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1. Introduction. This paper studies differentiable actions of the circle group

SO(2) on homotopy 7-spheres. The class of free such actions is shown to form

an infinite abelian group which is closely related to the group of differentiably

knotted 3-spheres in the 6-sphere. We also consider actions, each having a 3-sphere

as the fixed point set and acting freely otherwise. Some of our results are as follows.

(The appendix shows that recent work of Haefliger gives additional results.)

Theorem 1. The equivariant diffeomorphism classes of free differentiable

actions of the circle group on homotopy seven spheres form an abelian group

which contains an element of infinite order.

Theorem 2. On any homotopy seven sphere, there are infinitely many dif-

ferentiably distinct free differentiable actions of the circle group.

Theorem 3. On any homotopy seven sphere, there are infinitely many

differentiably distinct differentiable actions of the circle group, each having

a three sphere as the fixed point set and acting freely otherwise.

Theorem 2 has been proved for the 11-sphere by a different approach [1].

Further examples are given by W. C. Hsiang, A note on free differentiable

actions of Sl and S3 on homotopy spheres, Ann. of Math. 83 (1966), 266-272.

Whether or not there is a similar result for the 5-sphere is open.

In order to obtain the group mentioned in Theorem 1 we work with the quotient

spaces and introduce in these spaces a sum operation which is somewhat analogous

to, but is distinct from, the ordinary connected sum. Use will be made of the

fact that each free differentiable action of the circle group SO(2) on a homotopy

7-sphere determines a simply connected differentiable 6-manifold with the

cohomology properties of the complex projective 3-space, and conversely that

such a manifold determines such an action.

After preliminary remarks, two standard actions of SO(2) on the 7-sphere are

given. In a sense each of these can be obtained from the other by surgery. It is

this idea that suggests our sum operation.
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Throughout the paper, differentiability is in the C°°-sense and homology and

cohomology are in the sense of singular theory with coefficients in the ring Z of

integers. Also we let

P" = euclidean «-space,

D" = {xeR"| |x| g 1}, i.e., the unit closed «-disk in R",

S"~l = boundary of/)", i.e., the unit (« —l)-sphere in P",

E" = D" — S"_1, i.e., the unit open «-disk in R", where all are understood tobe

the differentiable manifolds having the standard differentiable structures. For

terminology such as imbeddings, diffeomorphisms, diffeotopies, strong diffeo-

topies, we refer to [2]. For the sake of convenience, we let the circle group be

denoted by G and consist of complex numbers g with | g | = 1, and let P4 be

the quaternion field. Whenever geG and q eP4, we let gq be the product of

g and q. Then we have a differentiable action of G on P4 by a left multiplication

which leaves 0 fixed acts freely otherwise. Under this action, we may set,

(1) D3 = D*/G = {Gq\qeD4-},    S2 = S3 / G.

2. Two standard actions of G on S7.

First standard action of G on S7. Whenever geG and (u,D)eR8, where u,

v e R4, we let

g ■ (w, v) = igu, gv).

Then we have a free differentiable action of G on S7 and the orbit space

{G • (u, v) | (u, v) e S7} is the complex projective 3-space, abbreviated by CP3,

which has an integral cohomology ring

(2) //*(CP3) = Z[a]/(a4),

where ae//2(CP3). The manifold  CP3 is understood to have the standard

differentiable structure, i.e., the one given by the quotient structure.

Let

(3) h,h' :S2 x D4 ̂  CP3

be the imbeddings defined by hiGu, v) = G • (aw, auv) and h\Gu, v) = G ■ iauv, au),

where a = (1 + | v |2)~1/2. Then

hiS2 x D4) U h'iS2 x £>4) = CP3,

hiS2 x D4)n h'iS2 x Ö4) = hiS2 x S3) = h\S2 x S3)

and

(4) f:S2xS3-+S2x S3

defined by/= ft'-1«, is a diffeomorphism and is given by fiGu,v) = (Gup, iT1).

Notice that/"1 =/.
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Let

(5) P:S2xS3->S2,    p':S2xS3-+S3

be projections and let

(6) q : S3 -* S2 x S3

be defined by q(v)= (Gu, v), where Gu is a preassigned point of S2. It is easily

seen that

pfq :S3 -> S2 represents a generator of n3(S2)

(7)
and p'fq:S3 -y S3 is of degree —1.

Second standard action of G on S7. Whenever geG and («,v)eR8, where

u,ve R4, we let

go(u,v) = (gu, v).

Then again we have a differentiable action of G on S7. Under this action, G leaves

all points {0} x S3 fixed and acts freely otherwise. Moreover, the orbit space

{Go (u,v)\(u,v) e S1}, which is assigned the differentiable structure such that

the projection of S7 into the orbit space is differentiable, is diffeomorphic to S6

so that we may set it equal to S6. Furthermore, {0} x S3 is the image of an imbed-

ding of S3 into S6 and is differentiably unknotted in S6 so that we may set it

equal to S3. Since there are two orbit types, it is more revealing for the action

to have a pair (S6, S3) rather than S6 alone.

Let

(8) k:S2 x D4 -► S6,   k' :D* x S3-> S6

be the imbeddings defined by k(Gu, v) = Go (au, av) and k'(Gu, v) = Go (bu, bv)

where a = (I + \ v\2)~1/2 and b = (1 + | u \2)'112 . Then

k(S2 x D4) U k'(D3 x S3) = S6 ,

k{S2 x D4) O k'{D3 x S3) = k(S2 x S3) = k'(S2 x S3)

and

i:S2 x S3-*S2 x S3

defined by i = k'~ 1k, is the identity diffeomorphism.

3. Homotopy complex projective 3-spaces. By a homotopy complex projective

3-space, abbreviated by HCP3, we mean a closed differentiable 6-manifold which

is simply connected and has the integral cohomology ring isomorphic to H*(CP3)

(see (2)). Clearly CP3 is an HCP3 and every HCP3 is of the same homotopy type

as CP3. Whenever M is an HCP3, [M] denotes the diffeomorphism class of M.

