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1. Introduction. Certain properties of a least pth power polynomial p„(x)

approximating to a real continuous function /(x) on a closed bounded interval £

are well known in the cases p > 1 and p = 1 ; these properties were established

in a special case for p = 1 by Korkine and Zolotareff, and in the general case by

D. Jackson. With p > 1 the difference f(x) — p„(x) must oscillate strongly at

least n + 1 times on £, where n is the prescribed degree of the polynomial,

unless that difference vanishes identically on £. With p = 1 the difference must

either oscillate strongly at least n + 1 times on £ or vanish identically on a subset

of £ of positive measure.

The corresponding problems for 0 < p < 1 have been considered in the litera-

ture [1], [5], [6], [7], as parts of a still incomplete theory involving in terms of

oscillation both necessary and sufficient conditions that a given polynomial be a

polynomial of least pth power approximation. The object of the present paper is

to contribute to this theory, by studying in some detail approximation by a con-

stant, namely a polynomial of degree zero. We are of the opinion that a thorough

study of one nontrivial case is interesting in itself, and may well be the prelude

to future deeper studies of more general cases.

Among other results, we indicate at the end of §2.6 by a simple example that

(contrary to the case p > 1) with p < 1 the difference f(x) — p„(x) need not os-

cillate strongly but may vanish only in a single point of £; here the zero of

f(x) — p„(x) if unique on £ must be of sufficiently high order. We also indicate

(§3) that the relationship of a least pth power polynomial to the function approxi-

mated may be quite complicated, even for n = 0. However, the present writers

have already established [5] necessary and sufficient conditions that a polynomial

of degree n should be a juxtapolynomial to f((x) on £, and those conditions are

of course necessary but are not sufficient [5] that the polynomial should be a least

pth power polynomial to f(x) on £. We exhibit in the present paper some

specific examples of local as well as global minima of the deviation of p„(x) from

f(x), and we are not unaware, as we shall later prove in [4] that a polynomial
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p„(x) may correspond to a global maximum of the deviation even when

fix) — p„(x) has strong oscillations.

We call attention particularly to the contrast of the present topic with that of

best approximation on a real finite point set by a polynomial p„(x) of arbitrary

degree, with p arbitrary, for which the writers have established conditions that are

both necessary [2] and sufficient [3].

We emphasize, and study in §2 in some detail, approximation by a constant

to a single power of x on E. We study the deviation, including its local analy-

ticity, asymptotic behavior, monotonicity, and convexity. In §3 we consider

application of the results just mentioned to simultaneous approximation of several

powers, and in §4 proceed to consider approximation to monotonie functions

which are different from powers yet have similar geometric properties. Ensuing

results on more general approximees are to be published elsewhere.

In suitable places we have included some results valid for p — l.

2. Study of the deviation from a power.

2.1. Preliminaries. We choose /(x) = x", a > 0, as the function to be approxi-

mated, in the interval £: 0 z% x z% 1. The pth power deviation (0 < p < co) of

the constant c as approximating function from fix) is defined as

<5(c) =     | x" — c | pdx,      — co < c < + co,

and is now to be studied in some detail. Clearly ¿(c) is continuous for all values of c.

The substitution x" = z, dx = a~1zßdz, ß = a-1 — 1 yields

¿(c) = a-1 f   \z-c\pzßdz.
Jo

Setting A = ic- z)"zß, B = iz- c)"zß gives

¿(c) = a"1 Í   Bdz, c ^ 0,

<5(c) = a-1 j   Í   Adz + \    Bdz),        0 ^ c ^ 1,

¿(c) = a"1   f   Adz,       c^l.

2.2. Piecewise analytic character. The line integral

i

Adz, A = Aic,z) = exp[plog(c — z) + ßlogz],

for complex c and z, depends on the path of integration and on the selection of

the branches of the logarithms.
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We choose logz teal, log c arbitrary, and other logarithms to satisfy

log(l — zjc) = log(c — z) — loge and |lmlog(l — z/c)| ^ n¡2. Integration along

the line segment gives the following identity on the one hand for c and loge real,

c > 1, and on the other hand for all c, | c | > 1,

f   Adz =   cp f (1 - z\c)pzHz = c"w(c)
Jo Jo

= cp\  £ cf( - c^rV+'dz
Jo     k=0

= cp(ß + l)-iH(-p,ß + l;ß + 2;c-1)

= otcph(c),

h(c) = H(l/ot, - p; 1 + 1/a; c_1)= a_1c1/a B1/c(l/a,p + 1), where H denotes

a branch of the hypergeometric function and B a branch of the incomplete beta-

function. The analytic function H has 0 and 1 as its only singularities in the extended

plane, and is indefinitely continuable along paths not passing through these points.

The function w(c) is single-valued and analytic for all c with | c \ > 1, even c = oo.

It is appropriate to distinguish the analytic function w(c), defined for |c| > 1,

and the integral defining w(c), analytic throughout the c-plane cut along O^cg 1.

These two functions are identical for \c\ > 1, and hence the analytic extension

of w(c) from | c | > 1 exists and is equal to the integral throughout the cut plane,

and each is equal there to a branch (the "principal branch") of the monogenic

analytic function oth(c).

