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1. Introduction. The Rauch comparison theorem yields a metric comparison

of the lengths of Jacobi fields along geodesies in different Riemannian manifolds

under suitable initial conditions and suitable hypotheses on the curvatures and on

the nonexistence of conjugate points. Part of the initial condition is that the Jacobi

fields should vanish at the initial points. In this paper we show how Rauch's

theorem and proof extend to Jacobi fields satisfying more general initial con-

ditions; namely, to Jacobi fields associated with submanifolds. Berger has

given such an extension in [2] for the case in which the submanifolds are them-

selves geodesies. For more general submanifolds the initial conditions will involve

the second fundamental forms ; and so in the comparison theorem, one needs an

additional hypothesis comparing the second fundamental forms. Instead of con-

jugate points, one is now concerned with focal points. Several new factors enter.

One is that one has to apply, in certain cases, some special boundary conditions

in order to get a comparison, and another is that the comparison generally does

not hold as far as the first focal point in contrast to the Rauch case where the

comparison holds as far as the first conjugate point.

In §2 we review some of the basic geometry of submanifolds and give a precise

statement of the Rauch comparison theorem. In §3 we give a formal setup and

proof of the comparison theorem which we then apply to submanifolds in §4.

2. Preliminaries. We refer the reader to [1] or [3] for details and proofs of the

material summarized in this section. Unless we specify otherwise, we assume all

manifolds and maps to be differentiable of class C00. By a differentiable map with

domain a closed interval [a, fe] of the real line we mean one which can be extended

to be differentiable on an open neighborhood of the interval. A piecewise dif-

ferentiable map on [a,b] is one for which there is a partition

a = a0 < a] < •■■ < a„ = fe

of [a,fe] such that the map is differentiable on each [a¡,a¡+1].

Let M be a d-dimensional Riemannian manifold with d — 2. We denote the
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tangent space to M at m by M,„ and the inner product of tangent vectors x and y

in Mm by <x,y>. The length or norm of x is denoted by ||x||. Let X bea p-dimen-

sional Riemannian submanifold of M passing through the point m of M with

0 ^ p = d — 1. Let a(t), 0 = t = b, be a geodesic in M parametrized by arc length

with initial point m and initial tangent ff*(0) orthogonal to the tangent space X„,

of the submanifold at m. The second fundamental form assigns to the normal

vector o-*(0) a symmetric linear transformation S„ (0) on Xm. Let f£(a, t0, K)

denote the linear space of all piecewise smooth vector fields along o-| [0, i0] whose

values are everywhere orthogonal to the tangent vector o-+ of a and whose initial

value is an element of Xm. Jâf(<7, i0,0) is the subspace of £f(o, t0, X) consisting of

those vector fields which vanish at m.

A smooth vector field Y(t) along a is called a Jacobi field if it satisfies the

Jacobi equation:

(V2Y)(t) + RtY(t) = 0.

(V Y)(t) means the covariant derivative of y along a with respect to tr* (t).R, is a

symmetric linear transformation on Mff(/) defined as follows in terms of the cur-

vature tensor:

R,y(0 = R(y('W0K(0.

A Jacobi field Y e £f(a,b,K) is called a K-Jacobi field if it satisfies the boundary

condition:

SatiO)Y(0)-(VY)(0)e(Km)\

where _L means orthogonal complement in Mm. Geometrically, the X-Jacobi

fields are precisely those which arise as the base vector fields dtx(o/dv)(t,0) of

mappings oc(t, v) of rectangles into M with longitudinal curves a (v = constant)

geodesies emanating orthogonally from X and parametrized by arc length. We

call a X-Jacobi field Y along a a strong K-Jacob field if it satisfies the strong

boundary condition:

Sa4iO)Y(0) = (VY)(0).

The set of X-Jacobi fields along a forms a (d — l)-dimensional linear space

and spans the orthogonal complement to o-#(t) in Mff(r) for 0 < t prior to the first

focal point on er. A focal point on a is a point a(t), t # 0, at which a nontrivial

X-Jacobi field along a vanishes.

In the case when X = m, the set of X-Jacobi fields along a is the set of Jacobi

fields in f£(a,b,0), and focal points are also called conjugate points.

The index form f(,0,K) is a symmetric bilinear form on ¿¡P(tT,t0,K) defined as

follows :

i(t0iK)(x, Y) = <s„.(O)x(0), y(0)> + £°«vx,vy> - <:r,x, y» at.
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If X e f£(a, t0, K) and X(t) ¥= 0, the sectional curvature K(X) of the 2-plane in

Ma(t) spanned by X(t) and er*(t) is equal to (RtX,X}¡(X,X}. If we define K(X)

to be 0 whenever X vanishes, then

i(l0iK)(x,x) = <sfft(O)x(0),x(0)> + f °«vx,vx> - K(xxx,xy) dt.
Jo

When there is no confusion we let J = /(,0,k). If Tis a X-Jacobi field in 2?(er, t0, K),

I(Y, Y) = <(VT)(i0), T(i0)> = (1/2)<T, T>'('o).