The set of all diffeomorphism classes is denoted by II.
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By a (6,3)-sphere pair, we mean a pair (P, Q) in which P is a differentiable

6-manifold diffeomorphic to S6 and Q is the image of an imbedding of S3 into

P. Clearly the pair (S6, S3) given in §2, is a (6, 3)-sphere pair. Whenever (P, Q)

is a (6, 3)-sphere pair, we denote by [P, Q] the diffeomorphism class of (P, 0.

The set of all diffeomorphism classes of (6, 3)-sphere pairs is denoted by 2.

Denote by I.6'3 the set of «-cobordism classes of (6, 3)-sphere pairs. In [3]

£6,3 is made an abelian group with a binary operation induced by a connected

sum and it is shown that there is a homomorphism of E6'3 onto Z. It is easily

seen that 2 can be made an abelian group in the same way and that there is a

homomorphism of E onto I6'3 mapping [P, Q] into the cobordism class of

(P, Q). Hence E is an abelian group containing an element of infinite order. In

order to use these results, we construct a map from n to S suggested by the cor-

respondence of CP3 and (S6, S3) as will be seen in §4. Since there is a group

structure on 2, it is natural to have a group structure on n also. Therefore we

introduce a new kind of sum operation for HCP3's used to induce a group

operation on n.

We deal with only orientable differentiable manifolds, with or without

boundary. For the sake of convenience, we let all of them be oriented. For S",

we denote by a„ (respectively ßn) the generator of //"(S") (respectively //,,(S"))

which represents the orientation on S". Therefore <a„, /?„> =1. For an M

which is an HCP3, we denote by aM the generator of H2(M) such that aj¡¡ represents

the orientation on M, and by ßM the generator of H2(M) such that <aM, /?M> = 1.

For the sake of simplicity, we use a to mean a2 or acp3 and use ß to mean ß2 or

ßcpi-

4. Pasting process. Let Xand Y be differentiable manifolds with boundary and

let A be a diffeomorphism of the boundary A of X onto the boundary B of Y.

Then we can have a differentiable manifold

xuAy

obtained from the disjoint sum X + Y by identifying x with k(x) for all x e A,

where the differentiable structure on X U^ V" is constructed by applying a standard

smoothing  procedure  when  the  differentiable  structures   on  X  and   Y are

combined.

If «, «' : S2 x D4 -> CP3 are the imbeddings of (3) and

k:h(S2 x S3)->h'(S2 xS3)

is the identity diffeomorphism, then

CP3 = h(S2 x D+) yJx h'(S2 x /><*).

Therefore, iff is the diffeomorphism of (4), then

(9) (S2 x D*)yJf(S2 xD*)
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is diffeomorphic to CP3. Similarly, if k: S2 x D4-> S6 and k':D3x S -> S6

ate the imbeddings of (8) and X:k(S2 x S3)->k'(S2 x S3) is the identity

diffeomorphism, then

S6 = k(S2 x D4) UA k'(D3 x S3).

Therefore, if i : S2 x S3 -» S2 x S3 is the identity diffeomorphism, then

(10) (S2 x D4) U, (D3 x S3)

is diffeomorphic to S6 under a diffeomorphism mapping {0} x S3 onto S3.

From (9) and (10), it is obvious that up to a diffeomorphism, (S6, S3) can be

obtained from CP3 by a surgery in which S2 x D4 (one copy only!) is replaced

by D3 x S3 and conversely that CP3 can be recovered from (S6, S3) by reversing

the surgery. It is this surgery we shall use to construct a correspondence between

HCP3's and (6, 3)-sphere pairs.

Let M and JV be connected oriented differentiable «-manifolds without boundary.

Then the ordinary connected sum of M and JV can be constructed as follows:

Let h : D" -* M and k : D" -> JV be orientation-preserving imbeddings,

f:S"-1-*S"~1

the reflection with respect to a hyperplane through the origin and

X:h(Sn-l)^k(S"-1)

the diffeomorphism defined by A = fc/n-1. Then the ordinary connected sum of

M and JV is defined to be

M#N = (M - h(E")) UA(N - k(E"))

which, up to a diffeomorphism, is independent of h and k so that it is uniquely

determined by M and JV. Since

(11) D" Ur D" is diffeomorphic to S",

it follows that M #S" and S" # M ate diffeomorphic to M.

There is a similarity occurring in this paper concerning HCP3's. In fact, we shall

show that if M and JV are HCP3's, h: S2 x D4->M and k: S2 x D*^N ate

primary imbeddings (see next section), / is the diffeomorphism (4) and

X: h(S2 x S3) -► k(S2 x S3) is defined  by  X = kfh ~\ then

M*N = (M- h(S2 x E4)) UA(JV - k(S2 x £4))

is an HCP3 which, up to a diffeomorphism, is uniquely determined by M and JV

(Lemma 9). The manifold M * JV is called the sum of M and JV. In place of (11),

we have (9) instead. Therefore



1966] DIFFERENTIABLE ACTIONS ON HOMOTOPY SPHERES 485

(12) M * CP3 and CP3 * M

are diffeomorphic to M. This sum operation will be used to induce a group oper-

ation in the set n of all diffeomorphism classes of HCP3's such that the zero of

the group is the diffeomorphism class of CP3.

5. Primary imbeddings. Let M be an HCP3. By a primary imbedding of S2 into

M, we mean an imbedding/ S2 -> M such that j#ß = ßM. (For ß and ßM, see §3.)

By a primary imbedding of S2 x D4 into M, we mean an orientation-preserving

imbedding h:S2xDA-*M such that hr:S2->M is a primary imbedding, where

(13) r:S2^S2xD*

is the imbedding defined by r(x) = (x, 0).

