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1. Recent developments in semi-simplicial topology give rise to a new method

for computing the homotopy groups of a simplicial complex X. This method,

as the results of this paper indicate, should, in time, both extend and unify the

existing theory. Briefly we associate with X, a spectral sequence E(X) whose E1

term depends only on the homology of X and is the homotopy group of a semi-

simplicial free Lie ring. The E00 term is the graded group associated with a fil-

tration Of Tt*X.

This paper is devoted to the computation of a part of the E1 term when X is a

sphere. This part is essentially a set of multiplicative (under composition) gener-

ators for the whole E1 term. This fact was discovered in joint work with D. M. Kan

and E. B. Curtis and has led to the complete computation of the E1 term, which

will appear later. As an application of this work we give a new proof of Serre's

theorem [8] on the finiteness of the higher homotopy groups of spheres.

This paper is organized as follows:

The second section is an extended introduction which explains in some detail

the connection between the homotopy groups of a space and the homotopy

groups of certain free Lie rings. The third section develops a few purely algebraic

results (in the category of Abelian groups), which, because of their naturality,

have topological content (in the category of semi-simplicial Abelian groups).

In the last section we attack the problem of computing

00

Ex(Sn+1)x n*LK(Z,n) x n* (g)    L'K(Z,n).
r = l

When r is an odd prime p we obtain :

n„+qLpK(Z,n) is Zp when q = 2i(p - 1) - 1,    i = 1,2, -, [n/2].

2. Background material. A semi-simplicial complex may be regarded as a

generalization of a simplicial complex, for the homotopy types of the realizations

of the latter form a proper su.iset of the homotopy types of the realizations of the

former. If X is a connected simplicial complex, then we may choose a reduced

semi-simplicial complex K (with just one vertex, the base point) whose realization
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| K | has the same homotopy type as the realization | X | of X. For example if X

were an n-sphere then K could be the semi-simplicial complex with one vertex *,

and one n-simplex x, together with their degeneracies.

To define the homotopy groups of K, we could choose any functor from the

category of reduced semi-simplicial complexes to some category on which the

homotopy group functor has already been defined, e.g., the realization functor

|, [6], to the category of topological spaces with base point gives the most

accepted definition. The category of semi-simplicial group complexes is also

a category on which homotopy groups have been defined and we may "realize" K

in this category by applying the functor G of D. M. Kan. In [5] he defines G,

a functor from the category of reduced semi-simplicial complexes to the category

of (free) semi-simplicial group complexes, and he proves that :

nn\K\xnn_yGK.

If we let AK denote the Abelienization of GK then H„(| K |) x %n_yAK and the

homomorphism nnGK -* nnAK is the Hurewicz Homomorphism.

In the category of semi-simplicial groups, a short exact sequence, e.g.

[GK, GK] -> GK -* AK, is a fiber space, and induces a long exact sequence of the

homotopy groups. Thus the homotopy groups of [GK,GK] = T2GK and the

homotopy groups of K determine the homotopy groups of K up to group ex-

tensions. To iterate this procedure we would like to filter GK by subgroups T„GK

so that the successive quotients T„GK/Tn+yGK ate free Abelian, are finitely

generated in each dimension when K is finite in each dimension, and depend

functorially on AK. The lower central series is such a filtration. It is defined by

TyGK = GK and Tn+1GK = [TnGK,GK~].
Let Lr/l/¿ = rpG/¿/rr+1G/¿ and LAK =($r°=yLrAK, cf. [2, p. 161] for the

proof that Lf is a functor from the category of semi-simplicial Abelian groups

to the category of semi-simplicial groups. There is a multiplication [ , ] on

LAK and it is the free Lie ring of AK, cf. [1, p. 285] for an alternate description

of LAK. The functors L and If have the property that (UAK)q depends only on

AKq, i.e., there are functors defined on the category of Abelian groups which

induce L and U in the obvious way. Functors with this property are called pro-

longed functors; they preserve homotopy in the following sense:

If A and B are free Abelian group complexes, n^A x n*B and T is a prolonged

functor from the category of semi-simplicial Abelian groups to the category of

semi-simplicial Abelian groups then n*TA x n*TB, cf. [4, p. 209].