One of the basic properties of Jacobi fields is that they minimize the index form

prior to focal points in the following sense.

Minimization Theorem 2.1. Let X eáf(er,b,K). Assume there are no

focal points on er. Then there exists a unique K-Jacobi field Y such that Y(b) = X(b)

and

I(X,X) = I(Y,Y)

with equality if and only if X = Y.

Corollary 2.2. If there are no focal points on er, I is positive definite on the

subspace of f£(a,b,K) consisting of those vector fields vanishing at er(b).

If, however, there are focal points on er, then / is not positive definite on the

subspace of ¡t?(o, fe, K) consisting of those vector fields vanishing at er(b). Indeed

there exists a nontrivial X-Jacobi field Y vanishing at some f0 — b. If we extend Y

to be 0 from t0 to fe then ICY, Y) = 0. In particular, in the case K = m, if there are

no conjugate points on o, I is positive definite on the subspace of f£(o, fe,0)

consisting of those vector fields vanishing at er(b); and if there are conjugate

points on a, I is not positive definite on this subspace of £i'(er,b,0). Since

£e(tr,b,0)ezz£e(er,b,K) we have the

Corollary 2.3. The first focal point on the geodesic a for any submanifold K

passing through o(0) with er^.(0)e(K„iO))x occurs at least as soon as the first

conjugate point to er(0) along ex.

Let M, K and er be as above. We distinguish another such setup by the pre-

superscript '. So 'M is a 'd-dimensional Riemannian manifold, 'd — 2, 'K a 'p-

dimensional Riemannian submanifold of 'M with 0 = 'p g 'd — 1, '«? a point of

'K, 'er(t) a geodesic in 'M parametrized by arc length with domain the interval

[0,fe], initial point 'm and initial derivative 'er#(0)e('K,m)±.

The Rauch comparison theorem [5], [6], [3] deals with the case in which K

and 'K are both points and gives a comparison of the length of K and 'K-Jacobi

fields along o and 'er under suitable curvature and nonconjugacy hypotheses.
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Rauch Comparison Theorem 2.4. Let d = 'd. Assume there are no con-

jugate points on 'a and assume that for each t e [0, b\for ail 2-planes P cz Ma{t)

containing cr*(t) and all 2-planes Q cz 'MV(I) containing 'ojíf) the sectional

curvatures satisfy:

K(P) = K(Q).

Let X and Y be Jacobi fields in f£(a,b,0) and f¡f('o,b,0) respectively, such tha

||(V*)(0)| = |(VY)(0)||. Then

¡|X(í)|^||Y(í)|       for all te[0,bl

Berger has indicated in [2] how Rauch's proof may be extended to give a

comparison of certain X and 'X-Jacobi fields in the case where both X and 'X

are geodesies. It is our purpose here to show how Rauch's proof may be extended

to the case of general submanifolds X and 'X. One requires in the general case an

additional hypothesis comparing the second fundamental forms S„ (0) and S>a (0).

Several other new factors enter in the general case in that one has to make suitable

boundary restrictions on the Jacobi fields to get ones which can be compared,

and in certain cases the comparison can be carried beyond the first focal point

whereas in others the comparison does not hold as far as the first focal point.

We also would like to have a comparison when the dimensions d and 'd ate not

equal. In the case 'd < d, one has to formally increase the number of variables in

the Jacobi equation along 'o. To do this we find it most convenient to separate

the geometric application from the result on differential equations involved.

This we do in the next section where we treat formally the comparison theorem.

In §4 we apply this to submanifolds.

3. The comparison theorem. We first formalize the geometric setup of §2

essentially by choosing a parallel frame along a and identifying all the tangent

spaces Ma(l) along a with Mm. Actually, since we are only interested in Jacobi

fields orthogonal to a* along a, we only consider the subspace of Ma(l) orthogonal

to <r#(i). Por the most part we use similar notation and terminology. One dif-

ference, however, is that here we will only require the coefficients in the Jacobi

operator to be continuous, and hence the solutions of the Jacobi equation will be

differentiable of class C2.

Again let d be an integer = 2. Let V be a (d — l)-dimensional real vector space

with an inner product <, >. Let t -* R, be a continuous mapping of [0, b] into the

symmetric linear transformations on V. Let X be a subspace of V of dimension p

with 0 — p — d — l, and S a symmetric linear transformation on X. Let ¿£(V, t0, X)

denote the linear space of piecewise C2 curves Y(t) in V with domain [0, r0] and

initial value Y(0) e X. We call a C2 curve y in F a Jacobi field if it satisfies the

Jacobi equation:

(V2Y)(f) + R(y(0 = 0.
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HereV denotes the ordinary derivative of Vvalued functions with domain an open

subset of the real line. If Tis a differentiable curve in V, V Tis defined and is again a

curve in V. A Jacobi field Y e ¿¡?(V, t0, K) is a K-Jacobi field if

SiYiO))-C7Y)iO)eK±.