Lemma 1. Let M be an HCP3 and let U be a nonnull connected simply

connected open subset of M such that the homomorphism H2(U) -> H2(M)

induced by the inclusion map is an isomorphism onto. Then there is a primary

imbedding j:S2-*M with j(S2)<zz U.

Proof. Since U is nonnull, connected and simply connected, it follows from

the Hurewicz isomorphism theorem [4, p. 57] that n2(U) is isomorphic to H2(U)

so that there is a map j': S2-*U such that j'% : H2(S2) -t» H2(U) is an isomorphism

onto. Since 2 dim S2 < dim U = dim M,j' can be approximated by an imbedding

/': S2-+ U homotopic to j" (see, for example, [5]). Hence our assertion follows.

As a special case of Lemma 1, we have

Lemma 2.    Whenever M is an HCP3, there is a primary imbedding j : S2 -» M.

Lemma 3. Whenever M is an HCP3 andj: S2 -> M is a primary imbedding,

there is a primary imbedding h: S2 x D* -> M such that j = hr, where r is the

imbedding of (13).

Proof. Let there be a Riemannian metric on M. Since S=j(S2) is a sub-

manifold of M, we have a normal bundle of S in M, say

n:n(M,S)->S.

If we are able to show that the normal bundle is a product bundle, then there is a

bundle equivalence k : S2 x P4 -> n(M, S). Since there is a <5 > 0 such that the

exponential exp: n(M,S)^>M maps T= {ven(M,S) | |t;| g <5} diffeomorphically

onto a closed tubular neighborhood of S in M, it follows that « : S2 x £>4 -> M

defined by h(x, v) = exp k(x, ôy), is a desired imbedding.

It is known that n : n(M, S)-+S can be decomposed into the Whitney sum of an

P3-bundle n':n'(M,S)^S and a product P^bundle n":n"(M,S)-+S, that

means, for any ueS, n'~1u and n"~1u are linear subspaces of n~1u and

7t-1m = n'~1u®n"~lu [6, p. 135]. Therefore it  is   sufficient   to   show   that
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n':n'(M,S)-+S is a product bundle. Let T = Tr\n'(M,S) and let B be the

boundary of T'. Then n' : B -» S is a 2-sphere bundle over S. Since 7t' : 7" -» S is a

3-disk bundle over a 2-sphere, it follows that HA(T') = 0.

If »': n'(M,S)->S is not a product bundle, then neither is n':B-*S. Therefore

there is a cross-section c: S-> B such that c(S) has a self intersection number 1 in

B [6, p. 137]. Since j: S2 ->M is a primary imbedding, zc*aM is a generator of

H2(S), where k is the inclusion map of S into M. Therefore there is a generator e

of H2(S) such that <ic*aM,e> = 1. Let ¿j=exp|B. Then k, Cc:S-*M are ho-

motopic so that

1 = <K*aM,e> = <c*¿;*aM,e> = <¿j*aM,c+e>.

Since c(S) has a self intersection number 1 in B, it follows from Alexander-Pontrja-

gin duality on B that í*cc2M = (¿;*aM)2 is a generator of H\B) so that Ç*a2M i= 0.

On the other hand, ¿j is the composition of the inclusion map ¿j': ß-> T' and

¿j" = exp|r and £,"* is trivial (because H\V) = 0). We infer that

contrary to the result just obtained. Hence the proof of Lemma 3 is completed.

Lemma 4. Any two primary imbeddings of S2 x D4 into an HCP3 are

strongly diffeotopic.

Proof. Let M be an HCP3 and let h and h' be primary imbeddings of S2 x D4

into M. Then hr and h'r ate primary imbeddings of S2 into M, where r is the

imbedding of (13). By the Hurewicz isomorphism theorem, hr and h'r represent

the same element of n2(M) so that they are homotopic. Therefore, by Haefliger's

theorem [5], hr and h'r ate strongly diffeotopic, that means, there is a strong

diffeotopy Ji:Mx[0,l]-»M such that, if for each t e [0,1], //,: M -► M is the

diffeomorphism defined by //,(«) = H(u, t), then H0 is the identity and Hyhr = ft'r.

Now Hyh,h':S2 x D*-f M are imbeddings such that the images of tubular

neighborhoods of h'r(S2) = h'(S2 x {0}) and for any xeS2, Hyh(x,0) = h'(x,0).

Therefore there is, by [2, Theorem 5.2], a strong diffeotopy //': M x [0,1] -» M

such that, if for each re[0,1], //,' : M -> M is the diffeomorphism defined by

H',(u) = H'(u, t), then H¿ is the identity and there is a differentiable map

c6:S2->SO(4) with H\Hyh{x,y) = h'{x,<p{x)y) for all (x,y)eS2xD*. Since

7t2(SO(4)) = 0, cb is homotopic to the constant map which maps S2 into the

identity of SO(4). Therefore there is a strong diffeotopy H":M x [0,1] -> M such

that, if H": M -» M is the diffeomorphism defined by //"(«) = //"(m, r), then /f'¿ is

the identity and h'(x,y)=H'¡h'(x, cb(x)y)fotall(x,y)eS2 x D4. Hence H'[H'yHyh = h'

proving that h and h' are strongly diffeotopic under H"H'H.

Lemma 5. Whenever M is an HCP3 and h: S2 x DA-*M is a primary

imbedding, there is a primary imbedding h':S2 x D4->M such that
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h(S2 x D*)Uh'(S2 x D4) = M,

h(S2 x D4)nh'(S2 x D4) = h(S2 x S3) = h'(S2 x S3).

Proof. Let A = h(S2 x D4) and U = M — A. Since A is homeomorphic to

S2 x D4, H3(A) = H4(A) = 0. Moreover, U is nonnull, connected and open.

