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1. Introduction. In a recent paper [1], Brown and Gluck have considered the

question of which homeomorphisms h e H(X) of a space X onto itself have the

property (a) that for given subsets A, B cz X, there is an feH(X) which agrees

with the identity on A and with h on B. They have confined themselves to the

case where X is locally euclidean. In this case, a natural choice for A is the comp-

lement of a euclidean neighborhood, and for B the closure of a euclidean

neighborhood. They are able to show that the set of n which satisfy (a) is just

the group P(X) generated by the elements of H(X) which agree with the identity

on some open set, provided X has what they call a stable structure. In case X is a

combinatorial manifold, the existence of a stable structure is equivalent to

orientability. Their methods rely heavily on recent results concerning locally flat

embeddings of spheres and the generalized Schoenflies theorem.

In the present paper, we extend some of their results to a more general class of

topological spaces which includes locally normed linear spaces. The definition of

stable structure readily extends to the latter class of spaces, and we are able to

show that the existence of a stable structure is equivalent to the condition that

some n other than the identity should satisfy (a). However, we are unable to

identify P(X) as the set of h satisfying (a) in the infinite dimensional case except

when AT is something like a sphere in a normed linear space.

2. Bridging homeomorphisms. Let X be a topological space, and H(X) the

group of all homeomorphisms h of X onto itself. The restriction of n to a subset A

of X will be denoted by n ( A, and g | A = h | A will be shortened to g = h | A. The

identity of H(X) is e. We define P(X) to be the set of elements g e H(X) satisfying

the following condition:

(i) For each xeX, there is a finite subset A(g, x) c X such that, for every

yeX — A(g, x), we can find neighborhoods U of x and V of y and an fe H(X)

satisfying f=e\U and / = g | F.

Figuratively speaking, /isa bridge between e and g. It may happen that A(g, x)

is empty, but if g(x) i= x, then clearly x,g~1(x)e A(g,x).

Lemma 1.   P(X) is a normal subgroup of H(X).
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Proof. Evidently eeP(X). Let glt g2eP(X), xeX be given, and choose

yeX — A, where

A = A(g1,x):Vgï1g2(A(g2,x)).

Then we can find neighborhoods UL of x, Vi of y, and fieH(X) satisfying

f{= e\U1 and/1=g1| Vv In addition, ye X- A implies g2igi(y)eX - A(g2,x),

and there are neighborhoods U2 of x, V2 of g2 ' gi(y) and f2 e H(X) with the

property that f2 = e\U2 and f2 = g2\ V2. If we set U = U x n L/2 and V = Vt

r>gVg2(V2), then /, = e| 1/ and /iVt =/2"1 = e| ^ Since /a""1-fc*| ia(^z)

and g2(V2) =>gi(F), we have /t = gi \ V and f2 1fi =f2 lgx =g21gi\V. Thus,

/2V1 is a bridge between e and g2-1gi> where A = A(g21g1,x) is finite, and

g21gleP(X), so that PLY) is a subgroup of H(X). Now let geP(X), heH(X),

xeX be given, and set A' = /i_1(A(g,h(x))). Since y el — A' implies h(y)eX

- A(g,h(x)), we can find neighborhoods U3 of h(x), V3 of h(y) and an/eHLY)

satisfying /=e| U3 and/=g|F3. Setting U~h~1(U3) and F=/î_1(F3), we

have h " "/ft = e 11/ and /i ~ *//! = /z ~ xg^ | F. Consequently, h ~ lfh bridges e and

h~igh, where A' = A(h~l gh, x) is finite, and h ~lgh e P(X), so that P(X) is normal

in H(X).

For each A c X, we set SL4) = {/z e //(AT) : h = « | JT - A}. We denote by Jf(AT)

the set of nonempty, connected, open subsets U of X with the property that, for

every x,yeU, we can find fe S(U) such that f(x) = y. Evidently h eH(X) and

UeJf(X)  implies  h(U)eJf(X),  for  S(h(U)) = hS(U)h~¿.  If we  let

/?(X)= U{tfeJT(X)},

thenX(A') is open, and h(K(X)) = K(X). From this and the proof of Lemma 1,

it is clear that if we amend the definition of P(X) by requiring in (i) that x and y

belong only to K(X), then the lemma remains valid. We will assume the amend-

ment to be in effect from now on.

Theorem 1. Suppose X is a Hausdorff space, each open subset contains a

member of .^(X), and K(X) can not be separated by any two points. ThenP(X)

coincides with the set of all he H(X) of the form h =f\f2, where fe S(X — U¡)

for some open U¡ ̂  0 (i = 1,2).

