = 1, ••», m.

Since Ky U a¡ is locally flat at q„ there are disjoint neighborhoods W, of the q,

in N and homeomorphisms

h,: (P3,(P2 x 0) u(0 x Rl))MW„W,r.iKy Ua/)),

i = 1, •■», m. Let /J¡ = n,(0 x Bi). There is a homeomorphism /, of TV onto itself

such that:

ü)f,ixlvß) = al,
(2) f,h,iSl) = h,iB2),
i3)f,h,iB2) = h,iS2+),

(4) /, | ((TV - W) U (X, - «;(B2))) = 1.
Choose e > 0 sufficiently small that e-neighborhoods of the fiaffs are disjoint

and do not intersect Ky. By Theorem 1 there is a map eb, of TV onto itself such that:

(5) <P,fief¡) = p„

(6) (pifiß) = «?,
Cl)ep, iN-VM)) = l,

(8) eb, (N —f(oi¡)) is a homeomorphism onto TV — p,.

Then eb = ebmfm--- ep,fy is a map of TV onto itself such that:

(9) epi<x\) = p„ i-l,—,m,

(10) <p|(7V- (JT«/) is a homeomorphism onto TV - \J \"p¡.

Let M, = epiKf). Then M, e ^[X, U (IjTa/)] and so by (i) M, is equivalent to M.

Define e:ß3-^ßi by a canonical push down  so  that  e(0 x B1) = 0 x Pi..

Define g¡: B3 -» TV by g¡ = eb,fh,e. Then it is easy to see that the images of the g¿

are disjoint and that g, satisfies the properties:

ill)g,iSl)^My,
(12) g;(B3 - S2.) c: TV-M„

(13) g,iS2) is locally flat except at p„

(14) X, = (M, - \j7g,iSl)) U((J^(S2-)) is locally flat,
(15) a,1 = g;(0 x Bl).

Thus  X, U(ljTa?) eT[M,]   and   so  by  (ii)   X, U((j7a/)  is  equivalent  to

X2U(UTa2). Hence ^4^ = 1.

(iv) ^r* = 1. Indeed, given the diagram with the solid arrows:

My-> XU(UX>
feSS*!**»Sö^ I  *

~~  *Sf».

M2

where Mx,M2eJi and K(J([J™ot.)esé, we will show that we can fill in the

dotted arrow.

Let p, be the wild points of M,, i = l,---,m. By the definition of T there are

homeomorphisms g,: B3-»TV3with disjoint images such that:
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(1)   gi(S2)czMy,

(2) g¡(a) = p¡,

(3) g,iB3-Sl)c=N-My,
(4) g¡(S2) is locally flat except at p¡,

(5) K = (My - IJ'fo(Po)) <J{\J?8tiD0)) is locally flat,
(6) a; = gi(J).

Let h¡: B3 -»g((B3) be a homeomorphism such that:

(7) hfO x Bi) = «„

(8) hyiSl) = gl(P0),

(9) ^(B2) = gi(D0).

Since g¡(S2) is locally flat except at p¡, we can extend h¡ to a homeomorphism

/i¡: B2(b)-> JV such that the images are disjoint and

h~l(My - gl(P0)) cz R_ Oi{B2{b) - K(0)).

It follows from Lemma 4 that there is a map c/>; of JV onto itself such that :

(10) <bt\{N-hl{B2{b)))=i,

(11) ¿(a,) = Pl,

(12) </>;(K n /i,(B2(b))) = M, n hiB2{b)),

(13) <p;|(JV — a;) is a homeomorphism onto N — p¡.

Then cb = cbm---cby is a map of JV onto itself such that:

(14) c6(ai) = pi, ¡'= l.—.m,

(15) </>|(JV — (J7a¡) is a homeomorphism onto JV — (J7P;>

(16)c6(K) = M1.

Thus Mx e >P*[K U((j7a,)] and so by (i) My is equivalent to M2. Hence »P^r* = 1.

Proof of Theorem 3. Let sé be the set of pairs (Z, a) where Z is a flat 2-sphere

in S3, a is an arc which intersects Z at one end point and Z Ua is locally flat

except at the other endpoint p and let sé^ be the sets of equivalence classes of sé

in S3. By Lemma 7 the mapping (Z,a) -* (a,p) induces a one-to-one correspondence

between sé% and J*. By Theorem 4 there is a one-to-one correspondence between

y* and sé % and the composition of these two is the desired one-to-one corre-

spondence between Sf * and J^.