Let "T denote the setup consisting of CV,Rt,K,S). A real number roe(0, b] is a

focal point of 'f if there exists a nontrivial K-Jacobi field Y such that Y(f0) — 0»

In the case K = {0}, focal points are also called conjugate points. The index form

I(,0,k) ¡s the symmetric bilinear form on S?(V,tyy,K) defined by:

-W*. y) = <sxi°)> y(°)> + r «V-V,vr> - <«<*> Y»dt.

It can be checked that under our new differentiability assumptions the mini-

mization theorem holds as before.

Minimization Theorem 3.1. Let Xef£CV,b,K) and assume there are no

focal points of'V on (0, fe]. Then there exists a unique K-Jeicobi field Y such that

Y(b) = X(b) and

I(X,X) = I(Y,Y)

with equality if and only if X = Y.

In our applications in §4, F will be the subspace of Ma(0) orthogonal to er#i0), K

will be Km and S will be Sa (0)- Let P, denote parallel translation of M„m to

M (() along er. Then the symmetric linear transformation Rt on V will be

PflRtP„ where the latter Rt is the curvature transformation on MaUY

Now consider another such setup 'iT = ('V, 'R„ 'K, 'S) where 'Fis of dimension

('d — 1) = 1, and 'K is of dimension 'p with 0 ^ 'p ^ 'd — 1. We first need the

following comparison of the relative location of the first local points of "T and 'tT.

Theorem 3.2. Assume that if p > 0 then also 'p > 0. Assume for each t e [0, b]

that the maximum eigenvalue of Rt is less than or equal to the minimum eigen-

value of 'Rt. Assume the minimum eigenvalue of S is greater than or equal to the

maximum eigenvalue of 'S. Then if there are no focal points of 'V on (0, fe],

there are no focal points of'f on (0, fe].

Remark. We do not distinguish the case where p = 0 and 'p = 0. Simply

observe that in this case S and the corresponding term in the index form for ~f"

vanish and there is no restriction on the eigenvalues of 'S if 'S exists.

Proof. Assume r0 e (0, fe] is a focal point of "f. We show '"f has a focal point

on (0, fe]. Assume first that d z% 'd. There is a nontrivial K-Jacobi field Y such that

T(r0) = 0. Extend Y to be 0 from t0 to b. Then Iib,K)(Y, Y) = 0. Let elt --,ed^y be

an orthonormal basis of F such that the only nonzero component of 7(0), if there

is any, is in the e, direction.
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ä-l

Y(t) =   2   gi(t)e.,
i = l

Let/,, •■•,fd-i be an orthonormal basis for 'V with/, e 'K if 'X # {0}. Define:

d-l

Z(t)=        I       gi(t)f.
i = l

Then Z(t)e ^C('V,b,'K). The maximum eigenvalue of Rt is the maximum of

<[R,v,vy as v runs over the unit sphere in Kand similarly for the minimum. There-

fore since || Y(t) || = || Z(t) || for every t, our hypotheses imply

(RtY,Y} = <:'RtZ,Zy.

Similarly

<SY(0),Y(0)>^<'SZ(0),Z(0)>.

Hence

0 = I(biK)(Y,Y) = I(KK)(Z,Z).

Therefore ''V has a focal point on (0, b~\ for otherwise, by the minimization

theorem, f(f,,K) would be positive definite on the subspace of ¿P('V, b, 'X) consisting

of those curves in ' V vanishing at b.

Now consider the case 'd < d. Let W be a (d — '^-dimensional real inner

product space and let

"V= 'VQW

with the induced inner product on "V. Let v(t) be the minimum eigenvalue of 'Rt.

Then v(r) is a continuous function of t. (Note that even if we had assumed initially

that 'Rt was to be differentiable of class C °°, we could at best conclude v(r) is

continuous.) Let

"X = 'X0{O}<="K

and let "Rt be the symmetric linear transformation on "Kand "S the symmetric

linear transformation on "X defined by:

"Rt = 'R, 0 v(r)/

and

"S='S®0,

where I is the identity on W. Let ""T = ("V,"R„"K,"S). Then the hypotheses of the

theorem are satisfied for y and ""t~. Namely, if p > 0 then "p > 0, the maximum

eigenvalue of R, is less than or equal to the minimum eigenvalue of "R„ and the
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minimum eigenvalue of S is greater than or equal to the maximum eigenvalue of

"S. We need only show that there are no focal points of¥r on (0, fe]. Then since

d = "d, it follows from the first part of the proof that there are no focal points of

"V on (0,fe]. Because of the way "V was constructed, the first focal point of ""T

is either the first focal point of '-T or the first conjugate point for (W, v(t)I, (0},0).

