
SEPARABLE ALGEBRAS OVER COMMUTATIVE RINGS

BY

G. J. JANUSZ(i), (2)

Introduction. The main objects of study in this paper are the commutative

separable algebras over a commutative ring. Noncommutative separable algebras

have been studied in [2]. Commutative separable algebras have been studied in

[1] and in [2], [6] where the main ideas are based on the classical Galois theory

of fields. This paper depends heavily on these three papers and the reader should

consult them for relevant definitions and basic properties of separable algebras.

We shall be concerned with commutative separable algebras in two situations.

Let R be an arbitrary commutative ring with no idempotents except 0 and 1. We

first consider separable P-algebras that are finitely generated and projective as an

P-module. We later drop the assumption that the algebras are projective but

place restrictions on P — e.g., P a local ring or a Noetherian integrally closed

domain.

In §1 we give a proof due to D. K. Harrison that any finitely generated, pro-

jective, separable P-algebra without proper idempotents can be imbedded in a

Galois extension of P also without proper indempotents. We also give a

number of preliminary results to be used in later sections.

In §2 we generalize some of the results about polynomials over fields to the case

of aground ring P with no proper idempotents. We show that certain polynomials

(called "separable") admit "splitting rings" which are Galois extensions of the

ground ring. We apply this to show that any finitely generated, projective, separable

homomorphic image of R[X] has a kernel generated by a separable polynomial.

In §3 we restrict our attention to separable algebras over a local ring. (The

term "local" will not imply any finiteness conditions.) In certain cases every

finitely generated, separable algebra is a homomorphic image of a finitely generated,

projective, separable algebra. This gives an external characterization of the sepa-

rable algebras. In §4 we consider the internal structure of seperable algebras

over a Noetherian integrally closed domain. We show that a finitely ge-

nerated separable algebra is the direct sum of projective, separable domains

containing the ground ring and an algebra that is separable but not faithful over

the ground ring. For the case of a Dedekind domain we can obtain specific infor-
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mation about the nonfaithful separable algebras (Theorem 4.4). We include also

in this section some results about finite rings that are separable over the subring

generated by the identity element. We find a close analogy with finite fields —■

namely for any positive integers (n, r) and a prime p there is exactly one ring

(up to isomorphism) of characteristic p" which is separable over the subring

generated by the identity element, has no idempotents except 0 and 1, and is

of rank r.

We conclude in §5 with an application of the preceding theory to the problem

of the existence of separable splitting rings for a group algebra of a finite group.

In order to avoid repetition we shall assume that all rings and algebras have

identities and except in §5, all rings and algebras are commutative. The phrase

"S is a finitely generated £-algebra" means S is an R-algebra which is finitely

generated as an /(-module. The symbol "®" will mean "®Ä".

1. Preliminaries. Let R denote a commutative ring with no proper idempotents

(no idempotents except 0 and 1).

Definition 1. An R-algebra Sis called strongly separable if it is finitely

generated, projective, and separable over jR.

Most of this section is devoted to proving a theorem due to D. K. Harrison.

The author is grateful for his permission to reproduce this result here. The theorem

we want to prove is the following improvement of Theorem A.7 in [2].

Theorem 1.1. Every strongly separable R-algebra without proper idem-

potents can be imbedded in a Galois extension of R without proper idempotents.

The proof is quite long and involves some auxiliary concepts. For convenient

reference we state a proposition proved in [6, p. 17].

Proposition 1.2. Let S be a separable R-algebra and f:S-+R be an R-algebra

homomorphism. Then there exists a unique idempotent e in S such thatf(e) = 1

and se =f(s)efor all s in S. Furthermore, iffy, ■••,/„ are pairwise distinct R-al-

gebra homomorphismsfrom S to R, then the corresponding idempotents ey,---,en

are pairwise orthogonal and /¡(e,-) = o¡j, the latter denoting the Kronecker

delta.

We shall make use of the following concept.

Definition 2. An R-algebra A is called locally strongly separable if every

finite set of elements in A is contained in a strongly separable R-subalgebra of A.

Notice that when S is a finitely generated R-subalgebra of a locally strongly

separable .R-algebra A, then S is contained in a strongly separable R-subalgebra

of A.

Lemma 1.3. Let A and S be R-algebras with no proper idempotents and

with S strongly separable over R. Then there are at most n = tankR(S) distinct

algebra homomorphisms from S to A.
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Remark. We will frequently make use of the fact that the rank of a projective

P-module is well defined. See [4, p. 132 and p. 138] for more information.

Proof. From each P-algebra homomorphism /: S -> A we obtain an .4-algebra

homomorphism F:A®S^>A defined by Fia®s) = afis). From Corollary 1.6

of [2] we know A® S is a strongly separable A -algebra. If/,, •■•,/„ are distinct

P-algebra homomorphisms from S to A we can apply (1.2) to A®S and the

homomorphisms Fx,---,Fm to get orthogonal idempotents ex,---,em in A®S.

We compute the rank of A ® S by adding the ranks of the summands in a direct

sum decomposition. Since there are at least m direct summands we conclude

rarñXjiA ® S) ï; «j. However rankR(S) = rank¿(.4 ® S) so we are done.

Proposition 1.4. There is a locally strongly separable R-algebra, Í2, such

that Í2 has no proper idempotents and if T is a strongly separable Q-algebra

with no proper idempotents then Çl = F.

Proof. One first shows that the property of being locally strongly separable

is transitive. That is if A s B £ C are commutative rings with B locally strongly

separable over A, and C locally strongly separable over B, then C is locally

strongly separable over A. This follows easily from the fact that separability is

transitive (see proof of Theorem 2.3 [2, p. 374]).

Now suppose the proposition is false. We then can construct a transfinite

collection {Í2J of P-algebras, indexed by a class {a} of ordinals, with the follow-

ing properties:

(1) When a is a nonlimit ordinal, Qx is a strongly separable £L,_,-algebra;

when a is a limit ordinal £îa = inj lim {Çïp}, where the direct limit is taken over

all ß < a;

(2) £2a is a locally strongly separable P-algebra;

(3) for a < ß, Çlx czQp (proper inclusion) ;

(4) Qx has no proper idempotents.