The analyticity for 0 < c < 1 of w(c) as extended analytically follows from the

definition of w(c) as an integral, and specifically follows from the possibility of

distorting the path of integration without changing the function represented by

the integral, in such a way that the path is modified only in the neighborhood of

the particular real c at which the analyticity is to be proved. Thus the two mono-

genic functions cpw(c) and acph(c), analytic and coincident for all finite c with

|c| > 1, have identical analytical extensions along every path in the cut plane

commencing in \c\ > 1 and avoiding 0, 1, oo, and are analytic and coincident

even for short distances across and beyond the cut.

We now establish for suitable choice of the logarithms involved, namely

0 :g arg(c — z) <¡ n, the important formula

lim A(c,z)dz =        A(c0,z)dz,   0 < c0< 1,   c = c0 + id,    d \. 0.
c->co    Jo Jo

Except for the value z = c0, we have

lim log(z - c) = log(z - c0),      0 = zitl,
c-*cq

lim (z-c)p    = (z-c0)p, Ogz^l.
c-*co
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The function Aic,z) is uniformly bounded in c and z as c0-+c, so the formula

follows by Osgood's theorem. The integral defining c"wic) is the limit of the

latter function as c approaches a point of the cut from above, so the integral

itself is an analytic function of c for every value 0 < c < 1.

To study the integral in detail for 0 < c < 1 we write for such values of c

f Adz = R0 + P„    P0=f   , Ry = (   ;
JO J 0 J c

integrals without integrand refer to the last occurring integrand. The formula

for real c

P0 = acp+1/"¿(1)

holds, by the substitution z = cy, whence

P, = ac"/i(c) - occp + 1/oi¿(1) = epni ( Bdz.

By the previous identities we have in the notation already introduced

Theorem 1. The following formulas are valid:

Sic) = ( - c)phic),       c < 0,

¿(0)= (pa + ir1,

<5(c) = ( - c)p/i(c) + [1 - ( - l)"]cp+ 1/a<5(l), 0 < c = 1,

oil) = hil) = a-'T(p+ l)T(l/a)/T(p+ 1 + 1/oc),

.5(c) = cphic),       cfel,

«(±oo)  =  1,

where h and the powers are chosen real when possible. The function ¿(c) is

analytic on each of the segments — co < c <0, 0 < c < 1, l<c< +co.

The only nonreal formula here is that for ¿(c), 0 < c < I, p not an integer. We

have proved this formula with the interpretation ( — l)p= e ~pn', hie) indicating

the limit of the principal branch from above the cut.

3.2. Small positive c. For O^c^l we write c = e", with O^ergl; the

relation between c and e is monotonie. We set

¿(c) = ebie) = Iy+I2,

¡1   =      {\e"-X*)Pdx, I2=[      ix'-E'Ydx.

Substitute x = sz, dx = sdz ; we obtain for 0 < £ — 1
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Iy=s'P+1I3,      I3=    (  il-z')'dz=U + I5,     Z4 =     f\     /5=f
JO J 0 Je

and, setting z = y~l,dz = — y~2dy,

I2 = e*p+1I6,     I6 = j%'- Vfdz = -  j\y-°- l)"y-2dy =j\

By derivation there follows

Pis) = (ap+iyp(I3+I6)-e°p+i(G-* -l)pe~2

= (ap + iyp(u +h+h) - £~J(1 - e*)P .

Both the last term and I6 become infinite for e -> 0, partly cancelling each other

as we proceed to demonstrate. First we have by integration by parts (the equations

below imply that the improper integrals /7 and 78 converge)

u   =(l-z')p,     dv = dz,      du= -ap(l - za)p~lza~ldz,       v = z,

I5=   -e(l-eT4-ap/7,       J7 = j   (I - y')'~'y'dy;

u=(l-/)p,      dv = y~'"~2dy,       » = ( -otp - 1)~ ly~"~\

U= fep + ir^l-iY«-»-1  -apiap + l)"1/«,

h = j    (1 - yy-'f-'dy,      y = a(l - p) - 1.

Setting I9 = I5 + I, = (¡(I - y')p~ldy we have

I5 =   -e(l - s°)p + otp(Ig - I5),    I5=(l+ otpT1 i - 8(1 - f)'+ <*pl9).

Writing I y0 = h - h = $1(1-y*)"'1 (I-y^^dy (where the integrand is

continuous even for y = 1) we obtain finally

I5+I6    =    (l + «p)-1((l-Or(«"*"1     -B)  +  OCpIy0),

cp'(e) = (ap + l)e°"74 + ape°"710 - (1 - ea)peap+1.

We shall now study the asymptotic behavior of cb'(e) ase approaches 0, which

will of course depend on a and p. If y = 1, we have /10 = 0 and thus (since /4 ~ e)

c>'(e) ~ (ap + l)eap + 1 -eip+1 = apsap+1 = ape01-1.

If y ¥> 1, then c/»'(e) ~ otpe"pIyQ ; let

(•1/2 M

^10 = ^n + 'l2>     ^11 = I      >   ^12 = I
Je Jl/2

Further   713 =  Ji/2(1 -y*'1 )dy = i - e - (Q)y - e")/y    if   y   # 0,    but
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Z13 = 2--E-(logi-loge) for y = 0. By l'Hospital's rule, for y = 0, lim/,1//,3 = l.

Thus we have

for y < 0,      /io~/n ~eylv>

for y = 0,     Iy0 ~ /,, ~loge;

for  y > 0,     Iim/,0 = p = fii«,p) = f (1 - y")" _1(1 - yy~x)dy (finite).