Since M is simply connected and since U is homeomorphic to M — h(S2 x {0}),

the complement of a submanifold in M of codimension 4, it follows that V is

simply connected.

As seen in [7, p. 20-04], there is a commutative diagram

H304)   ->   H4(U)    ->   H4(M)->  H\A)

//3(M,l/)  ->   //2(l/)  ->   H2(M)   ->   H2iM,U)

in which the upper row is the cohomology sequence of CM, A), the lower row is

the homology sequence of (M, U) and vertical homomorphisms are the isomorphism

onto in Alexander-Pontrjagin duality. Since H3iA) = H4iA) = 0, it follows that the

homomorphism H2(U)->H2(M) induced by the inclusion map is an isomorphism

onto. Hence, by Lemma 1, there is a primary imbedding j':S2^M with

j'(S2)<zzU.

It is not hard to see that the inclusion map of j'(S2) into U induces an iso-

morphism of H,(j'(S2)) onto H,iÜ) for all i. We infer that H,(0,j'(S2)) = 0 for

all i. Since both Ü and j'(S2) are connected and simply connected, it follows from

the Hurewicv isomorphism theorem [4, p. 166] that nfOj'iS2)) = 0 for all i.

Hence/(S2) is a deformation retract of Ü (see, for example, [4, p. 198]). Because

of this result and the fact that both j'(S2) and O — U are simply connected, we

may apply Smale's theorem [8] to conclude that O is diffeomorphic to a closed

tubular neighborhood of j\S2), or equivalently that there is a primary imbedding

h': S2 x D4-+M such that «'(S2 x D4) = 0.  Hence our assertion follows.

6. Two characterizations of HCP3's.

Lemma 6. Given any free differentiable action of the circle group G on a

homotopy 1-sphere X, the orbit space X/G is an HCP3. Conversely, given any M

which is an HCP3, there is a free differentiable action of the circle group on

a homotopy 1-sphere such that the orbit space is diffeomorphic to M, and such

an action is unique up to an equivariant diffeomorphism.

Proof. Suppose that a free differentiable action of the circle group G on a

homotopy 7-sphere X is given. Then the projection

ît:X->.X/G

is a circle fibration of X. Therefore it is easy to see that X ¡G is simply connected.
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Making use of Gysin's cohomology sequence [4, p. 280], we can easily verify

H*(X/G) is isomorphic to H*(CP3) (see (2)). Hence X¡G is an HCP3.

Conversely suppose that M is any given HCP3. By Lemma 2, there is a primary

imbedding j:S2^M. Let /' be an imbedding of j(S2) into CP3, say f'j(S2)

= complex projective 1-space. Since fm : n2(j(S2)) -» 7t2(CP3) is an isomorphism

onto and since ni(CP3) = 0 for ¿ = 3,4,5,6, we can make use of obstruction

theory to construct an extension/: M -* CP3 of f. Clearly/may be replaced by a

differentiable approximation so that we assume/differentiable. Therefore/induces

a differentiable principal bundle over M of fibre G, say n: X -»M. The bundle

structure determines a free differentiable action of the circle group G on X such

that the orbit space X/G is diffeomorphic to M. Since/*: H*(CP3)-»H*(M) is

an isomorphism onto, if follows from Gysin's sequence that / induces an iso-

morphism of H*(S7) onto H*(X). Hence our assertion is proved.

Lemma 7. Whenever M is an HCP3 and h,h':S2 x D4->M are primary

imbeddings such that

h(S2 x D4)Uh'(S2 xD4) = M,

h(S2 x D4) n h'(S2 x D4) = h(S2 x S3) = h'(S2 x S3),

the map f: S2 xS3->S2 x S3 defined by f=h'~1h is a dijfeophism satisfying (7).

Proof. By Lemma 6, we may regard M as the orbit space of a free differentiable

action of the circle group G on a homotopy 7-sphere X. Let n:X-*M be the

projection. We first claim that for any primary imbedding/ S2->M, n~1j(S2) is

diffeomorphic to S3.

It is well known that n: X -* M may be regarded as the induced bundle of a

differentiable map /: M -> CP3 (because n: S1 -+CP3 is a universal circle bundle

for manifolds of dimension 5¡ 6). Since X is a homotopy 7-sphere, it follows from

Gysin's sequence that/*: H2(M)->H2(CP3) is an isomorphism onto. Therefore

f\j(S2) induces an isomorphism of n2(j(S2)) onto n2(CP3) so that f\j(S2) is

homotopic to a map which maps j(S2) homeomorphically onto the complex

projective 1-space. Hence n~1j(S2) is a 3-sphere.

Let h : S2 x D4 -* M be a primary imbedding. Then for any y e D4, x -* h(x, y)

is a primary imbedding of S2 into JVÍ so that n~1h(S2 x {y}) is diffeomorphic to

S3. Let Y=n~1h(S2 x D4). Then h'1 maps n(Y) diffeomorphically onto S2 x D4.

Let p:S2 x D*^S2 and p':S2 x DA-*DA be projections and nt: S3->S2 the

natural projection (see (1)). Then ph~xn is a differentiable map of Yinto S2 which

induces a trivial homomorphism of H2(Y) into H2(S2). It follows from [4, Lemma

6.4] that there is a differentiable map k¡ : Y->S3 such that nyky =ph~1n. Let

k2: Y-*D4 be defined by k2=p'h~1n. Then k: Y-> S3 x D4 defined by k(u)

= (ky(u),k2(u)), is a bundle map corresponding to h~l:n(Y)->S2 x D4, where

the fibration n: S3 x D4-*S2 x D4 is given by n(x,y) = (nyX,y). Since ft-1 is a
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diffeomorphism of n(Y) onto S2 x D4,   k is a diffeomorphism of Y onto

S3 x D4.