We reach a contradiction by showing there is an ordinal k with a < k for all

a e {a}. This allows us to form the direct limit of all £!„ in {CL.}. First observe

that the class of isomorphism types of strongly separable P-algebras without

proper idempotents is a set. For a given P-algebra S of this kind there are at

most rank^S) possible imbeddings of S into any given ÍL_. Hence no Qx has

cardinality greater than Z rankR(S) • card (S) where the sum is taken over the

distinct isomorphism types of strongly separable P-algebras S without proper

idempotents. To complete the proof we take k any ordinal with cardinality

greater than "L rankÄ(S) • card (S).

Definition 3. An P-algebra fi will be called a separable closure of P if íí

is locally strongly separable, has no proper idempotents, and if the only strongly

separable Q-algebra without proper idempotents is £2 itself.

The last proposition assures us that P has a separable closure.
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Now suppose S is a strongly separable R-algebra without proper idempotents

and Q is a separable closure of R. Then Q ® S = Q ©••• © Í2 where there are

n = rankR(S) copies of Q on the right. If 7r¿ is the projection onto the ith coor-

dinate then the map / : s -» 7rf(l ® s) is an R-algebra homomorphism of S into ÍJ.

These are mutually distinct and give all possible homomorphisms of S into ÍÍ

because of (1.3). Let N =f(S) -f2(S) ---/„(S). JV is the smallest subalgebra of

£2 containing all the homomorphic images of S. We shall prove that JV is a Galois

extension of R containing S. We shall use the criterion given in Theorem 3.5

of [6]. Clearly JV is finitely generated since S is. JV is separable over R because

it is a homomorphic image of S®---®S (n-times). It remains to show that S

is actually imbedded in N and that only the elements in R are left fixed by the

full group of R-automorphisms of JV.

Before proving that all of the / are monomorphisms we need the following.

Proposition 1.5. Let S be a strongly separable R-algebra and T an R-sub-

algebra of S.

(1) // T is separable over R then T is strongly separable over R and S is

strongly separable over T.

(2) If S is projective over T, then T is separable over R.

Proof. Part (2) follows from Proposition 4.8 of [1]. To prove (1) we need

the following fact that will be used later on also. When S is separable over R,

then any R-projective S-module is also S-projective. This follows from the

vanishing of the Hochschild cohomology groups (see [5, p. 176]) but for com-

pleteness we sketch a proof in the next paragraph. Now for the proof of (1) we

have S is R-projective and S is a T-module so S is T-projective. Thus S is strongly

separable over T. T must be a T-direct summand of S so T is R-projective and

hence strongly separable over R.

Now to prove that any R-projective S-module is also S-projective it is suf-

ficient to show that any exact sequence of S-modules

0-+M->N->W-+0

that splits as a sequence of R-modules also splits over S. Let ß:S®S-*S be

the map defined by ß(a ®b) = ab and let e be the element in the annihilator

ofketß such that ß(e) = l [5, p. 179, Proposition 7.7]. HomR(JV,JV) is an S®S-

module when we define a®b-f by a ® b ■/ : x -» af(bx) fot fe HornR(N,N)

and x e JV. Now if / is the idempotent R-projection of JV onto M, then e • f

is an S-projection of JV onto M. Hence M has an S-complement in JV and the

sequence splits over S.

Lemma 1.6. // S is a separable R-algebra and N a strongly separable

R-algebra, then the kernel of any R-algebra homomorphism from S into N

is generated by an idempotent.
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Proof. Let /: S -» N be an P-algebra homomorphism. The P-algebra f(S)

is separable so by (1.5)/(S) is strongly separable. Since/(S) is an S-module which

is projective over P, f(S) is projective over S and hence the sequence of S-modules

0 - ker/-» S -+f(S) -> 0

is split. Thus ker(/) has an idempotent generator.

Returning to the context of the discussion above Proposition 1.5 we see the

maps fi'.S-* N are monomorphisms because S has no proper idempotents. In

order to apply (1.6) here we need to know that N is strongly separable. But

N S £2 implies N is contained in a strongly separable P-algebra so by (1.5) N

is strongly separable.

Next we prove the uniqueness of the separable closure. Let £2 be a separable

closure of P and £2' any locally strongly separable P-algebra. Denote by ^*Ä(Q')

or y the collection of strongly separable P-subalgebras of £2'. For each S e SP

let GCS) = AlgÄ(S,£2) = set of P-algebra homomorphisms of S into £2. G(S) is

a finite set by (1.3) to which we assign the discrete topology. One can show y

is a directed set (by inclusion) and for S, Te S? with TçSwe have a natural map

from G(S) to GCT), the restriction map. Thus we may form the inverse limit,

L= projlim {G(S)} over all S e Sf. Lis a closed, nonempty subset of the compact

space nG(S). (See [8, p. 215 and p. 217].) It is not difficult to verify that

L^AlgR(Cl',Q). In particular AlgR(£2',£2) is not empty.

Proposition 1.7.    The separable closure of R is unique up to isomorphism.

Proof. Let £2 and £2' be separable closures of P. From the above remarks

we know there are P-algebra homomorphisms /:£2'-*£2 and g:£2->£2'. We

shall prove that every endomorphism of £2 is an automorphism. From this it

follows that /o g and go/are one-to-one and onto. In particular / and g are iso-

morphisms. Let er be an P-algebra endomorphism of £2. Suppose a e ker er. Let

S be a strongly separable P-subalgebra of £2 with aeS and let T be a strongly

separable P-subalgebra of £2 containing er(S). Applying (1.6) we see ker(<r|S)

is generated by an idempotent. Since S has no proper idempotents ker(<r|S)=0

and hence a =0. Thus er is one-to-one. Now take be£2 and let S be a strongly

separable P-subalgebra of £2 containing b. Let/,,•••,/„ be all the imbeddings

of S into £2. Suppose/,(s) = s for all seS. Then {er o/,,-••, a o/„} = {/,, ••-,/„}

so that erofj=fy for some j. In particular b =/,(b) = er(fj(b)). Hence er is onto.