4. Uniqueness of a decomposition space.

Theorem 5. Let a],i = l,---,m, be disjoint arcs in B3 and let a2,! = l,--,m,

be disjoint arcs in B3 such that a{ intersects S2 at one endpoint and S2 Ua/ is

locally flat in R3 except at the other endpoint p{, i = l,---,m,j = 1,2. For each

j = 1,2, let Hj be the decomposition space of B3 whose nondegenerate elements

are the arcs a;, i = l,--,m. If Hy is homeomorphic to H2, then, with a suitable

ordering of the a/'s, there is a homeomorphism of B3 onto itself carrying

aj  onto a2, / = !,••-,m.

Before proving the theorem, let us consider the example illustrated in the

following figure:
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It is impossible to find disjoint closed 3-cells G, in B3 such that a, — q, cz IntG,,

i = 1,2, so that it looks like the theorem may require a global proof. However,

these arcs are cellular in R3 by Theorem 1 so that there are disjoint Euclidean

neighborhoods of the arcs in R3. Thus we see that there may be a local proof for

the theorem. In fact, the proof follows from Theorem 4 which has a local proof.

Proof. Without loss of generality, for each j = 1,2, Hj may be considered as a

subset of R3 which is the image of B3 under a decomposition map of R3, i.e., there

is a map ebj of P3 onto itself such that:

(1) ebjia{) = p{,    i = l,--,m,

(2) ef>j\iR3 - U'fa/)is a homeomorphism onto P3 - (JW,

(3) ebjiB3) = Hj.

Since C1(P3 — Hj) « C1(P3 — B3), j= 1,2, we can extend the homeomorphism of

H¡ onto H2 to a homeomorphism of R3 onto itself. Thus eb¡(S2) is equivalent to

eb2(S2) in P3. Since ebj(S2) = V(S2 U({j7a/)),j = 1,2, it follows from Theorem 4

that S2 udjîa/) is equivalent to S2 U((j7af). Thus there is a homeomorphism

«: R3^R3 such that n(S2U(U7a/)) = S2U([j7a2). Without loss of generality

«(a/) = uf,i = 1, • ••,«!. Then «|B3 is the required homeomorphism.

5. Characterization of a class of crumpled cubes. A crumpled n-cube is a

topological space which is homeomorphic to a closed complementary domain

of an (n — l)-sphere embedded in the «-sphere S".

Theorem 6.   Let H be a crumpled n-cube in S" such that G = C1(S"— H) is a
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closed n-cell. Then H is homeomorphic to a decomposition space of B" whose

nondegenerate elements are arcs which interesct S"-1 at one endpoint and are

locally flat except possibly at the other endpoint. Moreover, these arcs correspond

to the singular points o/Z = BdH (i.e., the points at which Z is not locally flat).

Notice that for n = 4 it follows from [19], [10] that the arcs are locally flat at

every point. However, for n = 3 the arcs may or may not be locally flat at the

endpoint. Also for n = 3 it follows from [20], [22] that any crumpled 3-cube can

be embedded in S3 so that the closure of the complement is a closed 3-cell. Thus

the conclusion of Theorem 6 holds for any crumpled 3-cube.

Proof. Let g be a homeomorphism of B" onto G. Let a point p e B" be repre-

sented by the coordinates (u, x) where u is the distance from p to the origin and x is

the point of S"_1 which lies on the ray from the origin through p. Let X be the

set of singular points of Z, let X' = g_1(X) and let p be a map from S"-1 into /

such that p(X') = 1 and p(S"~1 - X') c /'. Define a map 9: B"-»B" as follows:

0(l/2,x) = (l/2 + l/2p(x),x),

0 maps [0,(1/2,x)] linearly onto [O,0(l/2,x)],

0 maps [(l/2,x), (l,x)] linearly onto [0(l/2,x), (l,x)].

Define a map cb: S"^>S" by

m=\^-\p),        peG,

lp, peH.

Now H - X is a manifold with boundary Z - X and c6g([l/2,1] x (S ~l-X'))

is a closed collar attached to H — X. Thus by Theorem 2 there is a homeomor-

phism

hy : (H - X) U c¿g([l 12,1] x (Sn~l - X')) -»H-X.

Let H y be the closed complementary domain of g(BdBJ/2(0)) which contains Z.

Then we can extend hy to a homeomorphism hy : cb(Hy) -»/T via the identity on X.

Let h2 be a homeomorphism from B" onto Hy. Then h = hycbh2 is the required

map of B" onto H. For, if xeX, then h~\x) = h2x g([l ¡2,l~] x g_1(x)), an arc

which intersects S"~l at one endpoint and is locally flat except possibly at the

other endpoint, and if xeH — X, then h~1(x) is a single point.

6. Characterization of pseudo-half spaces. In this section we will characterize

pseudo-half spaces. First we state a lemma.

Lemma 8. If(X, Y) « (P.+,P"_1) and X U p is the one-point compactifi-

cation of X, then (X Up, YUp) x (Bn,SB_1).
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Theorem 7. M is an n-pseudo-half space if and only if M x B"— a where a

is an arc in B" such that a intersects S"-1 at one endpoint and S"_1 Ua is locally

flat except possibly at the other endpoint.

