
SOME COUNTEREXAMPLES RELATED TO
INTEGRAL CLOSURE IN D[[x]]

BY

JACK OHM(i)

0. Introduction. This investigation arose from the recent discovery that an

integral domain D may be integrally closed without the power series ring -D[[x]]

being integrally closed, which is a consequence (by considering, for example,

a valuation ring of rank > 1) of the following theorem :

0.1 Theorem ([1-a, p. 76, Exercise 27], [17]). Let D be an integrally closed

domain. Then D[[x]] integrally closed implies f~\fL0alD = Ofor every nonunit

a eD(2).

We originally set out to determine if the converse to this theorem is valid;

and we show in §2 that it is not. Proceeding from this point, we were led to a

consideration of the following statements:

(a) D is an intersection of rank 1 valuation rings,

(b) D is completely integrally closed(3),

(c) D[[x]] is integrally closed,

(d) D is integrally closed, and C^^oa'D = 0 for every nonunit a eD.

(e) D is integrally closed and every nonunit of D is in a minimal prime ideal.

All these statements are known to be valid for a arbitrary noetherian integrally

closed domain D (apply 0.2 below and [19, p. 42, Corollary 3]). Moreover, it is

easily seen (Corollary 1.9) that they are all equivalent for a D which is a finite

intersection of valuation rings. In general,
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(2) The version of this theorem given in [17] requires that D contain a field, while that of

[1-a] is valid for an arbitrary D. Seidenberg suggests the following procedure to remove the

requirement from the last two theorems of [17] that the domain (9 (in the notation of [17]) should

contain a field : If 0 is of characteristic p^O, then (9 contains a field and the proof remains

unchanged. If char (9 = 0, take n = 2 and apply the same reasoning to b" + 4b"~2t as was

previously applied to b" + b"~2t.

(3) An element zeK is called quasi-integral over D if there exists d ^ 0 eD such that

dz'e D for all i > 0. D is called completely integrally closed if it contains all such z. For these

definitions we refer the reader to Bourbaki [1-a].
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0.2 Theorem, (a) => (b) => (c) => (d).

Proof. (a)=>(b): By [8, p.170, Theorem 8], every rank 1 valuation ring is

completely integrally closed ; so if D is an intersection of rank 1 valuation rings,

then D is also completely integrally closed.

(b) => (c): [1-a, p. 20, Proposition 14], or [17].

(c)=>(d): Theorem 0.1.       q.e.d.

Thus, our first concern is with producing counterexamples to show

(d)4>(c)4>.(b)*(a).

As for (e), it is easy to show that (e) => (d) (Corollary 1.4). The example constructed

in §2 shows that (e) *• (c), and finally in §5 we construct an example which shows

that (a)=o(e). This last example also answers a question raised by Ribenboim

in [14]. We have thus succeeded in determining all possible implications between

the statements (a)-(e).

Our notation and terminology adhere to that of Zariski-Samuel [18], [19].

Throughout the paper we use D to denote an integral domain with quotient field

X, D' to denote its integral closure, and ö[[x]] to denote the ring of formal power

series over D in a single indeterminate x.

1. Properties of f"\°i0a'D. Let a ^ 0 be a nonunit of D. For any valuation ring

Dv such that DczDvczK, let P„ = (S,* ,a'l>r P„ is a prime ideal of Dv (see, for

example, [3, Lemma 2.10]). Let V be the set of all valuations v of X such that

DvzoD.

1.1 Proposition. ry=0a'D' = f)veVPv = f}veV(PvnD').

Proof.

np. = n (ñ *'d.)

- ñ (n «'».)
i=0    \veV /

00

= pi a'D',   since   D' = C\ Dv.
¡=0 veV

The second equality follows from the fact that P)„eKP„ <= D'.