This completes the proof.

Corollary 1.8. Let S be any strongly separable R-subalgebra of SI. Any

algebra homomorphism from S into £2 is induced by an automorphism of £2.

Proof. Let /: S -> £2 be an algebra homomorphism. View £2 as an S-algebra

in the natural way and let £2' denote £2 as an S-algebra with the operation
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s-w =f(s)w. Then Si and Si' ate separable closures of S. By (1.7) there is an

S-isomorphism b:£2->fi'. That is h(sw) = s • h(w) = f(s)h(w) for s in S and w

in O. In particular h(s) =f(s) for s in S and h is an R-automorphism of Q.

We are now able to complete the proof of (1.1). We must show that the auto-

morphism group of JV leaves only R fixed. In view of (1.8) it is sufficient to prove

the following.

Proposition 1.9. Let SI be a separable closure ofR. Then only the elements

of R are left fixed by all the R-automorphisms of SI.

Proof. Let se SI and suppose c(s) = s for each a e AutA(Q). Let S be a strongly

separable R-subalgebra of Í2 with seS. We have/(s) = s for each/eAlgR(S,Q)

because each such / is induced from an automorphism of Si. Thus for any ele-

ment geAlgn(C2® S,Si) we must have g(l®s) = s because s'->g(l®s') is an

element of AlgR(S, Si). The i2-algebra £2 ® S is the ring direct sum of copies of

Í2. Thus the elements of Alga(Si®S,Si) separate points of £2® S from zero.

But we have for geAlgn(i2®S,S) the equation g(s®l) — g(l®s) = s — s = 0.

Hence 1 ® s = s ® 1.

Now consider the diagram below

R ® S -^-> R ® (SjR)

"i   „    Ï"
Si® S -> Si ® (S¡R).

Here oty and a4 are induced by the imbedding of R in Si while a2 and a3 are in-

duced by the projection of S onto S/R. Since S is strongly separable over R,

R is an R-direct summand of S so that S/R is a projective R-module. Hence a4

is one-to-one. We now have a2 o at(l ® s) = a2(l ® s) = ot2(s ® 1) = 0 because

leker(S-*S/R). Thus a4o a3(l ® s) = 0. Since a4 is one-to-one we have

a3(l®s) = 0. Hence seker(S-»S/R) = R which is what we wanted to prove.

Remarks. 1. Using the notions described here one can develop an infinite

Galois theory for a ring R with no proper idempotents. One defines the infinite

Galois group to be AutR(£2) = group of R-automorphisms of a separable closure

of R. There is a one-to-one correspondence between the closed subgroups of the

topological group Aut^fí) and the locally strongly separable R-subalgebras of Si.

2. We have used several times that Í2®S^Ü©---©Q when S is a strongly

separable R-algebra and Si is a separable closure of R. The idempotents in

Si® S which induce this decomposition can be written with only a finite number

of elements from Q and S. Hence there is a strongly separable R-algebra, T say,

with no proper idempotents and such that T® S ^ T © • • ■ © T. This fact will

be useful in the next section.
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2. Separable polynomials. We continue to let P denote a commutative ring

with no proper idempotents.

Definition 4. A polynomial f(X)eR[X] is called separable if it is monic

and if R[X]¡(f(X)) is a separable P-algebra.

In this section we establish several properties of separable polynomials and

show that they play an important part in the classification of the separable homo-

morphic images of P[^]. We begin with some properties of the roots of a sep-

arable polynomial.

Lemma 2.1. Let S be a separable R-algebra without proper idempotents.

A polynomial f(X) of degree « which is separable over R cannot have more

than n roots in S. Moreover if a and ß are distinct roots offiX) in S, then a — ß

is invertible in S.

Proof. Let a,,.-.,am be distinct roots of/LY) in S. Since/(X) is separable

over P, the S-algebra S ® {P[X]/(/)} s S[X] ¡if) is separable. For each

i, lz%i<Lm, the map h,:S[X]->S defined by setting h,CX) = a, induces an

S-algebra homomorphism, g,, from S[X]¡(f) to S. Since the g, are distinct

we apply (1.2) to obtain orthogonal idempotents «?,,•••,em in S[X]¡(f). This

algebra is a free S-module of rank n so we must have m g n as required.

Applying (1.2) again we see [X + (f)}e, = a,e, so that the ideal (X — a) of

S[X] maps onto the annihilator of e, under the natural projection of S[X] onto

S[X]/(f). Hence for i^j,(X — a) and (X — aj )are comaximal ideals of S[X].

There exist polynomials pCX), q(X)eS[X] with

p(X)(X-a,) + q(X)(X-aj) = l.

Thus <j(a¡) (a¡ — a,-) = 1   and a, — a¡ is invertible.

We can now characterize the separable polynomials over P in several ways.

Theorem 2.2. Let f(X) be a monic polynomial in R[X]. The following

statements are equivalent.

(1) f(X) is a separable polynomial.

(2) There is a strongly separable R-algebra S with no proper idempotents

which contains elements a,,.-.,an such thatf(X) = (X — a¡)(X — af)---(X — a„)

and for i^j, a, — a. is invertible in S.

(3) For each maximal ideal m of R,f(X) is separable when viewed as a

polynomial over the local ring Rm.

(4) For each maximal ideal m of R, the polynomial obtained from f(X)

by reducing the coefficients modulo m has no repeated roots in an algebraic

closure of P/tn.