By assumption, there are no focal points for '"f on (0, fe]. To show there are no

conjugate points of (W, v(t)I, (0},0) on (0, fe] it suffices to show there are no

conjugate points of (P, v(i)/, {0},0) on (0, fe] where R is the real line and I again

is the identity. But we can compare (R, v(t)L {0},0) with '"K and since 1 — ('d — 1)

use the first part of the proof to conclude there are no conjugate points of

(P,v(r)/,{0},0) on (0,fe].    q.e.d.

Comparison Theorem 3.3. Let ~t~ and '~f~ be as above. Assume for each

le[0,fe] the maximum eigenvalue of R, is zi the minimum eigenvalue of 'R,

and assume the minimum eigenvalue of S is — the maximum eigenvalue of 'S.

Assume either of the following:

(a) let p = 'p = 0, let Xe&CV,b,{0}) and Ye&i'V,b,{0}) be Jacobi fields
with ¡VX(0) ¡| = ||VT(0) || # 0, and assume there are no conjugate points of '"T

on (0, fe] ; or

(b) let p>0 and 'p='d-l, let Xe&(V,b,K) and Ye£e('V,b,'K) be K

and 'K Jacobi fields respectively such that | X(0) || = || 7(0) | / 0, and assume

there are no focal points of 'V on (0, fe].

Then  \\ X(t) || = \\ Y(t)
some  t0 e [0, fe],   then

for t e [0, fe]. Moreover, if \\ X(t0) || = || Y(t0) || for

Xit) || = I 7(i)||   for   te[0,t0].

Remark. Part (a) is the Rauch comparison theorem except for differences of

notation and for our extension to the case where dim F# dim 'V. Part (b) is the

extension we will need for submanifolds. The proof is that given by Rauch except

for the obvious generalizations needed for part (b) and for the technicality in-

troduced by allowing the dimensions of Fand 'F to be different. We again treat

both cases at the same time, observing that in case (a), K = {0}, 'K = {0} and

the assumptions on S and 'S are vacuous.

Proof. Let

/.(<)= <xit),xit)y,

f2it)= <no,no>.

To prove the theorem we will apply the following lemma.

Lemma 3.4.   Let fy and f2 be real valued functions on [0, fe] satisfying

(1) fy andf2 are differentiable of class Cl,

(2) /, > 0 andf2 > 0 on (0, fe],

(3)lim,.0(/,(/)//2(/)) = L

(4) if fit) ¡fit)) = if fit) ¡f2it)) on (0,fe].
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Thenfy(t)^f2(t) on [0,b]. Moreover, if'fy(t0)=f2(tQ) for some ioe[0,b], then

flit) &fiit) on [0,r0].

Proof of lemma.   Let gt=f,'lft on (0,6]  for  ¿ = 1,2.   Let 0 < ty = t ^ b

It follows from integrating and taking exponentials that

/¡(O/ZiOi) = exp^'^i j.

Hence

/i(0//2(0 = (fi(h)/f2(h)) cxp(| '(gy - g2)di}.

Let ty -> 0. Then

flit) If lit) = exp (£(2i- S2)dtj.

By assumption, (g, — g2) k 0 on (0, b~\. Hence

h(t)^f2{t)       on[0,b\

Now suppose /i(f0) =fi(to) f°r some r0 e [0, b]. Then

expi J   (gy - g2)dt\ = 1,

which implies g y = g2 on (0, r0]. And this implies

fi(t) &f2(t)       on [0,r0]. q.e.d.

We return to the proof of the theorem. Observe that according to Theorem 3.2

there are no focal points of "K on (0, b]. To prove the theorem we need only

verify that the hypotheses of the lemma are satisfied. (1) and (2) are obvious and (3)

follows immediately from the initial conditions. We prove (4). Assume first that

d — 'd. Let ty e (0, b]. We must show

(h'(ty)lfy(ty))Uf2'(ty)lf2(ty)).

Let

W(t)  =  X(t)l\X(ty)\\,

and

z(o=Y(o/||n<i)|-
Then we must show

<w,wy(ty) = <z,zy(ty),
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and since Wand Z are X- and 'X-Jacobi fields, respectively, this is equivalent with

showing

ftl,K)(W,W) = flu,K)(Z,Z).

Let ei,---,ed.i be an orthonormal basis of Ksuch that W(ty) = ey. Letfy,---,f,d..y

be an orthonormal basis of 'Ksuch that Z(ty) =f¡.

Wit) = Z  gtffrt.
¡ = 1

Let

m = '£ gi(t)f,¡=i
Then rfeSe('V,tu 'X). (In case (b) this is because 'X = ' V.) Moreover rV(ty) = Z(tL).