Proof. Assume M is an n-pseudo-half space. By Theorem 2 we can add an

open collar BdM x [0,1) to M by identifying (x,0) with x for xeBdM, so that

M U(BdM x [0,l))xlntM. Without loss of generality the one-point compac-

tification M u (BdM x [0,1)) u p is equal to S". By Lemma 8 there is a

homeomorphism :

/:((BdM x [0,1)) Up, (BdM x 0)Up)-*(B",S"_1)

such that /(p) = l. Let £' = BI/4( - 1/4,0,0) and let S' = BdB'. Now

/_1(C11 (B" - £') - I) is a closed collar attached to M. By Theorem 2 there is a

homeomorphism

« : M -»M KJf~ ' (C1(BB - B') - I)

= cKS'-r'iB'yí-rKD.
Now/_1(S') is bi-collared in S" and hence flat. Thus there is a homeomorphism

g:S"-»S" such that g(Cl(Sn-/_1(B'))) = B". Let a = gf~\l). Then we have:

g«(M) = rfCKsr-r *(.*))-.T1«)

= g(Cl(S"-/-1(B')))-g/-1(/)

= B*-ac.

It is evident that a has the required properties.

Assume M x B" — a where a is an arc in B" which intersects S" at one endpoint

q and is locally flat except at the other endpoint p. We can identify S" with the

one-point compactification of R". It is easy to show that Int(B" — a) x S" — a

by shrinking C1(S"- B") to q. By Theorem 1 there is a map g:S"-»Sn such that

g(a) = p and gx(S" — a) is a homeomorphism onto S"—p. Thus

IntM x lnt(B" - a) x S" - a x S" - p x R",

BdM x Bd(B" - a) = S"~ ' - q x R"~ \

Hence M is an «-pseudo-half space.

Remark. We have actually proved that B"— a is an «-pseudo-half space even

if S""1 u a is not locally flat at S"~1 O a.

Corollary [Cantrell, Doyle]. For n=£3,M xR"+.

Proof. The proof is essentially that of Cantrell [7] as pointed out by Doyle [11]

which we include for completeness. It follows from Theorem 2.1 of [16], a gener-

alization of a theorem of Homma [19], that for n > 3 an arc in P" which is locally
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flat except at one endpoint is equivalent to an arc which is locally polyhedral

except at one endpoint. By [10] the arc is locally flat at every point. For n < 3,

this is true for every arc. So by Theorem 1 there is a map g: £"-»£" such that

g | S"~ ' = 1, g(a) = q, and g [ (Bn — a) is a homeomorphism onto B" — q. Hence

for n*3, MxBn-a.xBn-qxRl.

Theorem 8. If a y and a2 are two arcs in B3 which are not equivalent in

R3 such that ocy intersects S2 at one endpoint q¡ and a¡ US2 is locally flat in S3

except possibly at the other endpoint p¡, i = 1, 2, then B3 — a1 and B3 — a2 are

topologically different.

Proof. Suppose we have h:B3 — at x B3 — a2. We can identify S3 with the

one-point compactification of R3 and extend h to h: S3 — oc¡ x S3.— a2. By

Theorem 1 there is a map g¡:S3-^S3 such that g;(a;) = p¡ and g¡|(S3 — af) is a

homeomorphism onto S3-p¡, i =1,2. Let Z¡= g ¡(S2), ¿ = 1,2, and define/:S3-» S3

by:

f(x\ = \S2hgy\x),        xeS3-p¡,

l Pi, X=Py.

Evidently / is a homeomorphism. Now

/(S, - Py) = g.hgy-'&y  - Py) = g2h(S2 ~ q y) = g2(S2 - q2) = Z2 - p2

so that /(Zj) = Z2. Thus Zt is equivalent to Z2. By Theorem 3, oty is equivalent

to a2, a contradiction. Hence B3 — at X B3 — a2.

Corollary. There are uncountably many topologically different 3-pseudo-

half spaces.

Proof. By [14] there are uncountably many inequivalent arcs in R3 which are

locally flat except at one endpoint.

Theorem 9. Let M, and M2 be 3-pseudo-half spaces with common boundary

F and disjoint interiors such that My X R3+ . Then My\JM2x R3 if and only if

M2 x R\.

Proof. Assume My U M2 = R3. We can identify S3 with the one-point com-

pactification R3 Up of R3. Then £ U p is a 2-sphere in S3 which is locally flat

except at p. Since M,Up* B3, by [18] M2\Jpx B3. Thus M2xR\.

The converse follows immediately from Theorem 2.