(5) Let t denote the trace map of the free R-module R[X]/(f) and let x

denote the coset of X modulo (/). Then the determinant of the matrix

|| tix'x1) 1, 0 g i, j < deg/, is an invertible element of R.
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Proof. (1) -> (2). By the remark at the end of §1 we know there is a strongly

separable R-algebra S without proper idempotents such that

SlXMf) = S ® {R[X]/(/)} s Set © - © Se,

where the e¡ ate orthogonal idempotents. If {X + (f)}e¡ = <x¡e¡ with a¡eS, then

a,,--,am are roots off(X). The argument used in (2.1) shows a¡ — a,- is invertible

for i 7^ /. The invertibility of a¡ — ay implies f(X) can be factored

asf(X) = (X-ay)-(X-a„).

(2) -* (1). Let S have the properties stated in (2). The ideals (X - a,) in S[X]

are pairwise comaximal so that

S[X]/(f) =; S © • • • © S       (n copies of S).

Thus/(X) is separable over S. Then S ® {R[X~\l(f)} is separable over S so by

Proposition 7.1, p. 177 of [5] we have R[X]/(/) is separable over R.

(l)<-»(5). The free R-module R[X~]l(f) has a basis x° = T,x,x2,"-,x"_1

where n — degree off(X). Let n¡ be the projection onto the coefficient of x'. The

trace map / is defined by t(z) = Unfzx1).Let Tdenote R[X]/(/). Twill be sep-

arable over R if and only if Homj,(T, R) is a free T-module of rank 1 with t as

free generator (Proposition A.4 of [2, p. 397]). Thus T is separable if and only if

there are elements z¡eTwith z¡t = n¡. Suppose T is separable so that such z¡

exist. Let z¡ = Ea;jxJ for au e R. Then we have n¡(x') = 8t¡ = t(ZiXJ) = T,koiikt(xkxJ).

In matrix notation we have | au || • | i(xV) | = identity matrix. Hence det || í(a:V) ||

is invertible inR.The steps are reversible for the converse. We shall call det |r(x'xJ)[|

the discriminant of f(X).

The proof that (1), (3) and (4) are equivalent is not difficult if one uses the fol-

lowing proposition which is similar to Corollary 4.5 and Theorem 4.7 of [2].

Proposition 2.3. Let S be a commutative R-algebra that is finitely generated

and projective as an R-module.

(1) S is separable over R if and only if Rm®S is separable over the local

ring Rmfor each maximal ideal m of R.

(2) S is separable over R if and only if S/mS is separable over R/m/or each

maximal ideal m of R.

Proof. Both parts of the proposition are easily proved using the test for

separability given in Theorem A.4 of [2].

Corollary 2.4. For n>l and oteR, the polynomial X"—cc is separable

if and only if n • 1 and a are invertible elements of R.

Proof.   A direct computation shows that the discriminant of X "— a is ± n(na)"~J.

The result now follows from part (5) of the theorem.

Combining this with (2.1) we obtain the following.
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Corollary 2.5. // P is a commutative ring with no proper idempotents in

which «1 is invertible, for an integer n> 1, then R has at most n nth roots

of unity.

This corollary is false if we replace the assumption that n • 1 be invertible with

the assumption that « • 1 be a nonzero divisor. Consider the group ring ZiG) of

a finite abelian group G of exponent « and order greater than « over the ring

of integers. Every element of G is an «th root of unity and « • 1 is a nonzero di-

visor. The fact that ZiG) has no proper idempotents is proved in [7, p. 557].

Other examples are easily found with n • 1 a zero divisor.

Following the classical terminology we introduce a definition.

Definition 5. A strongly separable P-algebra, S, without proper idempotents

is called a splitting ring for the separable polynomial /(X) if/(X) is a product

of linear factors from S[X] and if S is generated over P by the roots of fiX).

The next proposition along with (2.2), part (2) shows that splitting rings exist.

Proposition 2.6. Let fiX) be a separable polynomial over R and Ta Galois

extension of R with no proper idempotents. If ay,---,an are all the roots offiX)

in T, then S = P[a,,..-,a„] is a Galois extension of R.

Proof. We first show S is separable over P. Let S¡ = P[a,,»»-,aJ]. S, is

separable over P because it is a homomorphic image of R[X]Hf). SJ+1 = Sj[aJ+,]

is separable over Sj because it is a homomorphic image of the separable S,-algebra

Sj®{R[X]Hf)}. Hence the transitivity of separability gives Sj separable over

P for each j = 1, ••», n. Now S = S„ is strongly separable because it is a separable

P-algebra contained in a strongly separable P-algebra (1.5). Now to show S is

Galois over P, let G be the Galois group of T over P. Let H be the subgroup

of G leaving S fixed. Since the elements of G permute the roots of/(X) we con-

clude H is a normal subgroup of G. Thus Theorem 2.3 of [6] tells us S is a Galois

extension of P.

The next goal is to see how the separable polynomials fit into a classification

of the separable homomorphic images of P[X]. We begin with a lemma.

Lemma 2.7. Let T be a strongly separable R-algebra with no proper idem-

potents and let a be an element of T. Then R[a] is a separable subalgebra of

T if and only if a is a root of a separable polynomial over P.

Proof. By (1.1) we see there is no loss in generality if we assume Tis a Galois

extension of P with group G. Suppose P[a] is separable. Then P[a] is left fixed

by a subgroup H of G which leaves only P[a] fixed (Theorem 2.3 of [6]). Let

Hay,- ■ -, Ho, be all the distinct cosets of H in G and let/(X) = (X - erf(a))- -CX- ff/a)).

Since the coefficients of/(X) are left fixed by all of G,/(X) is in R[X]. We shall

prove fiX) is a separable polynomial. By (2.2) it is sufficient to prove that

o,ia) - er fa) is invertible in T for ij^j. Suppose for some pair ((',;) with i ^ j
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that o-¡(a) — et fa) is not invertible. If we let a = o¡ 1aJ, then there is a maximal

ideal M of T containing a — cr(a). We also have

<xm - o-(am) = [a - cr(a)] [a""- ' + - + <r(a)m_ l]

in M for each positive integer m. Thus ß — a(ß) is in M for each ß in R[ot]. We

shall prove that this implies o is in H contrary to the choice of i and j.