Proof. Let geP(X) be given, and choose x, yeK(X), neighborhoods Ul of

x and U2 of y, and fieH(X) so as to satisfy (i). Then f1eS(X— I/,),

/2 =fï1geS(X — U2), and g =fj2. The theorem will be proved if we can show

that S(X — ii) c P(X) for every open U # 0, for Lemma 1 implies that the

product of two such elements must lie in P(X). LetfeS(X — U), xeK(X), and

y e K(X) — A be given, where A = {x,/(x)}. We know that K(X) is connected

and dense in X, so that there is a chain U1, •••, U„ of elements of Jf(X) connecting

x and some ueU n K(X) which lies entirely in K(X) — {y,/(y)}. Since X is a

Hausdorff space, we can even assume that
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A=OlU-VÜ„czK(X)-{y,f(y)}.

By a standard construction, we can find h¡eS(U¡), 1 g/^ n, such that

h(x) = n„---n2n,(x) = w. If we set V=h~l(U) and

W= (K(X) - A) nf « (K(X) - A),

then V, W are neighborhoods of x, y, respectively. Now / = e I n( F), whence

k~lfh = e\ V, and h = e\ WUf(W), whence h~lfh =f\ W. Thus h~lfh bridges e

and/, where A = A(/,x) is finite, and/eP(X).

The assumption that K(X) should not be separated by a pair of points can not

be omitted entirely, for if X is the line £', then P(X) = {e}, while the group £

generated by S(X — U), as Í7 runs through the open sets, is the group of order-

preserving homeomorphisms. On the other hand, if X is the circle Sl, then the

two groups coincide. For £ contains all conjugates of S(X — U) and is thus a

normal subgroup of //(S1), whereas P(X) contains the rotations and is thus

different from {e}, while H(S1) has only one normal subgroup [2]. But here our

separation hypothesis is not satisfied.

We define R(X) to be the set of ge H(X) with the following property:

(ii) For every x e K(X) and every connected, open subset 1/ of K(X) containing

x and g(x), there is a neighborhood F of x and an feS(U) satisfying f=g\V.

Lemma 2. Suppose X satisfies the same conditions as in Theorem 1. Then

R(X) is a normal subgroup of H(X).

Proof. Clearly e e R(X). Let gl, g2 e R(X),x e K(X), and U c K(X) be given,

where U is a connected neighborhood of {x,y}, and y = g2~lgi(x). As in the

proof of Theorem 1, we can find an n0 e H(X) such that n0(g,(x)) e U and n0 = e\ V0

for some neighborhood F0 of {x, y}. Then W = h$ 1(U) is a connected neighborhood

of {x.g^x)} and also of {y,g2(y)}> so that there are neighborhoods F, of x, F2

of y, and elements fl,f2eH(X) satisfying

/, = e\X-W, fl=gl\V1, f2 = e\X-W, f2 = g2\ V2.

Thus f2 V, = e | X - W, f2 ' = g2 ' | g2(V2), and

/î7i -/ï'f! = fí1*! I n r^g^g^V,).

If we set

F= Vt ng^ig^vjnVong-^g^Vo),

then Fis a neighborhood of x, h0f2 ifi nö ' = e | X — U, and n0 f2 lf1h^) ' = g2 Vi | F

so that «o/2_1/iWo-1 is a bridge between e and g2~Vi- Thus g2~ lgt e R(X), and

i?(Z) is a group. To show that R(X) is normal in H(X), let geR(X), heH(X),

x e ZC(X), and U" c: K(X) be given, where Í7 is a connected neighborhood of

{x,h~1gh(x)}. Then h(U) is a connected neighborhood of {h(x),g(h(x))}, and we
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can find a neighborhood F of h(x) and anfeH(X) satisfying/= e\ X — h(U) and

f=g\V. Thus h~1fh = e\X- U, h'^h = h~igh\h~l(V), and h~l(V) is a

neighborhood of x, whence h ~ lfhis a bridge between e and h ~ 1gh. Consequently,

h~lgheR(X), and R(X) is normal in H(X).

Although the connectedness of U was not used in the proof, some such assump-

tion is needed to ensure that R(X) # {e}, as we shall see later. When AT is El or

Sl, the hypotheses of the lemma are not fulfilled, but it is easily seen that R(X)

is the normal subgroup of orientation-preserving homeomorphisms in either case.

We now define ¿?(X) to be the set of UeX'(X) with the following property:

(iii) For every pair of open sets V, If such that 0 ^ Vcz U and ¿7 c W, there

is an heS(W) satisfying h(V) zd 0.

We observe that geH(X) implies ghg'1 eS(g(W)) and ghg~\g(V)) =>g(t7),

and by reversing the steps, we infer that g(U)eJ¡C(X). Moreover, if K(X) is

connected and S£(X) + 0, then K(X) = \J{Ue¿C(X)}, for we have already

seen that H(X) acts transitively on K(X) in this case.