Let T' = % " ]«'(S2 x Z)4). Similarly, we have a diffeomorphism fe' : Y' -* S3 x D4

which is a bundle map corresponding to «': 7i(Y')-> S2 x D4. Let a and ß be the

elements of H3(S3 x S3) represented by S3 x {y} and {x} x S3 respectively,

where x and y are arbitrary elements of S3. Let/: S3xS3-»S3x S3 be defined

by/ = fe'fe_1 and/*://3(S3 x S3)-*H3(S3 x S3) the induced homomorphism.

Since « and «' are strongly diffeotopic in M,/*(a) = a. Since X = Y U Y' is a

homotopy 7-sphere, we can use the Mayer-Vietoris sequence of (X; Y, Y') to show

that /,(j9) = a-ß. Hence f:S2xS3^S2xS3 defined by /= «'_1« is a dif-

feomorphism satisfying (7).

Lemma  8.   Giving any diffeomorphism f:S2xS3^yS2xS3 satisfying (7),

M = (S2 x D4)\Jf(S2 x D4)

is an HCP3.

Proof. Let n : S3 x S3 -* S2 x S3 be the projection defined by 7t(x, y)

= (uyx,y), where Ky is the natural projection (see (1)). As in the proof of Lemma 7,

there is a diffeomorphism /: S3 x S3 -* S3 x S3 which is a bundle map corre-

sponding to /. Let X = (S3 x D4) KJf (S3 x D4). It is easily seen that X is simply

connected and that there is a natural circle fibration n : X -» M.

As before, we denote by a and ß the element of H3(S3 x S3) represented by

S3 x {y} and {x} x S3 respectively. We infer from (7) that /*(a) = a and /*(/?)

= a — ß. Making use of Mayer-Vietoris sequence, we have H+CX) £ //*(S7).

Hence X is a homotopy 7-sphere and consequently, by Lemma 6, M is an HCP3.

7. The group structure on n.

Lemma 9. Let M and N be HCP3,s, h: S2 x D4-* M and k: S2 x D4-» N

primary imbeddings, f:S2xS3^>S2xS3 the diffeomorphism of (4) and

k: h(S2 x S3) -> k(S2 x S3)  the  diffeomorphism  defined  by  k = kfh~i.   Then

M*N =(M - hiS2 x E4)) UA(N - fe(S2 x E4))

is an HCP3 which, up to a diffeomorphism, is independent of the choice of « and

k so that it is uniquely determined by M and N.

The manifold M*N is called the sum of M and N which is different from the

ordinary connected sum M #N.

Proof. By Lemma 5, there are primary imbeddings h':S2xD4->M and

k':S2 xD4^N such that h'iS2 x D4) = M - «(S2 x £4) and k'iS2 x D4)

= A/- fc(S2 x E4). Applying Lemma 7, we know that h~1h' and fc'-1fe satisfy (7).

It follows that k'~likfh~1)h' = (fc'~1fc)/(«"1«') satisfies (7). Hence, by Lemma

8, M*N is an HCP3.
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Since any two primary imbeddings of S2 x D4 into an HCP3 are strongly

diffeotopic (Lemma 4), that M * JV is uniquely determined by M and JV can be

proved by the same argument used for the ordinary connected sum M # JV.

Lemma 10. The set IT of all diffeomorphism classes of HCP3's can be made

an abelian group under the binary operation [M] + [JV] = [M*N].

Proof. We recall that whenever M is an HCP3, [M] denotes the diffeomor-

phism class of M. By Lemma 9, the binary operation in n is well denfied. It is a

direct consequence of the definition that the binary operation is associative and

commutative.

Next we show that n has a zero. Let h,h': S2 x D4-> CP3 be the primary

imbeddings of (3), JV an arbitrary HCP3 and k: S2 x D4 -> JV a primary imbedding.

It is easily seen that there is a diffeomorphism £ of

CP3 * N = (CP3 - h(S2 x £4)) U (JV - k(S2 x £4))

onto JV defined by

r   kh'~ \u)       if u eCP3 - h(S2 x £4),

C(«) = \
(   u otherwise.

Hence [CP3~] is the zero of n.

To show that each [M] e n has a negative, we let h, h':S2x D4-> M be primary

imbeddings such that h'(S2 x D4) - M - h(S2 x £4) and /the diffeomorphism of

(4). Then/': S2 x S3 -» S2 x S3 defined by/' =fh'~1hf~i, satisfies (7) so that,

by Lemma 8, JV = (S2 x D4) Ur (S2 x D4) is an HCP3. If k: S2 x D4 -» JV is

the primary imbedding mapping S2 x D4 identically onto the first copy of S2 x D4

in JV and X: h(S2 x S3)-*S2 x S3 is defined by A =f'fh~\ then

M*N = h'(S2 x D4) U¿(S2 x D4).

Sincef'fh'1 =fh'~i and since, by (9), (S2 x D4) Ur(S2 x D4) is diffeomorphic

to CP3, it follows that M* JV is diffeomorphic to CP3. This proves that [JV] is

the negative of [M].

8. A correspondence between HCP3's and (6, 3)-sphere pairs. We recall that S

denotes the set of all diffeomorphism classes of (6,3)-sphere pairs and that the

diffeomorphism class of each (6,3)-sphere pair (P,Q) is denoted by [P,Q]. As

seen in [3], for any two (6,3)-sphere pairs (P',Q') and (P",Q"), a connected sum

(P' #P",Q' #Q") can be constructed as follows. Consider R3 as a subset of

R6 = R3 x R3 by identifying each y e R3 with (0, y) e R6. Then D3 is a submanifold

of D6 and we have a (6,3)-disk pair (D6,D3). Let n: (D6,D3)->(P',ß') and

fc : (D6, D3) -► (P", Q") be orientation-preserving imbeddings, / : (D6, D3) -> (D6, D3)

the reflection with respect to a hyperplane through the origin and
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A:(w(S5),n(S2))->(fe(S5),fe(S2))

the diffeomorphism defined by x = kfh~l. Then we have a (6,3)-sphere pair

(P,Q) defined by

P=(P'-«(E6))Ur(P"-fe(E6)),

ß = (P"-«(£3))Ut(«2"-fe(£3)).