Theorem 1.3 of [6] assures us that there are elements x¡,---,xn; y\,---,yn in

T such that 2Zxfl(y¡) = 1 or 0 according as n = 1 or n i= 1 fot ne G. Lemma

1.3 of [6] says there is an element c0 in Twith Z„eGrc(c0) = l. Now let c= EjC^Co),

u, =    £ p(cx¡),   and   v¡ =    Lp(y¡)-
p eH fi ell

The elements u¡ and vt ate in R[a] because they are left fixed by H. One verifies

directly that EiUprO^) = 1 or 0 according as ne H or n£H.

Now if the particular a selected above is not in H, then

1 =   lu^- Zm¡o-(i;¡)= Em^-o-ÍU;)).

From above we know this element belongs to M and this is a contradiction so

this part of the lemma is true. The converse follows at once since R[a] is a homo-

morphic image of R[X]/(/).

Corollary 2.8. Let Tbe a Galois extension of R without proper idempotents

and suppose aeT with R[a] a separable R-algebra. Let a = ai,---,am be all

the distinct images of at under the Galois group of T. If g(X) is any polynomial

in R[X] such that g(ot) = 0, then g(X) is a multiple off(X) = (X - ax)••• (X-otJ

by an element of R[X~\.

Proof. From the proof of (2.7) we know f(X) is a separable polynomial.

Hence a¡ — a¡ is invertible for i^j. If g(a) = 0 then g(ot¡) = 0 for each i. We

can find Py(X) e T[X] with g(X) = (X — oty)py(X). Since a2 — at is invertible,

fi(a2) = 0 so there is a p2(X) e T[X~] with Py(X) = (X — ot2)p2(X). Continuing

this way we reach g(X) =f(X)pn(X). Since g(X),f(X) e R[X] andf(X) is monic,

we can conclude pn(X)eR[X~].

We use this corollary in the next theorem.

Theorem 2.9. // M is an ideal of R[X] such that R[X~\/M is a strongly

separable R-algebra then M is a principal ideal generated by a separable

polynomial.

Proof. Let A denote the strongly separable R-algebra R[X~\/M. Since rank

over R is defined for direct summands of A there exist orthogonal idempotents

eu'">em m A- with A = Aex ©•■■®Aem and such that Ae¡ is a ring with no

idempotents except 0 and e¡. In fact Ae¡ is a strongly separable R-algebra. Let

x denote the coset of X modulo M. Then we have Ae¡ = R[xe¡] (where we identify
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P with Re). By (2.7) xe, is a root of a separable polynomial over P. Let g,iX)

be one of least degree. Then Corollary 2.8 implies that the ideal generated by

g¡(X) is the kernel of the map P[X] -* P[xe¡]. Each ideal (gt) contains M and

the ideals ig,)/M are pairwise comaximal in A. Hence the (g¡) are pairwise co-

maximal in P[X]. In particular the intersection of the ideals ig,) is equal to

the product. But M is the intersection of the (g¡) so M = (g,) •■• (gm) = (g) where

g = g(X) = g1(X)-gm(X).

Corollary 2.10. ///(X) is a separable polynomial over R then there exist

separable polynomials g,(X), ••-,gm(X) in R[X] such thatf(X) = g,(X) ••• g„,(X)

and R[X]¡(g) has no proper idempotents.

Proof.    Take (/) = M in the theorem.

3. Local rings. In this section we let P denote a (not necessarily Noetherian)

local ring with unique maximal ideal m. We adopt the terminology of field

theory and say that an P-algebra A has a primitive element 0 if A = R[8]. Clearly

the P-algebras with a primitive element are those which are homomorphic images

of P[X].

We first consider what is required for a separable P-algebra S to have a prim-

itive element. A standard Nakayama's lemma argument shows that S has a

primitive element over P if and only if S/mS has a primitive element over P/m.

Thus the question reduces to the field case. However in this case it is known

that every separable algebra over an infinite field has a primitive element. Hence

we obtain the following.

Lemma 3.1. //P/m is an infinite field, then every finitely generated separable

R-algebra has a primitive element.

An example due to Dedekind shows that some restriction on the local ring

P is necessary for the validity of (3.1). (See [12, p. 170], for the example and

some details.)

We have seen in (2.9) that when R[X]¡M is strongly separable over P, then M

is a principal ideal. This need not be the case if we assume that R[X]/M

is only separable over P. However we can obtain some information about M

as follows.

Lemma 3.2. Suppose M is an ideal of P[X] such that the R-algebra

A = R[X]¡M is finitely generated and separable over P. Then M contains a

monic polynomial f(X) which is separable over P. Moreover we can choose

f(X) so that A is a homomorphic image of the strongly separable R-algebra

T= R[X]l(f) and the kernel of this homomorphism is contained in mT.

Proof. Since A is finitely generated as an P-module every element satisfies

a monic polynomial in P[X]. In particular the monic polynomial satisfied by
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X + M belongs to M. Let f(X) be a monic polynomial of least degree in M.

We show first that any polynomial in M with degree less than the degree off(X)

has all its coefficients in m. Suppose this is not the case. Then there is a poly-

nomial p(X) in M such that

(1) p(X) = txrXr H— + otjXJ -\-h a0 7e 0  where   r < deg(/)  and  otj $ m;

(2) the integer ß(p(X)) = r —j is as small as possible.