Theorem 2. Suppose X is a topological space in which every open set is

infinite, geP(X), and U, VeSe(X) such that Dn(PUg(P)) = 0. Then there

is an feH(X) with the properties f=e\ Üand f=g\ V.

Proof. Since V is infinite, we can choose xe U,y e V— A(g,x), and find

neighborhoods U1 c U of x, Vx <= V of y, and fx e H(X) satisfying fx = e\Ul

and/i =g| Fj. From the definition of 3?(X), there is an h^eU(X) with the

properties hl = e\ Fug(F) and /i1(L71) => Ü. Then/2= hiflh1~i= e\hi(U{) and

/2=/i|fi, whence/, = e\ Ü and f2 = g\Vl. Now D n ( V u g( ?)) = 0 implies

(g~if2(U)'<jD)nV=0, and we can find h2eH(X) satisfying h2 = e\U

Ug_1 f2(D) and h2(Vx)=>V. Hence, f3 = h2g~lf2h2l = e\h2(V{) and f3

= g-%\U, so that f3 = e\V and f3 = g~l \U. Finally, /=g/3 = e|i/ and

f=g\?.

Theorem 3. Let X be a topological space, geR(X), U <= K(X) a connected

open set, and Ve^(X) such that Vug(V)<=U. Then there is an feS(U)

satisfying f= g\V.

Proof. If xeF is chosen, then we can find /,eS([/) and a neighborhood

F! c F of x with the property/! =g|F!. Since V C\(X - (U ^J g~l(U))) = 0,

there is an hx eS(U Ug_1 (U)) satisfying h^VJ ■=> ?. Then/2 =/i1g"I/1ft71

= g~x\X - U, and/2 = elh^V,), whence/, = e\V. Finally,/= gf2 = e\X - U

and/=g|F.

3. Bridging over connected sets. We saw in Theorem 1 that, under fairly weak

conditions on X, P(X) ^ {e}. But, so far, we have not considered the question of

whenR(X) ï {e}. Let J((X) be the set of U e &(X) with the following property:

(iv) For every open subset F of U and every x e V, there is a neighborhood W
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of x and an h e H(X) such that h(V) => Uaná h = e \ W. The proof that g e H(X)

implies g(U)eJÏ(X) and that K(X) connected and Jl(X) ^ 0 implies K(X)

= *J{U e Ji(X)} follows that of the corresponding statements for ¿F(X).

We now define R(X) to be the set of g e H(X) with the following property :

(v) For every xeK(X), there isa t/e Jt(X) containing x and g(x), a neighbor-

hood V of x, and an fe S(U) satisfying /= g| K

Comparison of (ii) and (v) shows that R(X) =>R(X). The proof that geR(X)

and heH(X) implies ghg~1eR(X) follows that of the corresponding statement

for R(X). It is also clear that g~ i 6 R(X), so that R(X) is almost a normal subgroup

of H(X). We set T(X) = {geS(U): Ue Jt(X)} and observe that if K(X) is

connected, then T(X) c R(X). For if ge S(U0) and U0 e J((X), then U0 e & (X)

and setting U = V= U0 in (iii), we obtain heH(X) satisfying h(U0) z> Ü0 and

h(U0)eJi(X). Now if xe t?0 C\K(X), then (v) will hold with U=V=h(UQ)

and/=g. If xeK(X)— 00, then (v) holds with /= e and any choices for U,

Ve Jt(X) which contain x.

Theorem 4. Suppose X is a Hausdorff space, each open subset contains a

member of X(X), K(X) is connected, and Ji(X) # 0. Then the following con-

ditions are equivalent:

(a) R(X) * {e},

(b) R(X) = R(X),

(c) gl,g2eR(X) implies glg2eR(X),

(d) gug2eT(X) implies g1g2eR(X),

(e) T(X)^R(X).

Proof, (a) implies (b). Choose g0eR(X) and x0eX so that g0(xo) ^ xo-

Then we can find a neighborhood U0 of x0 satisfying g0(U0) n U0 = 0. Let

g e R(X), x e K(X), and U c K(X) be given, where U is a connected nieghborhood

of x and g(x). From (v) we obtain U, g ^#(X) containing x and g(x), a neigh-

borhood F, of x, and an/, e S(l/,) such that/, = g\ F,. Since K(Z) n U0 ̂  0,

and ZZ(Z) acts transitively on K(X), we can find h0 e H(X) satisfying h^U^ n U0

# 0. From ft0((7,)e JS?(X) we infer that there is an h1eH(X) such that

/t1(n0(Lf,) n L/0) 3n0(t7i). Setting n = ñr'/ío, we have h(Ut) e &(X), n(£7,)c U0,

and/2 = n/,ñ_1 eS(U0). Now g, =(f2göifi 1)goeR(X) from Lemma 2, and we

verify directly that g, =/2| i/0. Moreover, h(U) is a connected neighborhood of

n(x) and n(g(x)) =/j(/,(x)) =/2(n(x)) = g,(n(x)), and (ii) tells us that there is

an f3 e S(h(U)) and a neighborhood F2 of h(x) with the property f3 = g, | F2.