1.2 Corollary. Ç^=0a'D' is its own radical.

Let now P ^ 0 be a prime ideal of D. We shall use the notation F(P) to denote

a first prime below P, i.e. F(P) is a prime ideal of D such that F(P)<P and such

that there exists no prime ideal property between F(P) and P. By Zorn's lemma,
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there always exists such an F(P) when P is a minimal prime divisor of a principal

ideal, but in general F(P) is not uniquely determined by P.

1.3 Theorem. Let P be a minimal prime divisor of aD, and let F(P) be a

first prime below P. Then there exists avev such that F(P) = PVC\D. Moreover,

if D is a Prüfer domain(A), then F(P) is unique and F(P) = PDe~,D for any

veV such that PDC^DV.

Proof. There exists a valuation ring Dv of K containing D and having prime

ideals which lie over F(P) and P [11, p. 37, (11.9)]. If P' is the intersection of

the prime ideals lying over P and F' the union of the prime ideals lying over F(P),

then F' lies over F(P) and is a first prime below P' in Dv. Therefore aeP' and

a #F' implies F' = f^oalDv = P„. Thus, PvnD = F(P).

Now assume D is a Prüfer domain. Then the prime ideals of D which are con-

tained in a given prime ideal are linearly ordered, so F(P) is uniquely characterized

as the union of the primes strictly contained in P. For any veV such that PD„^D0,

since Dv is a quotient ring of D, the fact that Pv is a first prime below PDV implies

Pvr,D is a first prime below P. Thus, F(P) = Pvr,D.

1.4 Corollary. // a is in a minimal prime ideal of D, then p)°°=0a'D= 0(5).

Proof. By 1.3 there exists a ve V such that Pv C\D = 0. But[~\fL0a'D <zzPvr>D

by 1.1.

1.5 Corollary. // D is a Prüfer domain and {Px} is the set of minimal prime

divisors of aD, then f}?=0a'D = f\ F(Pa).

Proof. D = D' for a Prüfer domain, so by 1.1 Ç\fL0alD = Ç\vsY(Pv C.D). By

1.3, for any Px, F(PX) = PvnD for some veV. On the other hand, if P„ ^ D„,

then aDv ^ Dv and hence there exists a Px such that PXDV # Dv. Therefore again

by 1.3, P„ O D = F(PX). Thus, f| TO = fl - v iPv n »)■

1.6 Corollary. Lei D be a Prüfer domain, and suppose a ¿0 is a nonunit

of D which is in only finitely many maximal ideals. Then C\¡°=oa'D = 0 if and

only if a is in a minimal prime ideal of D.

Proof. Since the prime ideals which are contained in a given maximal ideal

are linearly ordered, aD has only finitely many minimal prime divisors {Px}. By 1.5,

fl^oa'O = f]F(Px) = nF(Pa). But jtFÍPJ = 0 if and only if F(PX) = 0 for some
a, and F(Pf) = 0 if and only if Px is a minimal prime ideal,   q.e.d.

1.4 shows that (e) => (d). Finite intersections of valuation rings are exactly the

Prüfer domains with only a finite number of maximal ideals (apply [11, p. 38,

(4) D is a Prüfer domain if DP is a valuation ring for every proper prime ideal P of D.

For equivalent definitions see [1-b, p. 93, Exercise 12] or [3, Theorem 2.2].

(5) This corollary could also be obtained by applying [13, Lemma 1, p. 89],
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(11.11)]), so the above Corollary 1.6 asserts that (e)<t>(d) when D is a finite

intersection of valuation rings. In general, (d) =i*> (e), as we shall eventually see.

(1.7) A subclass of the set of Prüfer domains is formed by the integral domains

with QR ([2, p. 99, Theorem 2.5]). D is said to have the ßK-property if every

ring Dy such that D cz Dy cz K is a quotient ring of D with respect to a multi-

plicative system. Included among the domains with QR ate the domains with

the property that every finitely generated ideal is principal [2, p. 99, Corollary

2.4], and thus in particular the finite intersections of valuation rings.