Hence

Ito*fW.W)ZI(fl.'*¿*', W)^IUl,K)(Z,Z).

The second equality follows from the minimization theorem and the first follows

the hypotheses on R„ 'R„ S and 'S, and the fact that || W(t) || = || W(t) \\ and

||v^(o| = ||vif(i)||.
Now suppose d > 'd. Let IK be a (d — 'c/)-dimensional real inner product

space and let

"V='V®W

with the induced inner product. Let v(<) be the minimum eigenvalue of 'R, and let

".R,= '.R,©v(t)/

where / is the identity on W. In case (a) let "X = {0} and "S = 0. In case (b) let

"X = "Kand let

"S = 'S®r¡I

whererçis the maximum eigenvalue of 'S and J is again the identity on W. Finally,

let

"-r = ("v,"Rt,"v,"S).

Observe that the first focal point for "V is either the first focal point for 'y or the

first focal point for (W,v(t)I, {0}, 0) in case (a) and (W,v(t)I, W,nl) in case (b).

By assumption, '"T has no focal points on(0, b] and it follows from Theorem 3.2

by comparing (JK,v(i)/,{0},0) (or (W,v(t)I, W,nl)) with 'tT that there are no focal

points of (JK,v(i)/,{0},0) (or (W,v(t)I, W,r\I)) on (0,b]. Hence there are no focal

points of "V on (0, b\ and the hypotheses of the theorem are satisfied for "V and

""T. Since now dim K= dim"K, the theorem holds for "V and '"f" by the first part
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of the proof. We apply this to prove the theorem for "f and 'f~. Simply observe

that in case (a) if Y(t)e3?(fV,b,\f)}) is a Jacobi field, the curve

(Y(t),0)eJ?("V,b,{0})

is again a Jacobi field with initial derivative the same length and with

||y(0|| = ||(y(0,0)||.

Similarly in case (b), if Y(t)e^('V,b,'K) is a 'X-Jacobi field, then

(Y(t),Q)eJ?("V,b,"K)

is a "X-Jacobi field with

||7(<)|| = ||(7(0,0)||. q.e.d.

4. Applications to submanifolds. We adopt the notation and geometrical setups

of §2. So M is a d-dimensional Riemannian manifold, d ^ 2, K a p-dimensional

Riemannian submanifold of M with OSjprgd — I, ma point on K,er(t) a geodesic

in M parametrized by arc length with domain the interval [0, fe], initial point m

and initial derivative cr^(0)e(Km)J-. And 'M,'K,'er denotes another such setup,

with dim 'M='d — 2, dim 'K = 'p with 0^'p^'d — I and domain of 'er the

interval [0, fe].

We will make the same assumption on the sectional curvatures and second

fundamental forms several times, so for convenience we abbreviate them. As-

sumptions (K) and (S) will mean the following:

(K.) For each t e [0, fe] and for all 2-planes P c M„U) containing erj,t) and all

2-planes Q <= 'MV(() containing '0^(1) the sectional curvatures K(P) and K(Q)

satisfy :

KiP) è KiQ).

(S) The minimum eigenvalue of S is = the maximum eigenvalue of 'S.

Observe that (K) is equivalent with the following. For each t restrict the cur-

vature transformation R, to the subspace (M„{ty) x of M„(t) orthogonal to er^(t)

(similarly for 'R,). Then, for example, the maximum sectional curvature K(P)

as P runs over the 2-planes in MCT(I) containing er^.(t) equals the maximum of

<P,x,x>as x runs over the unit sphere in (M<T„))J\ So (K) is equivalent with the

assumption that the maximum eigenvalue of R, is ^ the minimum eigenvalue of

'Rt for each / e [0, b].

The following theorem describing the relative location of first focal points

along er and 'er is now an immediate application of Theorem 3.2.

Theorem 4.1. Assume that if p > 0 then 'p > 0. Assume (K) and (S). iNote

(S) vacuous when p = 0.) Then if there are no focal points on 'er, there are no

focal points on o.
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Remark. Some of the most useful comparison spaces are the manifolds of

constant curvature. Let c and ô be any real numbers. Let M(c) be a complete

Riemannian manifold of dim §; 2 and with constant curvature c. Let p e M(c)

and let v be a unit vector in (M(c))p. Choose a hypersurface N in M(c) through p

such that v e (Np)x and such that all the eigenvalues of the second fundamental

form Sv ate equal to ö. Let t be the geodesic in M(c) with t(0) = p and t*(0) = v.

Let /0 be the smallest positive solution of

ctnc1/2i =  -<5/c1/2 if c>0,

t =  - 1 ¡6 if c = 0,

cothc1/2t =  -<5/c1/2 if c<0.

Then the first focal point to N along x occurs at r(t0).

Corollary 4.2. Let M,K,o be as above. Assume p > 0. Let c and ö be real

numbers and define t0 as above.