The (6,3)-sphere pair (P, Q), up to a diffeomorphism is uniquely determined by

(P',Q') and (P",Q") and is defined to be (P' #P",Q'# Q"). It is easy to verify

that 2 can be made an abelian group under the binary operation

[P',Q'] + [P",Q"] = [P'#P",Q'#Q"l

As proved in [3], there is a homomorphism of I onto Z. Hence £ is an abelian

group containing an element of infinite order.

Lemma 11. If M is an HCP3, h: S2 x D4 -» M is a primary imbedding, f is

the diffeomorphism of (4) and a: h(S2 x S3)-*S2 x S3 is the diffeomorphism

defined by a =fh~x, then we have a (6,3)-sphere pair (P,Q) in which

P = (M- h(S2 x E4)) UX(D3 x S3),

g = {0} x S3       (as a subset of D3 x S3).

Moreover, the diffeomorphism class [P,Q] is uniquely determined by the

diffeomorphism class [M]. Furthermore, the map [M]->[P,g] is a homomor-

phism

eb:Yl-+¿:.

Proof. The Mayer-Vietoris sequence of (P; M - h(S2 x E4), D3 x S3) shows

that H*(P) is isomorphic to H*(S6). Since P is simply connected, it is a homotopy

6-sphere so that it is diffeomorphic to S6 [9]. Hence (P,Q) is a (6,3)-sphere pair.

That [P, Q] is uniquely determined by [M] is a consequence of Lemma 4. Hence

it remains to be shown that ep is a homomorphism.

Let M and N be HCP3's. Let « : S2 x D4 -> M and fc: S2 x D4 -> N be primary

imbeddings, / the diffeomorphism of (4),

a: h(S2 x S3)-+S2 xS3 and ß: k(S2 x S3)->S2 xS3

defined by a=fh~1 and ß =/fc(~1 and

P' = (M- h(S2 x E4)) Ua(D3 x S3),       Q' = {0} x S3;

P" = (N - k(S2 x E4)) yJ„(D3 x S3),       Q" = {0} x S3.

Then ep[M] = [P',Q'] and eb[N] = [P",Q°].
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By Lemma 5, there is a primary imbedding h':S2 x D4-+M with

h'(S2 xD4) = M- h(S2 x E4).

It is clear that P' is diffeomorphic to (S2 x D4) ua.(D3 x S3)so that we may set

(14) P' = (S2 x D4) u«. (D3 x S3),

where a'= ah' =f(h~lh'). Let p,p' and g be as in (5) and (6). By Lemma 7,/and

h ~lh' satisfy (7). We infer that pa'q : S3 -> S2 is homotopic to a constant map and

p'a'q: S3-+S3 is of degree 1. Let

HÍ  =  {(xy,x2,x3,x*)eD4\x4 = 0},

D+   = S3nH%.

Then a': S2 x S3 -» S2 x S3 is diffeotopic to a diffeomorphism which is identity

on S2 x D+ so that we may set

(15) a'|(S2 xD3) = identity.

Similarly, there is a primary imbedding k': S2 x D4-» JV with fc'(S2 x D4)

= JV - /c(S2 x £4) so that we may set

(16) P" = (S2 x D4) Ut.(D3 x S3)

with ß' = ßk' =fk~1k'. Moreover, if we let

Ht = cl(D4 - Ht),       Dl=S3r>Ht,

we may assume that

(17) ß' | (S2 x Dl) = identity.

By definition, we may let

M*N = (M- h(S2 x £4)) U,(JV - Jc'(S2 x E4))

with X = k'//i _1. Therefore, if c/>[M*JV] = [P, Q], we may let

p = {(M*N)- k(S2 x £4)) U7(D3 x S3)

or

(18) P = (S2 x D4) Uy. (D3 x S3),

where y=fk~l and y'=fk~iXh' = (fk-1k')(fh~ih') = ß'a'.
Now we observe that in P', (S2 x H4)(Ja,(D3 x D3), after the corner along

S2x(D3+ ODÎ) being straightened, is diffeomorphic to D6. In fact, we have a

diffeomorphism

¿;:D6->-(S2x/i4)ua.(D3 x D+)
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such   that   for   any   (x,y)e(S2 x Ht) U,< (D3 x D3+),   if   x/(|x|2 + |y|2)1/2

= (x'1,x2,x'3) and y¡(\x\2 + \y\2)xl2 = (y'y,y'2,y'z,y'f), then

C\x,y) = (x'y,x'2,x2iy'y,y2,y'f).

The diffeomorphism £ is also regarded as an imbedding of D6 into P'. Similarly,

we have a diffeomorphism

n:D6->(S 2x Ht)Uß.(D3x D3.)

which is defined just like ¿¡ and is regarded as an imbedding of D6 into P". Since

exactly one of £, and n, say Ç, is orientation-preserving, we may let

P' #P" = (P' - Ç(E6)) UX(P" - «(£6))

withT = n^_1. By (14) and (16),

P' - ZiE6) = (S2 x Ht) Ux.iD3 x Dl),

P" - w(£6) = (S2 x H\) Ur(/»3 x Dl).

It follows from (15), (17) and (18) that

P'#P" = (S2 x D4) Urcr.(D3 x S3) = P.

That Q' #Q" = Q is obvious from our construction. Hence the proof is completed.