1.8 Proposition. If D is a domain with QR, then (a)o(e).

Proof. By [2, p. 98, Proposition 1.2], f\DP = DVP(6), where P rangej over

the minimal prime ideals of D; and each DP is a rank 1 valuation ring, by [2, p. 99,

Theorem 2.5]. Therefore, if every nonunit of D is in a minimal prime ideal, then

D = DVP = Ç\DP; and thus D is an intersection of rank 1 valuation rings.

Conversely, if D = f^\Dv, Dv a rank 1 valuation ring, then each Dv = DP for some

minimal prime ideal P of D; and thus, as before D = Ç\DP = DUP, where P

ranges over the minimal prime ideals. But D = DUP implies every nonunit of D

is in a minimal prime,   q.e.d.

1.9 Corollary. Let D be a finite intersection of valuation rings. Then (a), (b),

(c), (d), (e) are equivalent for D.

Proof. By 0.2, we have seen that quite generally (a) => (b) => (c) =*■ (d). Moreover,

(e) *>(a) for D a finite intersection of valuation rings by 1.8. Therefore we need

only observe that (d) => (e), by 1.6.   q.e.d.

A valuation ring is completely integrally closed if and only if it has rank 1

[8, p. 170, Theorem 8]; so in view of [11, p. 38, (11.11)] and the above corollary,

(a)-(e) are equivalent to the assertion that D is 1-dimensional, when D is a finite

intersection of valuation rings. From this one might be led to conjecture that

a Prüfer domain which is completely integrally closed is also 1-dim (the converse

being immediate). That this is false follows from the example of the ring of entire

functions, [1-a, p. 71, Exercise 12] or [4], [5](7). (Note that the ring of entire

functions even has the ßi?-property, since every finitely generated ideal is principal

[5, P. 712].)

2. An example to show (d) 4> (c). We construct now an example of a domain

for which (e)4>(c). Since (e)=>(d) by 1.4, this then also shows that (d) 4> (c).

2.1 Example. Let fe be a field of characteristic ?¿ 2, let d, a0, ay,-- be inde-

terminates over fe, and let X = k(d,a0,ay,---). If w = d_1 X,"oa¡*\ then

w2 = b2, + Zr=i b¡x\ where b0 = a0d ~\ b„ = d _22¡ = 00¡«n-í. n = 1- Let

D = k[d,a0,ay,---;b0,by,---~\, and let D' = integral closure of D. w2 eD'[[xJ],

(6) Dvp denotes the quotient ring of D with respect to the multiplicative system D — (JP.

0) This remark is the result of a conversation with I. Kaplansky.
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and hence w is integral over ö'[[x]]. Also dw = Z¡" oa¡x'eD'[[xT], so w is

in the quotient field of D'[[x]]. By the following lemma, w£D'[[x]].

2.2 Lemma. a1d~1<ßD'.

Proof. The natural grading of k[d,a0, a y,---] induces a grading on a subring of K:

H-nK, (see [19, p. 157]). Since D is generated by homogeneous elements of K,

D = I," 0D„ where D¡ = Dr\K¡ [16, p. 11, Lemma 3.2]. If now D0 = D' r\K0,

then D'0 is the integral closure of D0 in K [19, p. 159, Remark]. But

D0 = k[b0,by,---], and since characteristic of k # 2, this is a polynomial ring

over k in fe0,fe,,•••. Therefore D0 is a UFD.

If a1d~1eD', then aid~1eD'0 and hence is integral over D0. But

ayd'1 = by(2b0)~1, so ayd'1 is in the quotient field of D0 and therefore in D0,

because a UFD is integrally closed. Thus, 2fe0(a,d-1) = by in D0, a contradiction

to the fact that fe0, by are irreducible elements of D0.   q.e.d.

We have thus shown that D'[[x]] is not integrally closed. The next lemma

shows that (e) holds in £)'.