(a) Assume all the eigenvalues of S„ (0) are — à and the sectional curvatures

of all 2-planes along a containing a* are all — c. Then there are no focal points

of K on er|[0,r0).

(b) If all the eigenvalues of S„ ,0) are — ö and the sectional curvatures of all

2-planes along o containing o* are all = c, then there is a focal point of X on

o-|[0,t0].

This corollary was proved by Hermann in [4] in a somewhat different fashion.

The following theorem follows directly from Theorem 3.3. Part (a) is the Rauch

comparison theorem and part (b) gives a comparison in the case 'X is a hyper-

surface, i.e., dim 'K= 'd — 1. We do not assume d = 'd.

Theorem 4.3. Assume either of the following:

(a) let Xe£C(a, b, 0) and Y e &('ct, b, 0) be Jacobi fields such that

|VX(0)|| = ||VY(0)||, assume (K) and assume there are no conjugate points on

'a; or

(b) let 'p='d-l, let Xe^C(a,b,K) and Ye&('cj,b,'K) be X- and 'X-

Jacobi fields respectively such that \\X(0) || = || Y(0) || # 0, assume (K) and (S)

and assume there are no focal points on 'a.

Then I X(t) I ^ I Y(f) \\ for t e [0, £-]. Moreover, if \\ X(t0) || = || Y(t0) || for

some ioe[0,b], then ¡X(t)\\ = || Y(t) \\ on [0,i0]-

Observe that in part (b) of the theorem, since 'X is assumed to be a hyper-

surface, 'X-Jacobi fields are automatically strong 'X-Jacobi fields. In the general

case when 'X is not a hypersurface we will have to restrict to the strong 'X-Jacobi

fields to get a comparison. 'X-Jacobi fields which are not strong we call weak.

The following example shows part (b) of the theorem cannot hold in the case

'p < 'd — 1 if we allow Y to be a weak 'X-Jacobi field.
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Example 1. Let (ey(t), e2(t), er^t)) be a parallel orthonormal frame along

a geodesic o (parametrized by arc length) on the 3-sphere S3 of constant curvature

1. Let t be the geodesic through cr(0) with T#(0)=e,(0). Let X(i)=(cost)ey(t)

and Y(t) = (cos O^iCO + (sin t)e2(t). Then X and 7 are both t-Jacobi fields along er.

Moreover, 7 is a weak r-Jacobi field. || X(0) || = || 7(0) || ^ 0, and (K) and (S)

hold trivially, but || X(t) \\ < fl Y(t) fl for 0 < t < n.
Now let 0 < 'p <'d — 1. We will get a comparison of K-Jacobi fields with

strong 'K-Jacobi fields essentially by enlarging 'K to a hypersurface K in such

a way that strong 'K-Jacobi fields become A*-Jacobi fields ; then we apply Theorem

4.3 to K and K. This will yield a comparison of K and strong 'K-Jacobi fields,

but only as far out as the first focal point for K which will occur at least as soon

as the first focal point for 'K. This, however, is the best one can expect—we

give an example later of a K-Jacobi field and a strong 'K-Jacobi field for which

the comparison holds as far as the first K focal point but not as far as the first

'K focal point.

Let H be the orthogonal complement of 'K,m in ('ALff(0))x • Let n be

the maximum eigenvalue of S.„ (0). Choose a hypersurface K through '«i ortho-

gonal to 'er^O) (i.e., so that K,m = ('M.^,,)1 ) so that the second fundamental form

S'ff.CO) = S'<r.(0) © rfl,

where I is the identity on H. This is possible in view of Theorem 3, page 198 of [3].

Since 5^,(0) | 'K,m = S.at(0), strong 'K-Jacobi fields are also (strong) K-Jacobi

fields. By applying Theorem 4.3 to K and Â* we obtain the following comparison

of K and strong 'K Jacobi fields.

Theorem 4.4. Let 0 < 'p < 'd — 1. Let Xe&(er,b,K) be a K-Jacobi field

and Ye£C('o,b,'K) a strong 'K-Jacobi field such that \\X(0)\\ = || 7(0) || ¿ 0.

Assume (K) and (S) and assume there are no focal points of K on 'er. Then

II *« 11 = I y«
t0 e [0, fe], then

for   rs[0,fe].   Moreover,   if   fl X(t0) || = || 7(i0) ||  for   some

X(0|| = ||7(r)||O«[0,r0].

Remark 1. The first focal point for K along 'a occurs at least as soon as

the first focal point for 'K along 'er. For suppose o{tf) is a focal point for 'K.