We cannot have ß(p(X)) — 0 because f(X) has least degree for monic poly-

nomials in M. (Recall that a^m implies otj is invertible in R.) Now consider the

polynomial h(X) = X"~r-p(X) - arf(X). Then h(X) belongs to M and has

degree < deg(/). If X¡ is the coefficient of X1 in f(X), then the coefficient of

X"~r+J in h(X) is oLj — arXj. Since ar is in m we see otj — arXj is not in m. Thus

ß(h(XJ) g,n-l-(n-r+j) = r-j-l< ß(p(X)). By choice of p(X) we must

have h(X) = 0. That is v.J(X) = X"~r-p(X). This implies every coefficient of

p(X) belongs to m. This contradiction establishes the claim above. Now we

can show f(X) is a separable polynomial. By part (4) of (2.2) it is sufficient to

show that f(X) is separable modulo m. The claim established above proves

that the ideal M maps onto the principal ideal (/) when the coefficients are re-

duced modulo m. Thus AjmA £ R[X~\¡(f) where R = R/m. Since A is sepa-

rable over R, AjmA is separable over R and thus f(X) is separable over R as

required. Thus the R-algebra T=R[X~\¡(f) is strongly separable and A is a

homomorphic image of T. The kernel is in mT because (/) s M S (f) + m • R[X~\.

We can state this more abstractly as follows.

Corollary 3.3. Let S be a finitely generated separable R-algebra and suppose

either R/tn is an infinite field or that S is a direct sum of local rings. Then there

is a strongly separable R-algebra T such that S is a homomorphic image of T

with kernel contained in mT. Moreover if S has no proper idempotents we can

choose T without proper idempotents also.

Proof. The hypothesis insures that S has a primitive element or else S is a direct

sum of rings with a primitive element. In either case we apply (3.2) to get the

algebra T. In case S has no proper idempotents, T will not have any either because

mT cannot contain an idempotent.

Remark. The restriction on the residue field of R is probably unnecessary,

but a proof of the result in general is lacking. An earlier version of this paper

contained a "proof" but an error was pointed out by Michael Wichman.

Theorem 3.3 is false without some assumption on the ring R. Consider

the ring Z of integers. The only strongly separable Z-algebras are direct sums of

copies of Z. Hence the separable Z-algebra GF(p2) is not a homomorphic image of

any strongly separable Z-algebra.

4. Integrally closed domains. In the last section we gave an external character-

lization of the separable algebras over a local ring as homomorphic images of the
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strongly separable algebras. We now let P denote a Noetherian integrally closed

domain and consider the internal structure of separable algebras over P. We

first state a lemma that is proved in [1].

Lemma 4.1. If S is a domain containing R which is finitely generated and

separable over R, then S is projective over P.

We shall make use of this lemma to obtain more precise information about

separable P-algebras.

Corollary 4.2. Let S be a finitely generated, separable R-algebra con-

taining R but not containing proper idempotents. Then S is a domain and is

projective over R.

Proof. Let K be the quotient field of P. K®S is a separable /C-algebra

and so it is a direct sum of fields. Let e be the identity of one of the fields in this

decomposition. The map s -> (1 ® s)e from S onto (1 ® S)e is an R-algebra homo-

morphism onto a separable domain containing P. By the lemma (1 ® S)e must

be projective over P. Thus by (1.6) ker(S -* (1 ® S)e) has an idempotent generator.

Since S has no proper idempotents the map S -» (1 ® S)e is a monomorphism.

This implies that K ® S has only one direct summand. That is K ® S is a field

and since S -* K ® S is a monomorphism, S is a domain.

Example. This corollary is false without the assumption that P be integrally

closed. Let Z(2> be the localization at 2 in the ring of integers. Let

P = Z(2) + Z(2)51/2. Then P is a Noetherian domain which is not integrally

closed. Consider the separable P-algebra S = P[X]/(X2 + X — 1). S has no

proper idempotents and is not a domain. There is a natural map from S onto

P[i(l - 51/2)] which takes X onto - ¿(1 - 51/2). This shows P[i(l - 51/2)] is

a domain that is separable but not projective over P. Thus (4.1) is also false

without integral closure.

We now have enough information to describe the separable algebras over P.

Theorem 4.3. Let R be a Noetherian integrally closed domain and S a

finitely generated, separable R-algebra. There is an idempotent e in S such

that S = Se © í(S) where í(S) is the R-torsion submodule of S and Se is a strong-

ly separable R-algebra with identity e. Moreover Se is the direct sum of Noe-

therian integrally closed domains each of which is strongly separable over P.

Proof. The set r(S) of P-torsion elements of S is an ideal of S. Hence the

factor algebra S/r(S) is separable and torsion free over P. S/r(S) decomposes

into the direct sum of P-algebras which have no proper idempotents. By (4.2)

these summands are projective so S/r(S) is projective over P. Now by (1.6) the

kernel of the map S -* S¡tiS) has an idempotent generator, say 1 — e. Thus

S = Se® r(S). It is clear from (4.2) that Se is the direct sum of Noetherian domains
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each separable over P. It remains to show these are integrally closed. Suppose

first that T is an integral domain which contains P and which is Galois over

P with group G. Let I" denote the integral closure of Tin its quotient field. One

checks easily that G is also a group of automorphisms of I". Using Theorem 1.3,

part (b), [6, p. 18] we see that T' is Galois over P with group G. By the funda-

mental theorem of Galois theory [6], Tmust be left fixed by a subgroup of G.

This subgroup must consist of only the identity so T=T. For the case of a

domain T which is strongly separable over P but not necessarily Galois over P,

we first imbed T in a Galois extension of P with no proper idempotents (1.1).

This extension is a domain by (4.2) and we may proceed as in the above argument.

This completes the proof.

This theorem shows that the study of separable algebras over a Noetherian

integrally closed domain is reduced to two cases : the study of strongly separable

domains over P and the study of separable algebras over a proper homomorphic

image of P. That is the torsion part, t(S) in (4.3) can be viewed as an algebra

over P/fl where a is the annihilator in P of t(S). We shall not discuss the first

case. For general Noetherian integrally closed the second case is difficult because

the domains have a rather complicated ideal structure. In what follows we re-

strict ourselves to the case of a Dedekind domain. Here the ideal structure is

well known.