2.3 Lemma. Every nonunit z of D' is in a minimal prime ideal of D'.

Proof. We consider two cases:

(i) z=£ud\ where « is a unit of D' and i ~ 0. Let R = fc[d,a0, a ,,•••], and

let M be the multiplicative system in R consisting of all powers of d: M — {d'},

i^l. Then R c D cz RM. R is integrally closed implies RM is also integrally

closed [18, p. 261], so D' <zz RM. Therefore z is a nonunit of D' implies d'z is a

nonunit of R for some i. Noting that R is a UFD, since z 4 M we can choose

an irreducible factor y of d'z such that y is relatively prime to d. Then yR= P is

a minimal prime ideal of R such that P C.M = 0. Therefore P* =PRM is also

a minimal prime ideal of RM. Since R c D' c PM, D^ = PM. Therefore by the

correspondence between prime ideals of D' and D'M, P* C\D' is also a minimal

prime ideal of D'; and thus zeP* nD' shows that z is in a minimal prime

ideal of £>'.

(ii) z = «dl for some unit u of D' and some i ^ 1. It is sufficient to see that

d is in a minimal prime ideal of D'. Let S = A.[fe0,fe,,.-.], and let N be the multi-

plicative system in S consisting of powers of fe0. Then and~1eSN follows by

induction on «: n = 0. a0d_1 = b0eSN. Assuming a,d~x eSN for / < n, then

n

fe„ = d~2 £ a¡a„_;,
¡ = o

for «^ 1, implies 2a„a0d~2 = bn — d~2 2"=11aia„_/eSiV by induction hypothesis.

Therefore 2(a„d~i)b0 e SN, so a„d~l e SN.

Thus, if T = k[d,b0,by,---], then DcTN. Since T is a UFD and hence

integrally closed, TN is also integrally closed; so D'c T,v, and then D'N = TN.

If now P = dT, then P is a minimal prime ideal of T such that P C\N = 0.
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Therefore P* — PTN is also a minimal prime ideal of TN; and hence P* C\D'

is a minimal prime ideal of D', because TN is a quotient ring of D'. Now observe

that deP* DD'.   q.e.d.

We have thus proved that £)' has the following properties:

(1) D' is integrally closed,

(2) f>'[W] is not integrally closed,

(3) every nonunit of D' is in a minimal prime ideal. Thus, D' provides the

required example.

Note that we have shown that f?'[[x]] is not even integrally closed in the

quotient ring £>'[[x]]D.. Thus, one problem is to find sufficient conditions on

D in order for D[[x]] to be integrally closed in D[[x]]D. Another problem is the

question of whether D integrally closed implies L>[[x]]D is integrally closed. Part

of the difficulty here seems to be the obscure nature of the quotient field S of

£>[[x]]. For instance, it can happen that S does not even contain X[[x]], as

shown by the following example(8).

2.4 Example. Let D = k[a,a0,au---'] be a polynomial ring over fe, and let

>'= ItLoafala?. Then yeX[[x]].
Claim: y$I,. For, if yeS, then y= E/2ocix'/ ^"ob.-x', c¡,b¡eD. Then

by equating coefficients,

(*)    (a0bn-cn)an + (aybn-i)an-1+ -+(an-1by)a + aBb0 = 0     forn^l.

Also, a0b0 = c0 implies c0 = 0 when b0 = 0. Therefore we may assume b0 # 0.

Lemma. a¡~J\bj, j = 0, •••,/- 1 implies a'~J + 1| bj, j = 0,---,i.

Proof. By hypothesis, bj = a'~Jb'j, b)eD, j = 0, ■•-,i — 1; so by (*) we have

for n> i:

(**)      ai(a„b'0 + an-1b'l + -+a„-i+lb!-y) + (an-ibi)a> + ai+:{   } = 0.

Therefore

anb'0 + an-yb'y + ••■ +a„_¡+1bí_i +aB_(b¡ = 0 (aD).

Choosing n so large that b,Q,'--,b't-x,bi are polynomials which involve only a,

with I <n — i, we then have b'0 = b\ = ••• = b|_j = b¡ = 0 (aD). Therefore a

divides b'0,b'y,---,b'¡-y,b¡, which proves the lemma,   q.e.d.