Lemma 12. //(P, Q) is a i6,3)-sphere pair, p,p' and q are maps o/(5) and

(6), then there are orientation-preserving imbeddings

k:S2xD4^P,       k':D3xS3->P

such that (i) p(fe'-1fe)í¡f: S3-*S2 is homotopic to a constant map andp\k' ~lk)q:

S3 -» S3 is of degree - 1 and (ii) fe'({0} x S3) = Q. Moreover, if k is as above, f

is the diffeomorphism o/(4) and k: fe(S2 x S3)-> S2 x S3 is defined by k =fk'~x,

then

M = k(S2x D4)KJX(S2 xD4)

is an HCP3. Furthermore, eb[M] = [P,Q].

Proof. Since any vector bundle over a 3-sphere is a product bundle [6, p. 137]

there is an orientation-preserving imbedding k':D3 x S3^P which defines an

orientation-preserving diffeomorphism of {0} x S3 onto Q.

Let j:S2->-P be an imbedding with j(S2) = P- k'(D3 x S3) and such that

j(S2) has linking number 1 with Q. It is easy to see that H,(P - k'(E3 x S3),j(S2))

= 0 for all i. Therefore j(S2) is a deformation retract of P — fc'(£3 x S3). By

Smale's theorem [8], there is an orientation-preserving imbedding k: S2 x /)4->P

with k(S2 xD4) = P - fc'(£3 x S3) and such that (i) fe(x,0) = jYx) and (ii)

the orientation  of fe(S2 x {0}) may be so chosen that the map of S2 into
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k(S2 x {0}) defined by x->ic(x,0) is orientation-preserving and k(S2 x {0}) has

linking number 1 with Q.

By our choice of k and k' above, it is easily seen that p'(k'~lk)q: S3->S3 is

of degree — 1. However, p(k'~lk)q: S3 -+S2 may present a nonzero element

a of n3(S2). In order to have our assertion, we replace k' by an imbedding

k'y.D3 xS3-+P constructed as follows: Let ¿;:S3->SO(3) be a differentiable

map such that the composite map

S3 i SO(3)-»SO(3)/SO(2) = S2

represents — a in 7r3(S2). Then for any (x,y)eS2 x S3, we let

k\(x,y) = k'(!;(y)x,y).

Clearly p(k\ " lk)q : S3 -> S2 is homotopic to a constant map.

The rest of Lemma 12 follows from Lemmas 8 and 11.

Lemma  13.   c6:n-»E is onto.

Proof.    It is a direct consequence of Lemmas 11 and 12.

As we have mentioned in §3, I is an abelian group containing an element of

infinite order. Hence Theorem 1 follows from Lemmas 6 and 13.

9. Actions having a fixed point set diffeomorphic to S3. Let Ibea homotopy

7-sphere and let the circle group G act differentiably on A' such that the action

has a fixed point set F diffeomorphic to S3 and is free otherwise. Let P be the

orbit space X¡G and Q = F, regarded as a submanifold of P. It is not hard to

see that (P, Q) is a (6,3)-sphere pair.

Conversely suppose that a (6,3)-sphere pair (P,Q) is given, and let

k:S2xD4-*P,       k':D3xS3-+P

be the imbeddings of Lemma 12. As seen in §2, there is a differentiable action of

the circle group G on D4 x S3 which leaves every point of {0} x S3 fixed and

acts freely otherwise.  The projection

n:D4 x S3^D3 x S3

induces a differentiable principal bundle

t:S3 x S3->k(S2 x S3)

of fibre G defined by t = kn. As before, we may assume that t is induced by a

differentiable map /: k(S2 x S3)-> CP3. Since 7r;(CP3) = 0 for ¿ = 3,4,5,6, we

can use obstruction theory to construct a differentiable extension

f':k(S2xD4)^CP3

of /. The map /' induces a differentiable principal bundle
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x':Y-*kiS2 xD4)

of fibre G. Since Yand D4 x S3 intersect at their common boundary, it follows that

X= Yu(£>4x S3)

is a differentiable 7-manifold. It is not hard to show that X is simply connected

and has the integral cohomology group of S7. Therefore X is a homotopy 7-sphere.

Clearly there is a natural differentiable action of G on X which has {0} x S3 as

the fixed point set and is free otherwise. Moreover, (X/G, {0} x S3) is diffeomorphic

to   (P,Q).   Hence   we   have   proved

Lemma 14. If the circle group G acts differentiably on a homotopy 1-sphere

X such that the action has a fixed point set F diffeomorphic to S3 and is free

otherwise, then (X¡G,F) is a i6,3)-sphere pair. Conversely, for any i6,3)-sphere

pairiP,Q),we have such an action with (X ¡G,F) diffeomorphic to (P, Q).

Denote by iG,X,F) a differentiable action of the circle group G on a homotopy

7-sphere X which has a fixed point set E diffeomorphic to S3 and is free otherwise.

The equivariant diffeomorphic class of (G,X,E) is denoted by [G,X,F]. Let S*

be the totality of [G,X,F]'s. It is clear that there is a function

i/^:S*->Z

defined by i¡/[G,X,F] = [X ¡G,F].

Given any (G,X',E') and (G,X",F"), we have given the connected sum

((X'/G)#(X"/G),E'#E")

(see §8). It is not hard to see that a similar construction of

(G,X'#X",E'#E")

can be given by using equivariant imbeddings

h : (D1, D3) - (X', E') and fc: (D1, D3) - (X", E"),

where G acts on D1 as in the second standard action of G given in §2.

Moreover,

(X' # X")¡G = (X'¡G) #(X"/G).

Lemma 15. The set Z* of all equivariant diffeomorphism classes [G,X,F]

can be made an abelian group under the binary operation

[G,X',E'] + [G,X",E"] = [G,X'#X",F'#F"].

Moreover, the function i//:l,*-*I,, defined by \¡/[G,X,F] = [X¡G,F], is a

homomorphism onto.

Proof.   The first part can be proved by the same argument used for X. That i¡/
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is a homomorphism is a direct consequence of the group structures in Z* and Z.