Here p<0, = 0, or >0 according as y < 1, = l,or > 1.

By the mean value theorem, lim^o</>'(e) = eb'iO +) if the limit exists, and

similarly for ¿'(c).Taking into account that ¿'(c) = eb'ie)liaECi~1)andap + y = a — 1

we obtain

Theorem 2. For e \ 0 (or c \,0) we have (0 < p < 1)

(1)// 0<a<l, i.e., -l<y<-p: eb'(E) ~ upE*~l/y, eb'(0 + ) = - oo,

o'(0 + ) = p¡y<0;
(2) ifa = l,i.e.,y= - p: eb'(0 + ) = ¿'(0 + ) = -1;

(3) // 1 < a < 1/(1 - p), i.e., -p<y<0: eb'(s) ~ ap^1/? < 0, </>'(0 + ) = 0,

¿'(0 + ) = p/y<0;
(4) if a = 1/(1 - p), i.e., 7 = 0: eb'is) ~ «pe'-1log £ < 0, eb'iO + ) = 0,

¿'(c) ~ (p/a)Iogc < 0, ¿'(0 + )=-co;

(5) 1/1/(1 - p) < a < 2/(1 - p),i.e.,0 < y < 1: </>'(£) ~ pap£ap < 0, (/>'(0 + ) = 0,
¿'(c)~ppcp-1 + 1/a,¿'(0 + )= -co;

(6) if a = 2/(l-p), i.e., y = l:  (/>'(£)~ap£a_1>0, (/>'(0 + ) = 0, ¿'(0 + ) = p>0;
(7) // 2/(1 -p)<a<oo, i.e., 1 <y <co: <p'(e)~ papExp> 0, ^'(0 + ) = 0,

¿'(c)~ppcp_1 + la,¿'(0 + )= +00.

The asymptotic values of </>(e) and ¿(c) for small positive £ and c

follow immediately by integration and possible use of l'Hospital's

rule from those for the derivatives given in Theorem 2 and from

<p(0) = ¿(0) = 1/(1 + pa).
Remark. For p= 1 we have y z% — 1, and only cases (1) to i(3) subsist. The

defining relations are (1) 0 < a < 1 ; (2) a = 1 ; (3) 1 < a < co, and the results

are the same as in Theorem 2.

2.4. Small negative c.For c^0 we write — c = ( — e)x, with £^0; the

relation between c and s is monotonie. We set as in 2.3

¿(c) =  </.(£) =   Í (x" + ( - Ef)pdx = Jy + J2,
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Substitute x = — £z, dx = — edz; we obtain for s < 0

Jy    =i-B)"+íJ3,     J3=f (1+ZTJZ=J4 + J5,

and with z = y_1, i/z = — y~2dy,

j2 = i-E)°p+1J6,  J6= ^    £(l + zTJz=-| £(l + y-a)py-\/y=J1£.

By derivation there follows

Pie) =  - (ap + 1)( - ef>(J3 + J6) + i- ^r+1(l + ( - e)-ye~2

=   - (ap + 1)( - B)"V4 + Js+Je) + i- <0-1(( - <»)" + 1)P.

Here we integrate by parts:

u = (1 + z")p,   dv = i/z,   dw = ap(l + za)p~ 'z *~ ldz,   v = z,

J5 = 2P + £(1 + ( - £)*)" - ap/7,   J7 = f     (1+ z y-Vdz;

» = (l + yT,   dp-y'"-'dy,   v = ( - ap- l)"1 y-'""1,

J6 == (-«J,-l)-»(2P_(l + (-,)y(_8ri»-1)-(-«|»-l)-1aPJi,

(l + yT-V7-1^.r.
We set J9 = J5-Jt=  Jlt(l + za)p_,i/z, and obtain

J5  = 2p + £(l+(-£)T-ap(J5-J9),

J5  = (ap + I)" ' [2p + £(1 + ( - £)a)p] + ap(ap + 1)~ ' J9.

We set further J10 = JS + J9   = Jf,(l + y")p_1(l + y7-1)^, and obtain

j5+j6 = (i + apr'a+( - £)to+( - e)-"^1)+«/xi+«p)_1 Ao.

</»'(£) =  - (1 + ap)i - e)*pJ4 - api - E)"pJy0 + (1 + ( - £)T( - e)°p+ \

We proceed to study the asymptotic behavior of </>'(e) as £-»0, £ < 0. We

clearly have J4 ~ — £, and for y > 0 the integral J10 approaches a finite positive

limit v = v(a,p), so we have </>'(e) ~ — ap( — £)apv when y > 0. When y g 0,

by l'Hospital's rule, limJ10/Jii = 1, where J,, = JiE(l + yy~1)dy. Since

J,, = l + £ + (l-(-6)0/7 for T^0, but J,, = 1 + £ -log( - £) for 7=0,

we obtain by the same considerations as those preceding Theorem 2 (here

¿'(c) = «?'(£)/(«( -a)""1)
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Theorem 3. For s f 0 (or c | 0) we have, for (l)-(7) defined in Theorem 2,

and as in the Remark thereto,

(1): <p'ie) ~ ap( - 8f-% cb'(0 - ) = - co, t>'(0 - ) = p/y < 0;

(2): c6'(0-) = <5'(0-)=-l;

(3): c6'(e) ~ ap( - e)«"1/?, <l>'(0 - ) = 0, ô'(0 - ) = p/y < 0;
(4): «p'(e) ~ ap( - e)"_ ' log( - e) < 0, c6'(0 - ) = 0, ô'(c) ~ (p/a)log( - c) < 0,

è'(0 - ) = - oo ;

(5H7): cb'(e) ~ - vap( - e)ap < 0, cb'(0 - ) = 0, ô'(c) ~ - vp( - c)p~1 + l",

è'(0 - ) = - oo.