Continuing with the proof of y$Z, observe that (a0by — ct)a + ayb0 = 0

implies a | bQ, since a does not divide at in the UFD D. Thus, by the lemma used

(8) As the referee has pointed out, Example 2.4 is complicated mainly in order to illustrate

the remark at the end of 2.5. If one merely wants to show thatÄ"[[x]] d: 2, it suffices to consider

£¡"10ar 1xi. We would also like to mention that an example closely resembling our considerations

in 2.4 and 2.5 can be found in [15].
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inductively on i, a'~J'\ b¡, j = 0, ••-,i — 1, for all i = 1. In particular then, a'| fe0

for alliai.
Therefore feo = 0, which is a contradiction to our previous assumption. Therefore

y ^ Z.   q.e.d.
The above example actually shows that D[[x / a]] d: X. Observe also that

a¡(a-x)= IZHoixIaYel. for alla^O. But a/(a - x)e£>[[x]]D if and only if

|"Y" 0a'D ^ 0. Therefore if D[[x]] is integrally closed, then

•D[[*/fl]]nx */>[!>]],>.

In this connection, the following might also be of some interest:

2.5 Proposition. Let £ be the quotient field of D[[x]]. Then

K[[xJ] O Z c [J a~1 D[[x I a]],     a # 0 i« £>.

Proof. If y 6X[[x]] nS, then y = 2Cj = 0 a^x', a,eK; and

CO /   00

y= S c.x'/E ¿¡x',     fe;, C;6D.
¡ = o       / ¡ = o

Since a0fc0 = c0, fe0 = 0 implies c0 = 0; so we may assume fe0 5¿ 0. Equating

coefficients,

aB = böHc„-£ fei«,,-,),   «èl.

Then by induction on n, this formula yields a„ = d„ / fej + ' for some d„e Z). Therefore

y = fe0" » S,"= 0 dix I fe0)' e ferj xD[[x / fe0]]. q.e.d.

Example 2.4 shows that the containment of the above proposition may actually

be proper containment.

3. Overrings and (c) =t> (b). Let D be as before a domain with quotient field A",

and let R be a domain such that Del!. Let C(P) = [D :R]D = {d e D | dR c £>}.

Then C(R) is an ideal in D and also an ideal in R, and it contains any other such

ideal.

3.1 Proposition, (i) f}fL0alD = C(R), where a # 0 is any nonunit of D and

R = D[l¡a].

(ii) D is completely integrally closed if and only if CiR) = 0 for every ring

R such that D<R<zzK.

Proof, (i) If R = D[l ¡a], ce CiR) if and only if c(l ¡afeD for all i, i.e. if and

only if cep^o «'TA

(ii) If CiR) i= 0 for some R> D, then there exists an reR,$D and ceD such

that cr'eD for all i. Therefore r is quasi-integral over D and yet not in D, so D

is not completely integrally closed. Conversely, if reK is quasi-integral over
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D and r£D, then there exists c # 0 in D such that cr'eD for all i. Therefore

if R = D[r\, then c e C(R); and hence C(R) ± 0.   q.e.d.

Thus, properties such as D completely integrally closed and C\r=oaiD = 0

for every nonunit aeD are reflected in C(R) being 0 for a certain class of overrings

of D. Question : Is there a class of overrings of D for which C(R) = 0 is equivalent

to the assertion that D[[x]] is integrally closed?

We turn next to the study of a special situation which is connected with the

counterexample that shows (c)=f>(b).

3.2 Theorem. Let D* = {reR | r is integral over D), and let

D[[xJ\* = {ze R[[xJ] | z is integral over L>[[x]]}.

If D=U + C(R) (9), where U consists of the units of D and 0, then

D[[xJ]* c D*[[x]].

Proof. Let zel>[[x]]* and suppose z^D*[[x]]. Then z= 2ZitoaiXi,a eR.

Let a, be the first coefficient of z which is not in D*, and let w = z — X^o^x'.