Let P be a Dedekind domain and T a finitely generated, separable P-algebra

with a nonzero annihilator a in P. We may assume that a is a power, pe,

of a prime ideal p in P since the general case can be reduced to this by a direct

sum argument. We may also assume T has no proper idempotents for the same

reason. Let A denote R/pe. We shall establish a number of properties of the

y4-algebra T.

I. T has a primitive element over A.

Proof. A is a ring with descending chain condition and radical pA. Since

T/pTis separable over the field A/pA, T/pTis a semisimple ring. Thus the radical

of T is pT. It is well known that orthogonal idempotents in TfpT can be lifted

to orthogonal idempotents in T. Since T has no proper idempotents, T/pT is

a field. By the primitive element theorem for fields, there is an element 9 in T such

that A[9] + pT= T. Applying Nakayama's lemma we see that we must have

A[G] = T.

II. T is a homomorphic image of a Dedekind domain D which is strongly

separable over the local ring Rp.

Proof. By (I) we have T S ,4[X]/M for some ideal M of A[X]. Let /(X) be

a monic polynomial of least degree in M and let E(X) be a monic polynomial

in RP[X] which maps onto/(X) modulo pe. By the proof of (3.2) we know/(X)
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is a separable polynomial over A and hence F(X) is a separable polynomial over

Rp (by (2.2), part 4). Thus D = £p[*]/(£) is a strongly separable Rp-algebra

having T as a homomorphic image. We show D is a Dedekind domain. If D has

proper idempotents, then so does D/pD. This is not the case since D/pD Si TjpT

which is a field. Hence by (4.2) D is a domain. If L is any ideal ?¿ 0 in D then L

is a projective Rp-module because it is a submodule of the projective Rp-module D.

Since D is separable over Rp, Lis projective over D and hence every ideal of D

is Z)-projective. Thus D is a Dedekind domain [5, p. 134].

III. // T is a faithful A-algebra, then T is projective over A.

Proof. Let D be as in II. We have seen that pD is a maximal ideal of D and

that T is a homomorphic image of D/peD. Since D is a Dedekind domain, the

only ideals between D and peD ate p'D fot Oríi =e. Thus if T is faithful over

A we must have T s D/peD. But now D is projective over Rp so T£ D/pT> is

projective over RplpeRp s ^4.

IV. T is a self-injective, local, principal ideal ring.

Proof. That T is a local ring follows from the fact that pT is a maximal ideal

and is also equal to the radical. To show T is self-injective it is sufficient to prove

L = ann(annL) for each ideal Lof T where ann(L) is the annihilator in Tof L.

(See [7, p. 396].) Since Tis a homomorphic image of D, this follows from the

multiplicative properties of the ideals in D. Finally T is a principal ideal ring

by Corollary 1, p. 278, of [13].

With this list of facts we can now describe the separable algebras over a Dede-

kind domain.

Theorem 4.4. Let R be a Dedekind domain and S a finitely generated,

separable R-algebra. Then S is the direct sum of Dedekind domains each of

which is strongly separable over R, and self-injective, local, principal ideal

rings each of which is strongly separable over a suitable local homomorphic

image of R.

Proof. The theorem follows from the decomposition of (4.3) and from the

properties established above.

We can obtain still more information about the strongly separable algebras

over A = R/pe if we assume R/p is a finite field, say with q elements. Since

p'lp'+1 is a 1-dimensional vector space over R¡p we see that A must have qe

elements. Suppose Tis a strongly separable ^4-algebra with no proper idempotents.

We have seen above that pT is a maximal ideal of T so T/pT S GF(qr) for

some positive integer r. We shall sketch a proof that T is uniquely determined

up to isomorphism by A and the integer r. Tis a free ,4-module of rank r so T

has q" elements and pT has c/(c_1) elements. If there are m primitive elements
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for GF(qr) over GF(q) then there are «j-<jr(e-1) primitive elements for T over

A. Next we count the irreducible monic polynomials in A[X] with degree r.

There are m/r irreducible monic polynomials over GF(q) with degree r. A is

a complete local ring so by Hensel's Lemma [13, vol. II, p. 279], irreducible

monic polynomials over A remain irreducible over ^4/p^4 .Thus there are (m/r)qr(e_1*

monic irreducible polynomials over A with degree r. This counting argument

shows that up to isomorphism there is only one strongly separable ^4-algebra

without proper idempotents with the form ^4[X]/(/) where/(X) is a polynomial

of degree r. However property (I) above shows T must be of this form. We

summarize these remarks as follows.

Proposition 4.5. Let R be a Dedekind domain with maximal ideal p such

that Rjp is finite. Let A = R/pe for some positive integer e. Then for each

positive integer r there is one and (up to isomorphism) only one strongly sep-

arable A-algebra  without proper idempotents and with rank r over A.

We can say a little more about a strongly separable ^-algebra T without proper

idempotents — namely it is a Galois extension of A. To prove this first imbed T

in a Galois extension without proper idempotents. Its Galois group is the same

as the Galois group of its residue field. Since the residue field is finite, its Galois

group is abelian. Hence the subgroup leaving Tfixed is normal and so Tis Galois

over A.

If we consider the special case of P = Z = the ring of integers, this propo-

sition shows there is no ambiguity in the notation GR(p",r) for a strongly

separable Z/(p")-algebra of rank r having no proper idempotents (the letters

"GR" for Galois ring). Notice GR(p,r) = GF(p') in the usual notation for Galois

fields.

There are certain natural maps between the rings GR(p",r) that are worth

noting. For any positive integer d there is an inclusion of GR(p",r) into

GR(p", dr). This can be proved using the uniqueness property and Galois theory

just as for finite fields. Another map is the natural projection

h„:GR(pn,r)^GR(pn-\r)

having kernel pn_1 -GR(p",r). (The map /)„ depends also on r but we omit the

additional subscript.) The collection {GR(p",r);h„} with r fixed, is an inverse

mapping system and we can form the inverse limit, Dp(r) = proj lim{GP(p", r); h„],

of the system. One can show that Dp(l) is the ring of p-adic integers and that Dp(r)

is the unique strongly separable extension of Dp(l) with no proper idempotents

and with rank r over Dp(l). See [11, Theorem 3, p. 45] for further remarks about

these rings. This construction suggests the following theorem.