The asymptotic values of c6(c) and ô(c) follow as after Theorem 2.

The limit ô'(c) as c(< 0) -> 0 can also be studied directly. We have (c < 0)

<5(c) = —f   (z-c)pz-1 + i,xdz,     <5'(c)= —^f   (z-cy-'z-^^'dz.
«Jo «Jo

As c approaches zero monotonically, (z — c)p-1-*zp-1, so

¿'(0_)=-Z f1  zP-2"l°dz = -?-
a Jo y

provided y < 0, that is, provided the last integral converges. In the contrary case

(p + lia ^ 1) we have 5'(c) -* — co and by the law of the mean ¿'(0 — ) = — co.

2.5. Behavior near c = 1. We prove

Theorem 4. We have for p < 1

ö'(i)= pjo (l-xy-^x,

which is finite and positive,

5"(l-)=+oo,       ö"(l+)=-oo.

The values for <5'(1 + ) and <5"(1 + ) follow by use of the mean value theorem

from the values (c > 1)

o'(c) = p f (c- x")p-ldx,   ô"(c) = p(p - 1)   f (c - x')p-2dx.
Jo Jo

In order to study 5(c), 0 < c < 1, we set

<b'(¿) = e'pib(e),   ib(e) = (ap + l)/4 + ap/10 - (1 - £")pe;

differentiation yields ib'(e) = apei-1(l — eï)p~l. Hence we have ci>'(l —) = (ap+1)73

since /i0-»0. Integration  of /3 by parts with u = (l — x')p, dv = dx, shows

/3 = ^rrTÍ1(1-xa)p-1dx,
«P + l Jo

whence <5'(1 — ) = <p'(l — )/a has the asserted value.
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By the definition of i^(e) there follows

eb"ie) a e*V(e) + ap£ap~ VO)»

Since ibil —) = eb'il — ) is finite and \¡i'Cl — ) = + co, we have eb"Cl - ) = + co,

whence also ¿"(1 — ) = + co.

2.6. Piecewise monotonicity of ¿(c). Clearly ¿(c) decreases for c<0 and

increases for c> 1. The minimum of the continuous function ¿(c) thus exists and

is attained in the interval 0 ^ c ^ 1.

By another use of the mean value theorem, to evaluate (/>(e) — </>(0) or ¿(c) — ¿(0),

there follows for p < 1 from Theorem 2 that each of the functions </»(e), 0 ^ £ — 1,

íj«í/ ¿(c), 0 ^ c 2¡ 1, has a local maximum or minimum at e = 0 and c = 0 ac-

cording as a < 2/(1 — p), 7 < 1, or a ^ 2/(1 — p), y ^ 1.

For p ^ 1 these functions have a local maximum at e = 0 and c = 0.

We shall now prove

Theorem 5. There exists cp = cp(a), 0 z% cp<I, such that Sic) strictly decreases

for — oo < c < cp and strictly increases for cp < c < co. Thus Sic) has a single

global minimum; this occurs at c = 0 if and only if p < 1, a = 2/(1 — p) (i.e.,

y el).

As indicated before we need merely consider 0^ c — 1. Suppose y 2ï 1; then

/10 > 0 for 0<£<1. The inequality /4 > £(1 — £°')p is obvious, so we have

<P'(e) >ap£ap(/4+ /,o) > 0, which implies the conclusion for this case, with

c„ = 0.

For arbitrary a (> 0) or 7 (> — 1), ^'(e) is positive, so ^(e) is strictly increasing

and therefore vanishes for at most one value of e, 0 < e < 1. Thus ep'ie) vanishes

for at most one such value of e, and is locally increasing there. Consequently

$(e) has no local maximum in 0 < e < 1 ; therefore ¿(c) has no local maximum

in — 00 < c < 00, and the existence of cp as in Theorem 5is assured; Theorem 3

implies cp < 1. The inequality cp > 0 for 7 < 1 follows from Theorem 2 and the

Remark thereto.

It is a consequence of Theorem 5 that under suitable conditions ¿(c) has a global

minimum for c = 0. Thus for arbitrary p ( < 1) there exists a function fix) analytic

on 0 z% x ^ 1, and a polynomial p0(x) = 0 of degree zero, such that p0ix) is the

polynomial of degree zero of best approximation to fix) on the interval in the

sense of least pth powers, yet fix) — p0(x) has neither one strong sign change

on the interval nor coincides with fix) on a subset of positive measure. This is in

great contrast to tbe classical results for p > 1 and p = 1.

2.7. Convexity and concavity. For p>l, ¿(c) is strictly convex, —00 < c<co,

being the integral (with respect to x) of the strictly convex function | c — xx\p

of c. For p = 1 we see similarly that ¿(c) is (not necessarily strictly) convex; direct

evaluation shows that strict convexity holds precisely in 0 < c < 1.
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Near c = ± oo, «5(c) behaves for ail p > 0 (e.g., by Theorem 1) like | c|p. In the

intervals c> 1 and c < 0 we have ô"(c) = p(p — 1) J"o | c — xa| p~2dx; for p < 1,

5(c) is concave there since <5"(c)<0. Near 1 — , «5(c) is always convex (Theorem 4).