We therefore may choose any free Abelian semi-simplicial resolution of the

homology groups of K for our model of AK. In particular if K is an n +1 sphere,

we may choose AK to be the standard model of the Eilenberg-MacLane space

K(Z,n), cf. [7, pp. 2-7]. There is, therefore, a homotopy spectral sequence

£(Sn+1) relating n*(Sn+1) to n*LK(Z,n) = E^S"*1).
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The fundamental theorem which gives the precise relationship between the

spectral sequence ELY) and n*X was proved by E. B. Curtis in [3]. It may be

simply stated :

The connectivity of FrGK goes to infinity as r goes to infinity, provided X is

simply connected.

This implies that the spectral sequence converges to an £°° term which is the

graded group associated with a filtration of n+X.

3. Algebraic preliminaries. In this section we shall regard all functors as defined

on the category of Abelian groups and taking values in the category of Abelian

groups. In so far as the results, which we obtain, are natural, they can be prolonged

to the category of semi-simplicial Abelian groups.

Proposition 3.1. If A and B are free Abelian groups then there is a natural

isomorphism:

L(A ®B)xLB® L(A\® TB)

where TB =0?=o B'is the tensor ring with unit (B° = Z).

Proof. By applying the functor L to the maps B -* A © B -* B, we obtain a

direct sum decomposition of L(A © B) into LB © / where / is the kernel of

L(A © B) -> LB.

I is a Lie ring and it contains a subgroup M generated by products which

contain exactly one factor from A and all other factors from B. The group M

is isomorphic to / made Abelian, i.e. M x //[/,/]. Clearly every homomorphism

from M to a Lie ring can be uniquely extended to a ring homomorphism from /

to that Lie ring. Hence / is the free Lie ring generated by M.

It remains to show that M is isomorphic to A ® TB. By the anti-commutivity

of the multiplication in /, we may assume that each product in M is written in the

form:

[•••[[fl,Wi],W2],.--,W,/]

where a is in A and the wfs are in LB.cz TB (the set of w¡'s may be empty). We

map this element to :

a®Wy®---®wk in A® TB

(if there are no w¡'s we map a to a ® 1 in A® TB). This map is well defined

since the Jacobi identity holds in both M and LB c TB. The map is clearly natural

and it has an inverse defined by: a ® by ® ■■■ ® b„ goes into [••• [a,b,],---,bn~].

Definition. If R is;a Lie ring then we define the subrings FrR by T,R = P and

rr+1P = [rrP,P]. These subrings are called the lower central series of P. (The

direct sum of the successive quotients is again a Lie ring and could be called the

associated weighted Lie ring of P.)
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Definition. Let L be the free ring functor. We define the functor J =T2L¡T2T2L

that is J is r2L made Abelian. The functors J'are defined to be IL\Lf C\T2T2L

for r = 2,3,-. It is clear that J=©rco=2Jr. (Note also J2 x L2,J3 x Ü.) An

alternate definition of Jr is given in [2, p. 163].

Proposition 3.2. If M is a free Z module, r > 1, then there is a natural short

exact sequence:

JrM -*M®SF~lM-^ SPrM.
i J

Proof. SPM is the symmetric tensor ring and SP'M is the r-fold symmetric

tensor product. The map j is the multiplication map of SPM and i is defined on

basis elements [•••[m1,m2],--.,mr] of JTM by:

i([---[my,m2\,--, mr]) = m1®(m2,.-.,mf)-m2®(m1,m3,---,mr).

It is obvious that i is well defined and one to one. It is also clear that j is onto,

j is natural, and j o i is zero. To show that i is natural and that the image of i is

the kernel of /, one may consider XrM the kernel of the natural projection of

T'M^SPr M, where TrM is the r-fold tensor product of M with itself. The

inclusion L'M -» Xr M induces a natural isomorphism

JrMxXrM/M®Xr~1M

which in turn is naturally isomorphic to the kernel of/ It is easy to show that the

composite isomorphism is just the map i.

Proposition 3.3. The composite of the natural inclusion i:UM-*TrM and

the projection q:TrM -» L'M is multiplication by r when M is free and where

q(my ® ••• ® mr) = [•••[m1,m2],--,mr].

This may be proved by direct computation.

4. The basic computation. Let K(Z, n) denote the Eilenberg-MacLane complex

whose one nonzero homotopy group is Z and occurs in dimension n. Since

K(Z, n) is a free module in each dimension we may apply various functors (from

Abelian groups to Abelian groups) to each dimension of K(Z, n) and obtain new

semi-simplicial Abelian groups whose homotopy groups depend only on the homo-

topy groups of K(Z, n).