Then since D[[x]]* is a ring containing D*[x], we£>[[x]]* also. Therefore

there exist yi,---,y„eD[[xJ\ such that w"+ yyWn~l + ■-- + y„ = 0. We can

write y¡ = y'i + c¡, i = l,---,n — 1, where y¡e l/[[x]], c¡eC(R)[[x]]; and then

(***) w" + y'yw"-1 + ••• + y'n_yw + (cyw"'^ - + c„_yW + y„) = 0.

Letting y'n = Cjvv""1 H-\-c„_yW + y„, theny'„eD[[x]]also,since cieC(R)[[xJ].

Consider now the summands of (***) having minimal subdegree m in x.

Since the subdegree of y'„ is = the minimum of the subdegrees of the other

summands of (***), at least one such summand involves w. Dividing (***) by xm

and equating to 0 the resulting constant term, we get a relation

bya",'1 + bl+ya"t~l~l + -■ + b„ = 0,   b¡eD,   b, ^ 0   and   b,eU.

Therefore b^eD, and hence fl?", + (frl+i&r1)o?","^+ ••• +(b„&71) = 0 is an

equation of integral dependence for a, with respect to D. Thus, at e D*, a contra-

diction to our choice of t.

3.3 Proposition. Suppose DcR and R = R0QC(R)(10) where R0 is a subring

of R. Then D = D0@C(R), where D0=DnR0; and if D0 is integrally closed

in R0, then D is integrally closed in R.

Proof.   The first assertion is immediate. Suppose then r e R is integral over D.

(s>) Note that U need not be a ring. The notation U + C(R) denotes the set of all « + c,

ueU, ceC(R).

(io) © denotes direct sum of groups.
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r = r0 + c, r0eR0, ce CiR); so r0 = r — c is also integral over D. Therefore

there exist Oy,---,a„eD such that r¡¡ + a1rS~1+ ••• + a„ = 0. We can write

a, = a', + c„ a',eD0, c,eCiR). Then (r0" +a1V0n_1+ — + fl«) + (c1r0"1 + — + c„) = 0.

Since (Cj/o-1* ••• + c„)eC(P), this implies rj -fa^o1-1-!- ••• + a'„ = 0. Therefore

r0 is integral over £>0 and hence e D0. Then r e D.

3.4 Corollary. Suppose DczR and R = k®CiR),where k is afield contained

in R. Let D0 = D C\k. IfD0[[xJ] is integrally closed in k[[x]] and iff^L0a¡D = 0

for every aeD0 such that a is a nonunit of D, then D[[x]] is integrally closed

in R[[x]].

Proof. By 3.3, D = D0©C(P) and D is integrally closed in R. Moreover, if

a 7e 0 e D0, then 1 / a e R and hence (1 ¡a)'c e D for every i = 0 and every c e CiR).

Therefore CiR) c O^a'D. Iff)^L0a'D = 0, then C(P) = 0 and D = D0, R = k;
so the corollary is immediate. If (~\,™0a'D ^0, then by hypothesis a is a unit

in D. Thus, in this case the nonzero elements of D0 are units of D, so we can

apply 3.2 to conclude that D[[xJJ is integrally closed in P[[x]]. q.e.d.

In [10, pp. 670-671], Krull studies the following example: Let K = fc(x,y) be

the field of rational functions in two indeterminates x, y over a field k. There

exists a discrete rank 1 valuation v of K such that t>(x) = 1, u(y) = 0 and such

that if R is the valuation ring of v, then R = fc(y) ® M, where M is the maximal

ideal of R. Let D = k©M. Then Krull shows that D is a 1-dim quasi-local ring

with maximal ideal M, and that D is integrally closed but not completely

integrally closed. Moreover, by 3.2 /c[[x]] is integrally closed in &(y)[[x]],

so by 3.4 D[[x]] is integrally closed in P[[x]]. But P[[x]] is integrally closed

(apply 1.9), so therefore D[[x]] is also integrally closed. Thus, this is an example

of a domain D for which (c) -*> (b)(n).