From <5'(c) = a-1 e~yi¡/(e) we see that ô(c) is convex in cp < c < 1 if y Sí 0 and in

0<c<cp if y^O. For a=l (y= -p), 0<c<l, ¿(c)=(cp + 1+(l-c)p+1)/(p+l)

is convex; as ô"(c) = p(cp~ ' + (1 — c) p_1 ) is bounded away from 0 we see that

ö(c), 0 < c < 1, is convex for all a sufficiently near 1. For p < 1, a > 2/(1 — p),

i.e., y > 1, Theorem 2 implies that ô(c) cannot be convex for all small c> 0.

The function cb(e) is convex in ep ( = cplx) < e < 1, since <//(e) > 0 implies

(§2.4) cp"(s) > 0. For 1 < a < 2/(1 - p) we have c/>'(0 + ) = 0 yet </>'(e) < 0 for

small positive e and thus </>(e) is not convex in the neighborhood of 0.

3. Simultaneous approximation of powers. Let ô(c,a,b) = Jo|c — ax"\pdx

denote the pth power deviation of the constant c from the function ax"(a ^ 0,

a > 0), 0 ^ x ;£ b (b>0); then ö(c, 1,1) is our former ô(c). By use of the sub-

stitution x = by we see that ô(c,a,b) = \a\pb"p+1ô(c,a~1 ,b~11).

Now let the function f(x) be defined in the interiors (assumed mutually disjoint)

of finitely many intervals x = xk + 0kbk, 0-^0k—l, bkj^0, as ak\x — xk\"k,

ak 9iO,otk> 0, respectively. Then the deviation of the constant c from / is ö(c,f)

= £*NP|^'+1<^at-1|b)ir°'<).
We arrange the ak so that all ak = ßj(l — p) with ak > 0 come last, and that

among the other ak the largest ones, ax = ••• = a.¡, come first. By Theorems 1, 2,

and 3 we obtain

Theorem 6. The function ô(c,f) of c is piecewise analytic. If p < 1,

a = ocy > 1/(1 - p) (but not a = 2/(1 - p), at > 0) and if

X = p(a,p)a + v(a,p)a' ^ 0,

(3.1)
a=      E     aZ1", a'=        S       (- ak)~llx ,

k%j,ttk>0 k£j,au<0

then ô(c',f) - ¿(O,/) ~ Apcp+1'7(p + 1/a) for small positive c;  if a - 1/(1 - p)

and if

(3.2) 1 = a' - a * 0,

then    ¿(c,/)-5(0,/)~-Ap(l-p)c loge;    i/   a = 2/(l-p),    a^O,    or

a < 1/(1 — p) or p 2: 1, and if

(3.3) A= S i;l\ak\p-l\bk\-*k sga4*0,    yfc = a4(l - p) - 1,
i

then ö(c,f)-0(0, f)~Xpc.

Theorem 5 implies
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Theorem 7. // p < 1 and each ak = 2/(1 - p), then ¿(c,/) and ¿( - c, /)

increase with c for 0 < c < co, and thus c = 0 is the best constant global ap-

proximator, in the sense of least pth powers.

From Theorem 6 follows

Theorem 8. At c = 0 there is a local minimum of ¿(c,/), c = 0, if k > 0 but

not if k < 0. A two-sided local minimum of ¿(c, /) for p^l requires k = 0;

for p < 1 and each ak ̂  2/(1 — p), with k ± 0, a two-sided local minimum

occurs if and only if either a, > 2/(1 — p), or 2/(1 — p) > a, > 1(1 — p) and

minia¡a',a'¡a) > - PÍ<Xy,p)¡viciy,p).

That |p/v| < 1 follows from the following

Lemma. Let p < 1. Then the function p(a) = p(a,p) increases strictly with a

for 1/(1 — p) < a < co from — co to 1; we have

piot) = T(p)T(l + l/a)(l - sin7r/a/sin(p + l/a)7t)/T(p + 1/a),

p(2/(l-p)) = 0.

The function v(a) = v(a, p) decreases strictly forT/(l—p)<a<oo from + oo to 1,

and pia) + via) increases strictly for 1/(2 — p) < a < oo from — oo to 2, passing

through 0 when a = 1.

Here p(a) + v(a) means the value at 0 of /10 + J10 even when /10 and J10

separately diverge there.

To prove the lemma note that, for n = ± 1,

d(\ + ny*)p-lil + nf-l)lda = nil - p)(l + w/)p~ V"1 - f) log y

implies the monotonicity properties stated. Setting y" = z we have /10 + J10 =

K + a-1 J>-p~1/a((l + z)"-1 - (1 - z)"-1)^ - 2« ' SUiP - l)z1-p"1/a

+ z3~p~ll"miz))dz where /C and m(z) are bounded, whence for

£ i 0, /,o + Ao - « ~ 2(1 - P)(2a - ap - l)"^2«-«»-1 unless a = 1/(2 - p),

in which case I10 + J10 ~ 2(1 — p)log£. For a-> + co and fixed small positive

0 we have J¿"9(1 + «y")p_1(l + nf-^dy -»1-0 while, in 1 - 9 < y < 1,
the integrand is < 2 for w = 1 and a > 2/(1 — p), < 1 for « = — 1 ; the latter

follows from 1 — y5""1 < 1 — y" < (1 — y<t)1_p. For a = 1 we have

jlil + «y)p_1(l + '/>'_''_1)áy = n(H-i7y)p(l-y~p)/p|J. By the law of the
mean for xp, 0<r1<x<r2, there follows (>*2 —r,)prf_1<r5—rf<(r2 —r1)prp_1.