Corollary. If M is a 3-pseudo-half space such thatMxR3., then M xIxRX ■

Proof.   Bd(Ai x /) = (BdM x /) U (M x Bdl) * R3.
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7. Cellularity of arcs in S3.

Theorem 10. If a is an arc in S3 such that a contains a subarc ß both of whose

endpoints are isolated wild points of ß, then a is not cellular.

Proof. Suppose a is cellular.

Case 1. a is only wild at its endpoints a and b. Since a is cellular, there is a

homeomorphism h:S3 — ol-»S3 — p for some point peS3. Let qelnta. Since a

is locally flat at q, there is an open 2-cell D in S3 such that D O a = q and D U a is

locally flat at every point of D. Then D, = h(D — ej) Up is an open 2-cell in S3

which is locally flat except at p. It follows from Lemma 2 that there is an open

2-cell D2 ezz Dy such that p e D2 and D2 is contained in a 2-sphere £2 which is

locally flat except at p. Then £ = n_1(£2 — p) Uq is locally flat at every point

and hence flat in S3 and £ n a = <gr.

Let G, and G2 be the closed complementary domains of £ in S3 and let

M, = G, — a, i = 1,2. By Theorems 7 and 8, M¡ is a 3-pseudo-half space but not

P3,/= 1,2. But M, UM2 = S3 - a x R3, which contradicts Theorem 9.

Case 2. a is wild at both endpoints a and b and at one interior point d. If

x,yea, let <x,y> denote the subarc of a from x to y. By [23], for « # 4, every

subarc of a cellular arc is cellular. Thus <a,d> and <[d, b} are both cellular and if

either one is wild at both endpoints, we get a contradiction by Case 1. Hence

suppose both (a, d} and (d, b} are locally flat at d. By [25] there is a neighborhood

17 of a — a such that every arc in 17 U a with a as an endpoint is wild. By Theorem 1

there is a map eb : S3 -» S3 such that eb(a, d} = a, eb\ (S3 — 17) = 1 and

eb\(S3 — {a,d)) is a homeomorphism onto S3 — a. Thus eb(d,b} is cellular and

wild at both endpoints. Again we get a contradiction by Case 1.

General Case. Let y be a subarc of ß such that y contains all the wild points

of ß except its endpoints. Then ß and y are both cellular. Thus there is a map

eb:S3-J»S3 such that <p(y) is a point and eb\(S3 — y) is a homeomorphism. Then

eb(ß) reduces to either Case 1 or Case 2 and we get a contradiction. Hence a is not

cellular.

The following theorem is a special case of Theorem 1 of [12]. However, the

proof here does not use the axiom of choice.

Theorem 11 (Doyle). If a is an arc in S3 such that a contains no subarc both

of whose endpoints are wild, then a is cellular.

Proof. Let p and r be the endpoints of a. There is a natural ordering, denoted

by <, of the points of a from p to r. If ß and y are subarcs of a, we will say that

ß < y if x < y for arbitrary x e Int/i and y e Inty.

Let X be the set of wild points of a. Then X is countable since it has the same

order as the set of components of a — X. There is at most one point q of X such

that q does not lie on some flat subarc of a and with no loss of generality such a

q exists.
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Let e > 0. Since X is a countable compact set, there is a flat closed 3-cell

£ cz Vftx) such that X c Int£.

Let °¿¿0 be the collection of closed complementary domains of X n<p, g> in

<p,<j> which are not contained in lnt£ and let ßy = (yy,zf> be the last such

arc in <^0. Let y[ elntßy such that <[y'y,z¡y c Int£. Let hy be a homeomorphism

of S3 onto itself such that:

(1) «1|((S3-F£(a))U<z1,r» = l,

(2) hy(ßy) = <yi,z,>,

(3) hy(X) cz Int£.

Then £, = n^'iB) ¡s a Aat closed 3-cell in t/£(a) such that X U<ji,g> cz Int£j.

Let Wy be the collection of closed complementary domains of X C\<\p,q) in

<p, <7> which are not contained in Int£[ and let ß2 = <>'2,z2> be the last such

arc in 91 y. As before we construct a flat closed 3-cell £2 in Ve(ct) such that

^U<j;2,g>crlnt£2.

If this process continued indefinitely, we would get a sequence of points yteX

with yi+l < y i and a sequence of flat closed 3-cells F¡ such that

XU<Äg><=IntF„       i = 1,2,-.

Then y = limj-,«, y¡ would be an element of X such that y ^ q and y is contained

in no flat subarc of a, a contradiction. Hence the process must end, i.e., there is a

flat closed 3-cell £ c Vc(ot) such that X U <p,<?> e= Int£.

Similarly, we can start at the other end of a and construct a flat closed 3-cell

f ' c: K£(a) such that a c Int£'. Since e is arbitrary, a is cellular.
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