We can use Proposition 3.2 to relate the homotopy groups of J'KiZ, n) with

those of SPrK(Z,n). A great deal is known about the homotopy groups of

SPrK(Z,n) (or Zp®SPrK(Z,n)). For example in [4, p. 306] we have the results:

Proposition 4.1. _   .,
fZ   if n is even and q = n,

nn+qSP2K(Z,n) Z2if q = 2,4,6,-,2[(n-l)/2l

.0 otherwise.
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Proposition 4.2. // p is a prime and 0 < r < p then

¡ Z. if n is even and q = rn,
nq(Zp®SP'K(Z,n))x\

I 0 otherwise.

By the techniques of [4] one can further obtain :

Proposition 4.3. // p   is   a   prime   then   nn+q(Zp® SPpK(Z,n))   is   Zp   if

q = 0,1 mod2(p — 1) and 1 < q ^ n(p — 1); it is zero otherwise.

In addition to these results, [4, p. 307] contains the computation of the homo-

morphisms :

7trnK(Z, n) ® SPr~1K(Z, n) -» nrnSP'K(Z, n),

which, when n is even, are j ust multiplication by r (Z -> Z). Thus one can apply

Proposition 3.2 to prove the following three propositions:

Proposition 4.4.

' Z if n is odd and q = n,

nn+qL2K(Z,n) = nnUJ2K(Z,n) =    ■ Z2 if q = l,3,-,2[n/2] - 1,

. 0 otherwise.

Proposition 4.5. // p is a prime and 2 < r < p then

7tq(Zp®JrK(Z,n)) = 0.

Proposition 4.6.// p   is   a   prime   then    nn+q(Zp®Jp K(Z,n))   is   Zp   if

q = — l,0mod2(p — 1) and 0 < q < n(p — I); it is zero otherwise.

Proposition 4.7. If p is a prime then:

n*(Zp ® LFKCZ, «)) * n¿Zp ® JPKCZ, «)).

Proof. Since the result clearly holds for p = 2 or 3, we assume p — 5. Consider

the lower central series of Zp ® T2LK(Z, «). The associated weighted Lie ring is:

Zp®LJK(Z,n) = L(Zp® JK(Z,«)) = l(zp®($ J'K(Z,n)\.

Since Zp®0rOT=2 JrK(Z,n) and Zp®(J2K(Z,n)®Q)?=pJ'K(Z,n)) are free Zp

modules, whose homotopy groups are identical, and since L may be viewed as a

prolonged functor from Zp modules to Zp modules, we can conclude that:

nle(Zp ® LJK(Z, «)) * tt+L {z, ® (j2K(Z, «) © © J' K(Z, n)) j .

Thus by Proposition 3.1, the associated weighted Lie ring of Zp®T2LK(Z,n)

has for its homotopy groups:
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n*(Zp®LJ2K(Z,n))@nJzp ® l\ l($JrK(Z,n)\ ®TJ2K(Z,n)\ \ .

However T2LK(Z, n)= ($%2L"K(Z,n) and the ideals TrT2LK(Z,n) ate

homogeneous ideals so that the successive quotients are also weighted (or graded)

by s. Therefore the homotopy groups of LSK(Z, n), which is finitely filtered by

its intersections with these ideals, can be computed from the homotopy groups of

its successive quotients, and these successive quotients are direct summands of

the associated weighted Lie ring. In particular n*(Zp ® VKiZ, n)) can be computed

from a spectral sequence which collapses to just n*(Zp ® J PK(Z, n)).

Proposition 4.8. Tt^.LrK(Z,n) is a Zr module for r>2.

Proof. By Proposition 3.3, the map, multiplication by r, of L'K(Z,n) into

L'K(Z, n), factors through the r-fold tensor power TrK(Z, n) of K(Z, n). Further-

more the nontrivial generator of TrK(Z, n) = K(Z, rn), goes into zero under the

projection TTK(Z, n) -* LrK(Z, n) if either n is even or r > 2. Thus every element

of Tz*,LrK(Z, n) is of order r.

Since n#LpK(Z, n) is a Zp module, for p an odd prime, we can apply the universal

coefficient theorem to conclude :

Proposition 4.9. 7/p is an odd prime then:

Z„ifq = 2i(p - 1) - 1, i = l,2,-,[n/2],
%n) x\   '

otherwise.

Proposition 4.10.

■ Z if q = 0,

nn+qSr = ■ Z + a finite group ifn is even and q = n — I,

, a finite group otherwise.

Proof.   By  the  convergence   of the   spectral   sequence   and  the  fact  that

7t+Lr/¿(Z, n — 1) is finite unless either r = 1 or both r = 2 and n — 1 is odd.
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