Hence 2£p(l + e)p_1 < (1+ e)p - (1 - e)p < 2£p(l - e)"-1, 2(e1_p - e)(1 + e)"-1

<Íio + ^io<2(£1_p-e)(1-£)p"1, /,o +J10~2e1_p. The expression for

pia) is obtained by substituting y"=z and using well-known formulas for the

T-function.

Special evaluation of ¿(c,/) — ¿(0,/) is needed when A = 0. For the case of two

intervals with a, = — a2 = by = b2 = 1, k = 0 implies ax = a2. We prove



454 T. S. MOTZKIN AND J. L. WALSH [April

Theorem 9. For /(x) = | x | "sgx, - 1 ^ x <¡ 1, we have, for p < 1 and c -» 0,

«5(c,/)-¿(0,/)~p(l-p)(2a-ap-l)-1c2, p(l - p)c2log|c|, p(p + v)

• | c|p+1/7(p + l/a), pc2, p(p + v)| c|p+1/a/(p + 1/a) respectively for a < 1/(2 - p),

a = 1/(2 - p), 1/(2 - p) < a < 1, a = 1, 1 < a. Thus at c = 0 there is a local

strict maximum or minimum according as a < 1 or a — 1.

Indeed, from the formulas in the proof of the lemma we see that for c -* 0 the

term involving 710 + Jio m °(e,f) — 5(0,f) dominates the others, even when

p + v = 0, and we obtain the asymptotic expression of this term as stated in the

theorem.

With p — 1, the even function d(c,f) for / as in Theorem 9 has a strict minimum

for c = 0. Here (p < 1) S(c,f) exhibits a local strict maximum for c = 0, which

is a rarity in the theory of appproximation on an interval. This phenomenon

will be further studied in [4].

4. Deviation from a monotonie function.

4.1. Piecewise analyticity. We proceed to study the deviaton ô(c) on the

interval 0 — x ^ 1 for approximation to an arbitrary continuous monotonie

function a(x) by a constant c, in a manner analogous to that of §2. We suppose

a(0) = 0, a(l) = 1, and denote the inverse of z = a(x) by x = ß(z), O^zgl. The

deviation

<5(c)=f  \c - a(x)\"dx = f   \c-z\pdß(z)

is clearly continuous for all values of c. With A = (c - z)pdß(z), B = (z — c)pdß(z),

we have

0(c) =f   B,        i'A+ \   B , [   A,
Jo Jo Jc Jo

accordings as c ^ 0, 0 :S c — 1, c = I. For complex c and z we define

A = exp[plog(c — z)~\dß(z). Then $qA depends on the path of integration

and on the branch of the logarithm. We choose loge arbitrary and other logarithms

to satisfy log(l— z/c) = log(c — z)-loge and |arg(l — z/c)| < n. Integration

along the line segment gives for all c outside the segment 0 ;£ c = 1

I*   A = c "   I    (l - -^\p dß(z) = cpw(c).

The function w(c) is single-valued and analytic in the cut plane even at c = oo, as

follows by differentiation under the integral sign; we have w(oo) = 1.

The properties of w(c) obviously depend heavily on those of ß(z). (i) Let ß'(z)

exist and be continuous, 0 — z <[ 1. There exists (Weierstrass) a uniform develop-

ment of ß'(z) on 0 — z — 1 in polynomials in z :
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ß'iz) s   E pRiz), p„iz) =   E   ankzk,
n=0 *=0

/• 1 /»l oo n

A =       (c - a)p 2    2 fl.,.z*dz
Jo Jo 0    *=0

= cp£    S <.„*//(-p,fc + l;fc +2; c-1)
b = 0 * = 0

oo        n
„* + ll=  cp S    2 (k + l)flntcl + 1B1/c(/c + 1, p + 1),

n = 0  fc=0

an expansion valid for all finite c. (ii) If ß'iz) is analytic at a point c0 of the segment

Ogzg 1, the path of integration can be slightly distorted in the neighborhood

of c0, as in 2.2, so the monogenic function w(c) can be extended analytically

from either bank of the segment across the segment at c0 and slightly beyond.