4. (b)*>(a). In [12],Nakayama constructs an example of a completely integrally

closed domain D such that D is not contained in any rank 1 valuation ring of

its quotient field K. He also points out how one can get from such a D to one which

is completely integrally closed and such that not every nonunit is in a minimal

prime ideal. Thus, in particular, his examples show that (b) *> (a) and (b) *» (e).

The procedure used by Nakayama is to first construct a lattice ordered group

G with the correct properties and then to show that there exists a domain D such

that G is the group of divisibility of K with respect to D (see Jaffard [6, p. 5], for

the definitions). Instead of using Nakayama's construction, one can in general

prove the existence of a D having a given lattice group as its associated group

of divisibility by employing Jaffard [6, p. 78, Theorem 3], An examination of the

proof of this theorem shows that the resulting D is, in fact, a domain with the

property that every finitely generated ideal is principal; so in particular D has the

QP-property (see 1.7). This construction is related to Krull's construction of the

C1) We are indebted to P. Samuel for pointing out this example.
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Kronecker function ring [9, pp. 558-561], and may be regarded as a special case

of it. (We hope to enlarge on this statement in a future paper.)

The example which we give in the next section shows that (a) =t> (e). It also

proves that (b) *- (e) and hence provides an alternative approach to Nakayama's

second counterexample. Note that since (a)<=-(e) for a domain with QR (by 1.8),

the above method of passing from a lattice group with the correct properties to

a domain D via Jaffard's theorem will not produce an example for which (a) *• (e).

5. (a) *• (e). In this section we construct an example which shows that (a) *> (e).

To fix the notation, lei D, R, Rv be domains having quotient field X and such

that Rv is the valuation ring of a valuation v of X. Furthermore, assume that

D = R C\RV and that Rv is irredundant in this intersection, i.e. R d: Rv. Let M„

be the maximal ideal of R„ and let M = MvnD.

5.1 Theorem. If the value group of v is contained in the rational numbers,

then M is a minimal prime ideal of D.

Proof. Let d i= Oe D, and assume P is a prime ideal of D such that P < M. Since

R d: Rv, there exists zeR, $ Rv. Therefore v(z) < 0 , and hence there exists integers

m — 0, n>0 such that v(d)/ — v(z) = mln. Therefore nv(d) + mv(z) = 0, or

v(d"zm) = 0. This implies d"zme D, cß M. Now choose yeM,$P. Then v(y) > 0, so

there exists an integer q > 0 such that qv(y) > v(d). Therefore

v(d"zmyq) = qv(y) > v(d);

and hence v(d"~1zmyq)> 0, so dn'xzmyqeD. But d(dn~1zmyq)4P since d"zm4M

and y 4P. Therefore d $ P, and hence P = 0.

It remains to sec that M =£ 0. If M = 0, then v is 0 on D and consequently also

on X. But then Rv = X => R, a contradiction to our assumption that Rv is irre-

dundant.

5.2 Corollary. If a domain D is an irredundant intersection of rational, rank

one valuation rings, then each of these valuations is centered on a minimal

prime ideal of D, and consequently every nonunit of D is in a minimal prime

ideal of D.

Thus, in searching for an example to show (a)#»(e), at least in the case of an

irredundant intersection, one must look for a domain whose representation as

an intersection of rank one valuation rings involves at least one nonrational

valuation. We now proceed to the construction of such an example.

5.3. Example. Let fe=rational numbers, J = integers, and fix a prime integer p.

Jp will denote the quotient ring of J with respect to the prime ideal pJ. Let x be an

indeterminate, and let v denote the extension of the p-adic valuation of fe to k(x)

obtained by defining v(a0 + a¡x + ••• + a„x") = influa/) + in), i = 0,~-,n. Let

Rv be the valuation ring of v, let R = fe[x], and let D = R C\RV. Since R is a
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Dedekind domain, RP is a discrete, rank one valuation ring for every proper

prime ideal P of R, and R = pj RP. Thus, D = (QPp) n Rv is a representation

of D as an intersection of rank one valuation rings; and, in fact, every element

of D is a nonunit in at most a finite number of these valuation rings.