That \¡f is onto is a consequence of Lemma 14.

Proof of Theorem 3. Let 07 be the group of all diffeomorphism classes of

homotopy 7-spheres. Then we have a homomorphism

<r:Z*->07

mapping each [G, X, £] into the diffeomorphism class of X.

The homomorphism o is onto. In fact, a generator of 07 is represented by the

homotopy 7-sphere X, given by

X = (S3 xD4)UÀ(S3 xD4),

where X: S3 x S3 -► S3 x S3 is defined by

X(u,v) = (v2uv~l,v)

[10]. Let G act on X such that for any geG and any (u,v)eX,

g(u,v)=(gug~1,gvg~1).

Then the fixed point set £ is diffeomorphic to S3 and G acts freely on X — F.

Since X represents a generator of 07, our claim follows.

Since Z is infinite and t/i : Z* -> Z is onto, it follows that Z* is infinite. It is known

that 07 is a cyclic group of order 28 (see [10] or [9]). Therefore, by the fact that

cr: Z* -* 07 is onto, c_,[Y] is infinite for all [X] e 07. Hence our assertion follows.

Notice that the kernel of a actually contains an element of infinite order.

Corollary. There are infinitely many differentiably distinct differentiable

actions of the circle group on S1 having S3 as the fixed point set and acting

freely otherwise. Moreover, the equivariant diffeomorphism classes of these

actions can be made an abelian group containing an element of infinite order.

10. Conclusion. Let (G,X, F) be as in §9. Then X bounds an S-parallelizable

compact differentiable 8-manifold K (see [10] or [9]). By the collaring theorem,

there is a neighborhood U of X in K homeomorphic to X x [0,1). Since n3(U) = 0,

£ is contractible in U. It follows from dim U = 2(1 + dim £) that there is an

imbedding h: D4-*U such that h(S3) = £ and h(D4) intersects X orthogonally

at £ with respect to a given Reimannian metric on K. The construction of n is

the same as in Whitney's proof that every closed differentiable n-manifold can be

imbedded into R2" [11]. If we use a Riemannian metric on K which, restricted to

X, is invariant under the action of G, then we have a closed tubular neighborhood

of £ in K given by an imbedding k: D4 x D4 -» K which maps D4 x S3 equivari-

antly into X and such that for any y e D4, k(0, y) = h(y). Let

K' = K- k(E4 x D4),   X' = boundary ofK'.
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We may regard K' as a differentiable 8-manifold of boundary X' by straightening

the corner along k(S3 x S3). Now we have a free differentiable action of G on X'

such that the action on X' n X agrees with that on X and fc: S3 x D4->X' is

equivariant, where the action on S3 x D4 is the one in the second standard action

of §2. It is easily seen that X' is a homotopy 7-sphere and that

</>[X'/G] = [X/G,E],

where eb is the homomorphism of Lemma 12. Since the inclusion map of K' into K

induces an isomorphism of H4(K) onto H4(K'), it follows that K and K' are of

the same index so that X and X' are diffeomorphic [10]. Hence Theorem 2 follows

from Theorem 3.

Corollary. There are infinitely many differentiably distinct free differentiable

actions of the circle group on S1. Moreover, the equivariant diffeomorphism

classes of these actions can be made an abelian group containing an element

of infinite  order.

Appendix. Using recent results in a paper by Haefliger, Differentiable

embeddings of S" in S"+q for q>2, which is at present unpublished, some of

our results can be strengthened. Following Haefliger, we denote by C3 the group

of isotopy classes of imbeddings of S3 into S6. Clearly for each imbedding

i: S3 ->S6, (S6,i(S3)) is a (6,3)-sphere pair.   Therefore we have a map

¿:C33-+S

which maps the isotopy class of i into [S6, i(S3)]. It is not hard to see that £ is a

homomorphism onto.

There is a map

n-.n^cl

defined as follows. Let M be an HCP3. As in Lemma 11, we have a (6,3)-sphere

pair (P,Q) with

P = (M- h(S2 x E4)) ua(D3 x S3), Q = {0} x S3.

Therefore we have an imbedding

i:S3-*P

defined by i(y) = (0,y)eQ. Since P is diffeomorphic to S6, we may regard i as

an imbedding of S3 into S6. The isotopy class of i is taken to be n[M]. Following

the proof of Lemma 11, we can show that « is a homomorphism.

The homomorphism n is an isomorphism onto. In fact, if an imbedding i : S3 -*S6

is given, we can have imbeddings

k:S2 x D4^S6,k': D3 x S3 ->S6
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satisfying the requirements of Lemma 12 and such that

k'(0,y) = i(y) for all yeS3.

Moreover, k' is unique up to a strong diffeotopy. Hence we can uniquely determine

an [M ] e n to be mapped into the isotopy class of i.

From what is said above and Haefliger's theorem that C3~ Z, we can now

show that H and Z are isomorphic to Z and that cb is an isomorphism. The diagram

n —%  Z  -*   Z6,3 ->  Z

*/¿

c\
is commutative. (For the homomorphisms Z->Z6,3-»Z, see §3.) Since all ho-

rn omorphisms in the diagram are onto and since C3 is = Z, our assertion follows.

As immediate consequences of this result, the group in Theorem 1 and the

groups in the two corollaries in the last two sections are isomorphic to Z.

If we use Cerfs result T4 = 0 instead of Haefliger's result, we can show that

cb: n->Z is an isomorphism onto (but not that n and Z are isomorphic to Z).

In fact, for any (6,3)-sphere pair (S6,Q), there is an imbedding ¿: S3->S6 with

i{S3) = Q. Since T4 = 0, ¿, as a diffeomorphism of S3 onto Q, is unique up to a

diffeomotopy. Therefore we may proceed as above and obtain an imbedding

k': D3 x S3 -> S6 which is unique up to a strong diffeotopy.
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