Then there is a nonzero vector field Zefg(fer,ty,'K) vanishing at ty for which

I(n<,K)(Z,Z) = 0. But 7(tli.Js:)(Z,Z) = /(tl-ï)(Z,Z) and ZeSÛ(fer,ty, K). Therefore

I(ti ¡¿y is not positive definite on the subspace of vector fields in £f('er,ty, ÎC)

vanishing at tt. Hence there is a focal point of K on 'a prior to (or at) cr(r,). Our

choice, however, of Ë was the most economical one in the sense that among all

such hypersurfaces whose second fundamental forms agree with S-ff (0) on 'K,m,

Kis the one whose first focal point occurs farthest along 'a.

Remark 2. We give a crude estimate of the location of the first focal point for

K. Let c be the sup of the sectional curvatures of all the plane sections along 'er



1966] EXTENSION OF THE RAUCH COMPARISON THEOREM 353

containing '<r#. Let ô be the minimum eigenvalue of Sv (0). Let t0 be the smallest

positive solution of

ctnc1/2i =  -<5/c1/2    if c>0,

t =   - l/<5 if c = 0,

cothc1/2i =  -ô/c1'2     if c < 0.

Then, by Corollary 4.2, the first focal point for X does not occur prior to 'cr(t0).

As we have mentioned, the comparison in Theorem 4.4 does not in general

hold as far as the first focal point for 'X. Consider the following example.

Example 2. Let M = S4, the 4-sphere with constant curvature equal to 1.

Let (ey(t), e2(t), e3(t), o*(t)) be a parallel orthonormal frame along a geodesic a

on S4. Let the submanifold X be the geodesic through <r(0) tangent to ^(0). So

the second fundamental form Sa (0) = 0. Let

X(t) = ((101)1'2 cost)ey(t).

Then X is a (strong) X-Jacobi field along a. Let 'M = P*(C), the four dimensional

complex projective space with curvature normalized so that the maximum sectional

curvature is 4. Let (fy(t), f2(t),f3(i), 'c*(0) be a parallel orthonormal frame along

a geodesic 'a on P*(C) chosen so as to simultaneously diagonalize the curvature

transformations 'Rt. We can assume the sectional curvatures of the plane sections

spanned by fy and 'o% ate equal to 4. Then the plane sections spanned by f2otf3

and 'tr* have curvature 1. Let the submanifold 'X be the geodesic through 'a(O)

tangent to/jiO) + 10/2(0). The second fundamental form S.„ (0) = 0. Let

7(0 = (cos2f)/1(0 + (10 cos 0/2 (t).

Then y is a strong 'X-Jacobi field along 'a. Moreover || X(0) \\ = | y(0) ||, and in

this example we even have ||VX(0) || = ¡Vy(0) || = 0. According to the theorem

the length of X should dominate the length of Y prior to the first focal point

for X. X in this case is a hypersurface through '<t(0) orthogonal to 'o-+(0) and

totally geodesic at <x(0), i.e. §.„ (0) = 0. The first focal point for X occurs at 'o(n¡4).

It is easy to check that || X(t)\\ = || Y(t)\\ for t < (nß). At nß the lengths become

equal, and beyond nß the length of Y becomes greater than the length of X. Let

y,(i) = ( - 5 sin 2t)fy (t) + (sin t)f2(t),
and

Y2(t) = (sin t)f3(t).

Then Y, Yy, Y2 form a basis of the 'X-Jacobi fields along 'a. The first focal point

of 'X occurs when these vector fields' first become linearly dependent. It is easy to

compute that this first focal point for 'X occurs at 'cr(t0) where t0 is the smallest

positive solution of
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cos2* = 1/102.

So the first focal point for 'K occurs beyond 'er(4n¡9).

There are certain special cases where the comparison in Theorem 4.4 holds out

to and sometimes beyond the first focal point for 'K.

Definition. We say the Jacobi equation splits along 'a relative to 'K if the

curvature transformations 'Rt preserve 'K.m and the parallel translates of 'K.m

along 'a.

Definition. A point 'rj(r0), r0# 0, on 'er is a strong focal point of 'K if there

exists a nontrivial strong 'K-Jacobi field vanishing at 'er(t0).

Supposethe Jacobi equation splits along 'er relative to 'K. Restrict the curvature

transformation 'Rt to ('M.,,«,)1, the subspace of 'M,a(t) orthogonal to 'er#(t).

Let Vf be the parallel translate of 'K<m along 'er to 'cr(r), and let V2 be the ortho-

gonal complement to Vf in ('M^,,)1. By assumption, 'R, preserves V}. Since

'R, is symmetric, it also preserves V2. Let 'Rx = 'R,\ Vx and 'R2= 'R,\ V2. Then

'P( = 'P,'©'P,2.

Let 7 be a Jacobi field along 'a everywhere orthogonal to '<r+, and let

7(1) = 7,(0 + 72(0 where Yy(t)eV] and 72(0e F,2. Then 7, and 72 are Jacobi

fields along 'a and the Jacobi equation becomes:

(V^KO + '^WO) =o,

(V272)(0+'P(2(72(0) = 0.