5.4 Lemma. None of the valuation rings {RP}, Rv is redundant in the repre-

sentation D = (f) RP) n R„.

Proof. R„ is irredundant since ljpeR, $RV. If Q is a proper prime ideal of

R, then Q = zR for somez#0eP; so for sufficiently large n, p"¡ z e(Ç\P^QRP)c\Rv

and 4 Pq- Therefore RQ is irredundant,     q.e.d.

If Mv is the maximal ideal of P„, as before let M = Mv nö; and similarly,

for the maximal ideal PRP of RP, let P* = PRP n D.

5.5 Corollary. For any proper prime idealPof R,P* = P C~\D is a minimal

prime ideal of D.

Proof. Apply 5.4 and 5.1.

5.6 Lemma. yJ(pD) = M.

Proof, yjp e M, so (pD) cM. Conversely, if yeM, then v(y) > 0. Therefore there

exists an integer n such that v(y"¡p) > 0, and hence y"¡peD. But then y„epD,

so yeyJ(pD).

5.7 Lemma. The only proper prime ideals of D are the {P*} and M.

Proof. Let S be the multiplicative system in Jp consisting of powers of p.

Then Jp[x] c D c R, and R = J„[x]s. Therefore R = Ds also, so any proper

prime ideal of D which does not intersect S must be the contraction of a proper

prime ideal of R and hence must be some P*.

Suppose then that Q is a prime ideal of D such that Q n S ^ 0. Then peQ;

and hence by 5.6, McQ. On the other hand, if Q > M, then there exists

y = a0 + ayX + ••• + a„x", a,ek, such that v(y) = 0 and y e Q. Since

v(y) = inf{v(a,) +in}, i = 0, •••,«, this implies r(a0) = 0 and p(a,.) + in>0 for

i > 0. Thus, v(y—a0) = inf{p(a¡) 4- in} > 0, i = 1, ••-,«; so y — a0eM. But then

y e Q and j/-fl0eß, so a0 e Q. However, t>(a0) = 0 and a0 e k, so aQ is a unit

of D; and hence Q = D.

5.8 Lemma, p is in no minimal prime ideal of D.

Proof. Since yJ(pD) = M (by 5.6), any prime ideal of D which contains p

contains M. Let P* be the prime ideal xR no.

Claim: P*<M. p$P* since p£xR. On the other hand, if yeP*, then

y = asxs + as+1xs+1 + ... + as+I1xs+n, fl-efe, s > 0.

Therefore v(y) = inf{v(as+) + (s + i)n}, i = 0,---,n, so r(y) > 0. Thus, yeM

and P* c M.    q.e.d.
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Thus, we have shown that D has the following properties :

(i)  D is an intersection of rank one valuation rings.

(ii) Not every nonunit of D is in a minimal prime ideal.

(5.9) Ribenboim, in [14], calls a domain D a "real normal ring with finite char-

acter" provided D is an intersection of rank one valuation rings such that every ele-

ment of D is a nonunit in at most a finite number of these valuation rings. This is a

generalization of the notion of "Krull ring", where the valuations involved are also

assumed to be discrete. A rank one valuation of the quotient field X of D is called

essential by Ribenboim if its valuation ring is a quotient ring of D with respect to

a prime ideal of D. He then asks whether every real normal ring with finite character

is the intersection of the valuation rings of its essential valuations, [14, p. 218].

This is true for Krull rings and is fundamental in the study of such rings.

We have already observed that the D constructed above is a real normal ring

with finite character. From property (ii) above, it follows that D is not the inter-

section of the valuation rings of its essential valuations ; for if it were, then every

nonunit of D would be in one of the centers, which are necessarily minimal prime

ideals of L»(12).
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