The function wie) as extended need not be single-valued throughout a neigh-

borhood of c0. (iii) Even if ß'iz) is not analytic on the segment, it may be possible

to extend wie) across the segment. Indeed, if p is an integer, then cpwic) is a poly-

nomial in c. (iv) On the other hand, a singularity of ß'iz) at a point c0 of the

interval may block the analytic extension of wie) across the cut at c0. As an example

we choose )?(z) = ßf(z) + ßf(z), where ßyiz) m z/2, 0 g z g 1, /?2(z) = 0 for

0 g z ^ c0 g 2/3, ß2(z) = C3z - 2)/2 for 2/3 g z ^ 1. It follows that cpw(c) is the

sum of two integrals relating respectively to ßy and ß2, of which the first

has no singularity at c0, while the second has a singularity for nonintegral

P-
Precisely as in §2.2 there follows

lim      A{c,z) =        ,4(c0,z),       0 < c0 < 1,        c = c0 + id,        i/J,0;
c-»c0Jo Jo

here we set |¿/1 = cpw(c0). If p\z) is analytic for 0<z<l, the monogenic

function wie) is analytic for 0 < c < 1, so the integral f¿ ̂ 4(c, z) represents

the analytic function cpwi¿), 0 < c < 1. As before we have independently of the

analyticity of p\z)

Í A = R0 + Ry,       R0=   \   A,       P, =   í^ = epttif B.
Jo Jo Je Jc

If ßiz) is analytic for 0 < z < 1, both P0 and P, are analytic functions of c, for

their derivatives with respect to nonreal c exist (and are continuous). We collect

some of the previous and immediately following results in

Theorem 10. The following formulas are valid:
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ô(c) = ( - c)pw(c),        c < 0,

ô(c) = ( - c)"w(c) + [1 - ( - iy]R0,       0 < c < 1,

ô(c) = cpw(c),       C — l,

w(± co) = 1,

where the powers are chosen real when possible. Ifß'(z) is analytic for 0 < z < 1,

then ô(c) is analytic on each of the segments —oo <c <0,0 < c <l,l <c < +oo.

We have proved the formula for ô(c), 0 < c < 1, with the interpretation

( — l)p = e~p"', and where w(c) indicates the limit value on the cut from above.

If p is an even integer we have «5(c) = cpw(c), a polynomial of degree p, for

— oo < c < + 00. It is a striking but easily verified fact that if p is an odd integer

(even though w(c) is a polynomial) ô(c) is analytic for 0 < c < 1 if and only if

ß(z) is analytic for 0 < z < 1, and is a polynomial in c if and only if ß(z) is a poly-

nomial in z; in the latter case the degree of <5(c) exceeds that of ß(z) by p.

4.2. Small c. In 4.2, corresponding to 2.3 and 2.4, we turn our attention to

the asymptotic behavior of 5(c) for c approaching zero, with 0 < p < co. We

consider approximation to a function of the form f(x) = fx = x "gx (henceforth

subscripts of this kind denote functional dependence and not partial differen-

tiation), where fx has a continuous positive derivative in 0 <x^ 1, lim^og-.,.

= So ~ Si = 1> \s'x\ = Gy for some Gy, and a > 0. For | c\ < 1, we define e by

the equations \c\ =f\e\, sgc = sge = s, and set x = |e|z, z = 1/y, ß = otp + 1,

y = oc — ß. We shall also use the abbreviations u = uz = g\e\ — sz"gitlzi

v = vy = g\e]/y - sy'gU] = - suzy"; one has du/dz = - saz'~1guu-Ez 'g\ciz,

dv/dy = - say01-1^! - |e|:v~ V|«|/r We note

(4.1) uz= |ert,(/|£)-s/|E|z)>0 forO<z<l,

(4.2) v,s iyl\s\fifltU,-sfltt)>Q      for|e|<y<l,

Uy = Vy > 0 or = 0 as e < 0 or > 0.

With similar but not identical notation to that of 2.3, we set

se - *.= f1ic-/»i'd*=ier/o,
Jo

I0  = Jo        \u\pdz=h + I5+I6,

H«l /•! fi/M
U =       ,      h - I    .      h = \

Jo J|t| Jl

Integration by parts yields
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/5=   f   updz = upz       -|    zc/(up) = uf-|E|u|£lp+sap/7,
J|e| |e|      J\i\

J7 = i   up-xz\gx + a~^xg'x)dz;
J|e|

the equations imply for e > 0, p < 1, that this improper integral converges.

Likewise, with w = — ß_1y~ß we set

/.I/]«] r-l 1 fl

/6= i-su)"dz=        vpy~"~1dy = vpw      -   I    wdiv"),
Ji J|«| M      J|«l

(4.3) /6= /J-1(-»; + |ar/,»|.|I,-sapg[tl/_2-|e|p/_4),

/_2 = fVy-1^, /_4 = [lvp-yß-2g'xdy,

the integral /_4 converges for e > 0, p < 1, provided /_2 converges; the conver-

gence of/_2 follows from (4.2) by /' > 0.

We define further I9 = I5 + s/7 = g|tl/_, + a-1£/_3,

/_! =   T u'-'dz,     /_3= f u'-^'+^dz;
J|«l J|«l

here /_3 converges for £ >0, p < 1, because /_x converges, and /_, converges

by (4.1) and /' > 0. Elimination of /_7 yields

(4.4) /5= ß-\up-\5\uMp+apgU\I_y+pEl_f).

Now we obtain by differentiation

<K = sfiW'Hh + h+h)

+ s\*\'l-»\n'\e\~'~1 +p(g;t|/-5-s/-3-s/-7+/-4-sgi£l/-2)],

where

/*i H«l
/_5  =        up-ldz,        /_7 = up-h**xg'xdz.

Jo Jo

From equations (4.3) and (4.4) we have

(45) eb'e   = \B\'-1(ß-i)git]I-6 + seß-1ßh

+ I e" \[Pig\',\T-5 - Sg{e\I-2 - S/_7) - SU|t,P],

(4.6) I-6=Sl-y-I-2.