If 7 is a 'K-Jacobi field along 'er, then 7, is a strong 'K-Jacobi field and 72 is a

K-Jacobi field with 72(0) = 0 and V72(0) e ('K.J1-. Moreover

<7,(0, 72(0> = 0.

If 7 is a strong 'K-Jacobi field, then 7=7,.

Note that in general (if the Jacobi equation is not necessarily split along 'er),

if 7 is a 'K-Jacobi field, 7 has a unique decomposition into 7, + 72 where 7. is

a strong 'K-Jacobi field and 72 is a 'K-Jacobi field vanishing at 0. Generally

<7,(0, 72(0> î4 0. In case the Jacobi equation does split relative to 'K this

decomposition agrees with the one given above.

Theorem 4.5. Let 0 <'p <'d — 1. Let Xef£(er,b,K) be a K-Jacobi field

and YeSe('a,b,'K) a strong 'K-Jacobi field such that || X(0) fl = fl 7(0) fl #0.
Assume (K) and (S), assume the Jacobi equation splits along 'er relative to

'K, and assume there are no strong focal points of'K on 'er. Then fl X(t) || — || 7(01|

for te[0, fe]. Moreover, if fl X(t0) || = fl 7(f0) fl for some t0e[0, fe], then
||X(0||=||7(0|o«[0,i0].

Proof. The proof is again an application of Theorem 3.3b, with the difference
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that in this case we define 't"('V, 'R„ 'X, 'S) as follows. Let "V = 'K,m, so in this

case dim 'V = 'p. The symmetric linear transformations 'R, on 'K are in this

case to equal P,_1o'R,1 o P'|'X.„„ where P, is parallel translation along 'er.

Finally 'X = 'V and 'S = S. (0). The assumption that there are no strong focal

points of 'X on 'a means that there are no focal points of ' t~ on (0, b]. Since Y is

a strong 'X-Jacobi field, if we collapse Y along 'o via parallel translation we

obtain a curve in 'K which is a 'X-Jacobi field (in the sense of '"T). q.e.d.

Remark. Theorem 4.5 does not use the full force of assumption (K). Since the

Jacobi equation is split along 'a we need only assume (K) holds for the sectional

curvatures of those plane sections determined by elements of K/ithe parallel

translate of 'K.m along 'a) and 'trjf).

Corollary 4.6. Let 0 < 'p < 'd—1. Let Xef£(a,b,K) be a K-Jacobi field

and Ye&{'o,b,'K) a 'K-Jacobifield such that |X(0)| = |y(0)||#0. Y=Yy + Y2

where Yy is a strong 'K-Jacobi field and Y2(0) = 0. Assume (K) and (S), assume

the Jacobi equation splits along 'a relative to 'X, and assume there are no strong

focal points of 'X on 'a. Then

<x(t),x(t)y £ <y(o, y(0> - <ya<0. JM0>

for (6 [0,5]. Moreover, if equality occurs for some t0, then equality holds on

[«Mol-

Proof. By Theorem 4.5. <X(r), X(r)> £ <Yl{t),Y1{t)y for ie[0,b]. But

<y„ Ft> = <y, y> - <y2, y2> since <y„ y2> = O along V. q.e.d.

Corollary 4.7. Let 0 < p < d - 1 and 0 < 'p < 'd - 1. Le/ .Ye^(cr,b,X)

be a K-J acobi field and Ye f£('o, b, 'X) a 'K-J acobi field. Let X = Xy + X2 and

Y = Yy + Y2 where Xy is a strong K-J acobi field, Yy a strong 'K-J acobi field,

X2(0) = 0, and Y2(0) = 0. Assume \X(0)\ = \Y(0)\^0 and |VJT2(0)|
= |Vy2(0)|. Assume (K) and (S), assume the Jacobi equation splits both along

a relative to X and along 'a relative to 'K, and assume that there are no conjugate

points on 'a and no strong focal points of 'X on 'a. Then || X(t) | = || Y(t) || for

îe[0,b]. Moreover, if \\X(t0)\\ = \\Y(t0)\\ for some i0e[0,6] then \\X(t)\\

= \\Y(t)\\on[0,tol

Proof. It follows from Theorem 4.5 that ¡Xy(t)\\ = || Yy(t)\\ on [0,b] and

from Theorem 4.3a that |X2(t)|| = || y2(i)|| on [0. b]. Since the Jacobi equation

is split along both geodesies <X1,Z2>=0and <yx,y2> = 0. Hence |X(i)|è||y(0|

on [0, b], and the equality statement follows easily. q.e.d.

Remark. If 'M has constant curvature, the Jacobi equation always splits along

'a for any submanifold 'X. If 'M is a symmetric space, the Jacobi equation splits

along a geodesic 'a for those submanifolds 'X whose tangent space 'K,m is spanned

by eigenvectors of the curvature transformation 'R0 on ('Ma(0)) L.
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