Theorem 4.6. Let R be a Noetherian local ring with maximal ideal m.

Let R* denote the completion of R. Then the strongly separable R*-algebras
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without proper idempotents are in one to-one correspondence with the finite

dimensional, separable field extensions o/R/m.

Proof. Since R/rrt = R*/mR*, we may assume that R is complete. If £ is

a finite dimensional, separable field extension of R/nt, then there is a separable

polynomial f(X) in R[X] such that £ s R[X]/(nt,/). It is not difficult to verify

that the R-algebra

D = projlim{R[X]/(mi,/)}

is strongly separable, has no proper idempotents, and is isomorphic to R[A"]/(/).

On the other hand, if D is a strongly separable R-algebra with no proper idem-

potents, then £ = D/mD is a finite dimensional, separable field extension of

R/m. Proceeding as above we associate a D' with £. In order to prove the theorem,

it is sufficient to prove the following.

Lemma 4.7. Let f(X) and g(X) be separable polynomials over R which

are irreducible modulo m. Suppose that R[Z]/(tn,/) is isomorphic to R[X~\l(m,g)

as Rlm-algebras. Then R[X~\j(f) S R[X]j(g) as R-algebras.

Proof. Let D = R[X~\¡(f). The hypothesis implies D is a strongly separable

R-algebra without proper idempotents. View / and g as polynomials over the

complete local ring D. Because D/mD Sí R[X]¡(m,g), we see that/and g have

a common root in D/mD. We may apply Corollary 1 [13, p. 279] to conclude

that there exist elements oty,o(2eD such that/(aj) = g(cc2) = 0 and a, — a2e ntD.

We have D = R[aj]. Since g is a separable polynomial, R[a2] is a strongly

separable subalgebra of D. By (1.5) D is strongly separable over R[a2]- Thus

R[a2] is an R-direct summand of D. However R[a2] and D have the same rank

over R and so D = JR[a2]. Clearly R[a2]i^ R[X~]l(g) so the proof is com-

plete.

Notice that we obtain an alternate proof of (4.5) since any finite local ring

is complete.

Remark. GR(p " /*) defined above can be characterized abstractly as the only

rings without proper idempotents that are of prime power characteristic and are

separable over the subring generated by the identity element. More generally

the only rings that are finitely generated and separable over the subring generated

by the identity are those of the form A © B where A is the direct sum of a finite

number of copies of the integers, and B is a direct sum of rings GR(p", r) for

various choices of p,n,r. The proof of this statement requires the fact that the

only strongly separable Z-algebras are direct sums of copies of Z. The equivalent

statement to be found in [12, p. 215], is there are no unramified extensions of

the rational field. Regarding the equivalence of these notions see [6, p. 21, Re-

mark (d)].

5. An application.    In this section we apply the preceding theory to show
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the existence of a separable splitting ring for group algebras of finite groups.

We shall use the following terminology.

Definition 6. Let G be a finite group and P a commutative ring such that

the group algebra RG is separable over P. We call P a splitting ring for G in

case RG is the direct sum of central separable P-algebras each equivalent to P

in the Brauer group of P.

If P is a field with RG a separable group algebra then it is always possible

to find a strongly separable (field) extension of P which is a splitting ring for G.

In fact a well-known theorem of R. Brauer states that such a splitting ring can

be obtained from P by adjoining a primitive nth root of unity where n is the ex-

ponent of G. When P is not a field, it is not known if a strongly separable ex-

tension of P can be found to split a given group. We can prove the following

special case however.

Theorem 5.1. Let G be a finite group of exponent « and R a Noetherian

regular elomain such that RG is a separable R-algebra. Then the splitting ring

of X" — 1 is a regular domain which is strongly separable over R and is a

splitting ring for G.

We recall first that a regular domain is an integral domain of finite global

dimension. For properties of regular domains see [10] and [2] along with the

references given there.

Proof. Since RG is separable over R, we know « • 1 is invertible in P [9,

Theorem 12]. Hence by (2.4) X" — 1 is a separable polynomial. By (2.2), part

(2), and (2.6) we know X" — 1 has a splitting ring, S, which is a Galois ex-

tension of P (and hence is strongly separable over P) and has no proper idem-

potents. By (4.2) S is a domain and S must be a regular domain since it is separ-

able over a regular domain. Let K denote the quotient field of S. The Brauer

theorem mentioned above implies K is a splitting ring for G. That is KG is the

direct sum of central separable /¿-algebras each equivalent to K in the Brauer

group, B(K), of K. Theorem 7.2 of [2] states that the map from B(S) to B(K)

induced by the inclusion of S into K is a monomorphism. Thus SG is the direct

sum of central separable S-algebras each equivalent to S in B(S). That is S is

a splitting ring for G.

Remarks. (1) If G is an abelian group and P any commutative ring with no

proper idempotents such that RG is a separable P-algebra then the remark (2)

at the end of §1 shows the existence of a strongly separable P-algebra that is a

splitting ring for G. Again one can show that the splitting ring of X" — 1 will be a

splitting ring for G, n = exponent of G.

(2) If P is any commutative ring such that P is a splitting ring for G, an

application of the Morita theorems [3] shows that the category of left PG-mo-

dules is isomorphic to the category
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RM x RM x ••• x RM

(the category of left P-modules crossed with itself m times where m = number

of conjugate classes in G). The P G-modules are all of the form

(P1®X,)©-©(Pmc3)Xm)

where the X, are suitable P-modules and the P, are fixed projective, finitely gen-

erated, PG-modules viewed also as right P-modules. The projective PG-modules

P, are determined uniquely up to change by an element in the class group of P.

That is the only other choice for some P, is a module of the form P, ® Y where

T is a rank one projective P-module.
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