If for £-»0 the quotient l//_6 remains bounded, then the first term in the second
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member of (4.5) dominates the others. Indeed, because of the boundedness of

| g'x |, it is easy to see that u/(l — sz") and i;/(l — sy") ate uniformly bounded and

uniformly bounded from zero in e and z (respectively y) for sufficiently small e.

Hence I4 = 0(e), /_7 = 0(\e\*+2), 7_2 = 0(|e|min0'>' ), while/_t and «,,,' are

0(1).

To explore the behavior of S\c\l-6 we write from (4.6)

1-6 = s/10 + (p-l)(s/_9-/_8),

ho - ( a-syy-1a-*y7~1)dy,
J\B\

(4J)    J_9 =   Cg*(l-sz'+dzg*)p-2dz,
J|e|

S* = S\e\-^~sz\guu-l), 0<0X<1,

I-s =   ( g**il-sy' + ti#**)'-2y1-idy,
J|«l

g** = f|(|/> - 1 - s/(g|,| - 1), 0 < ny < 1;

here the last term in (4.7) involves two integrands in which the difference quotients

for 1 = 0 and A = l of (1 - sz" + lg*)"'1 and of y y~l(l - sy" + lg**)"'1 have

been expressed according to the law of the mean. Consequently we have

(4.8) *w/_6 = Cfj„ - 1)7_6 + sl10 + (p - l)(s/_9 - 7_8).

In (4.8) the first term of the second member approaches zero as e-»0, since

g|£|-l = 0(e) and J_6 is either bounded or 0(|e|)'), y > - 1. By (4.1) the

parenthesis in /_9 is positive except for z = 1, e > 0, and indeed lies between its

values for 0Z = O and Qz= 1, namely lies between 1 — sz" and uz; hence this

parenthesis divided by 1 — sz" is (for sufficiently small | e |) bounded and bounded

from zero; moreover | g*ftl — sz") | is bounded, so J_9 converges (e > 0,p < 1).

A similar discussion using (4.2) shows that the parenthesis in /_8 is positive

except for y = 1, e > 0, and that /_8 converges (e > 0,p < 1).

We now show that /_9->0ase->0. The law of the mean gives g* ~ |e|g'(0)

• (1 -sza+1) uniformly in z ase->0.For0^z = 1 the quotient (1 - sz"+1)/(l - sz")

is bounded and bounded from zero, so the absolute value of the integrand of/_9

is less than | e| times a positive constant times (1 — sz")'-1. For p < 1 the integral

from zero to one of the latter function converges, so the assertion concerning

i_9 follows.

The contribution of 7_8 to g\,\I-6 for p # 1 does not always tend to zero with e.

To assess it, we write /_8 = J"|t|° + j1, a = |e|1/2. For a ;£ y < 1 we have,

with Gy as in the beginning of §4.2,
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If** |   =   k|.¡-l)(l-s/) + gU,/,-g|£||

< lGy\e\il-sy*) + Gyi\e\ly-\s\)

< Gy\e\il-sy*+i)¡yz%bGyail-sy*),

b = (l-saa+1)/(l-saa),

and for sufficiently small |e|, by the equation

l-sy*+nyg**= il-sy')il + abGyery), \*,\<h

I  f        < bGya  f (l + bG,r7^)p-2(l-sya)p-1yi'"1dy.
Ja    ' Ja

On the other hand, if | g — 11 g G0 (we can always choose G0 = G,/2), then for

|e| g y g a we have, by the definition of g**, \g**\ <G0 + G,|E|,andif G0 < 1,

then for sufficiently small £

I f'l < (G0 + G,|e|) f   [l-Sya+T),(Go + G,|£|)]p-y-1i/y,     |t,|<l.
'J|E|I J|„|

For 7>0 there follows /_g->0 where £->0. For 7 g 0, /10 becomes infinite

as e -> 0, and is certain to dominate if G0 < 1 and if in addition

G0(l + G0)p-2 < 1,       p>2,

(4'9) G^l-Go)""2   < 1,       P<2.

It suffices e.g. that G0 < .381 for 0 < p < 1, G0 < i for 1 g p < 2, G0 < .618 for

2 < p g 3, G0 < .465 for 3 < pg 4. In summary we have (in viewofc/c/íÍE~a|£|'I_1)

Theorem 11. For a function fix) fulfilling the assumptions at the beginning

of 4.2, the conclusions of Theorem 2 including the Remark and of Theorem 3

hold with the following modifications:

For 7 g 0 we assume in addition \g — 11 g G0 < 1, where G0 satisfies (4.9).

For y - 1, c> 0, we conclude only eb'is) = oie*'2), eb'iO + ) = 0, ¿'(c) = o(e_1).

Similarly as in 2.6 there follows

Theorem 12. For a function fix) fulfilling the assumptions at the beginning

of 4.2 iassuming for 7 g 0 that | g — 11 ;£ G0 < 1 with (4.9)) the deviation ¿(c),

I c| < c0,for sufficiently small c0, is a strictly increasing function of c for 7 < 1,

of\c\fory>l.

Thus in the latter case, i.e., for p < 1 and a > 2/(1 — p), zero is a locally best

approximating constant for fix). By defining fix) only for 0 rg x z% e0 (where

c0 = /(e0)), zero becomes globally best, and the remark concluding 2.6 applies

therefore to a much wider class of approximees.
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