Finally, if we set/= n_1/3« and V=V¡nh ~L(V2), then/eS(t/) and

/= h~lf3h = h-'g.h = h~lf2h =/, = g\ V.

Thus geR(X),R(X)cR(X), and Z?(Z) = R(X).

(b) implies (c). This follows from Lemma 2.
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(c) implies (d). This follows from T(X) c R(X).

(a) implies (e). Let geT(X),xleK(X), and U\ <= K(X) be given, where Ux

is a connected neighborhood of xl and g(xj). Evidently *M(X) is a base for K(X)

in its relative topology, for K(X) = [J{U e J£(X)}, and the conclusion of (iv)

can be rewritten as h~\Ü)c F, where h~1(U)e*£(X), and xe/i-1(C/). Since

X(X) is connected, and points are closed, each member of Jt(X) has at least two

points. Choose Vi e Ji(X) so that xx e VL c LV Then we can find a chain of

elements from J£(X) joining x, with g(xt) which lie inside U1. Hence, there is an

hteH(X) such that hl(xi) = xl and g(x1)eh1(V1) a [/,. Since h^VJe Jt(X),

we can lind g,eS(/i(F,)) satisfying gi(xx) = g(x,). In addition, g^'e^A"),

and by hypothesis, gï1geR(X). Now g,~lg(x¡) = x¡, and from (v) we have

V2eJi(X) containing xy, fieS(V2), and a neighborhood FFX of xt with the

property/! = g7'g| W¡. From (iv) we know that there is an h2eH(X) satisfying

h2(U¡ n F2) =) V2 and /i2 = e| FF2, where W2 is some neighborhood of Xj. Then

h 2 '/, h 2 e S(h 2 ' ( F2)) c S( U, ) and

/2 = fcj1/,^ - ft1*| Wi n ^2 n/T'dF,).

If we set W= W, n IF2 n/r'(IF2), then x, e W, gj2 = g\ W, and gJ2eS(U,)

Thus ge/?(A:) and T(X) cr /?(A").

(e) implies (a). We have already seen that the members U of Ji(X) have more

than one point, so that S(U) ± {e} and T(A") ̂  {e}.

We define Q(X) to be the group generated by the elements of T(X) and note

that Q(X) is a normal subgroup of H(X). For if h e H(X) and U e Jt(X), then

hS(U)h-x = S(h(U))cT(X). Also, Q(X) <= P(X) provided X is Hausdorff, for

if g e S(U) and (7 e Jt(X), then we can find h e H(X) so that X — h(U) contains

an open set, whence hgh _1eS(/i(L7)) c P(X), and g£P(A").

Corollary 1. With the same hypotheses as in Theorem 4, suppose, for every

open set V¿ 0 in X, there is a V eJ£(X) such that U U F= X. Then P(X)
= Q(X) = R(X).

Proof. Let geP(X) be given, where g = e|Ffor some open set V^0.

Then we can find UeJi(X) satisfying C/UF=Z, and observe that geS(U)

c Q(X), so that P(A") c Q(X) and P(A") = Q(X). If g' s ^(Z) is given, then we

can choose a connected neighborhood W of some x and g'(x) so that X — W

contains an open set. lif'eS(W) agrees with g' on a neighborhood of x, then

g' =f'(f'-1g')eP(X), whence Ä(I)cP(I). Finally, if we can show that

Q(X) c ^(X), then condition (d) of Theorem 4 will be verified, and Q(X) = R(X).

Let g" e Ö(X) and x e K(X) be given, and U0, F0 e Jt(X) be so chosen that

U0 U F0 = A". Now £70 5¿ A", for otherwise we could let U =U0 and F be a

proper subset of X in (iv) and obtain a contradiction. As in the proof of Theorem 4,

we can construct h e H(X) so as to map X — 00 over x and g"(x). Choose

WüeJÍ(X) with the properties xeWo and   W0 Ug"(W0) <= X - h(Ü0)   Since
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g"eP(X) and h(U0)eJt(X), Theorem 2 implies the existence of an f"eH(X)

satisfying /" = e\h(00) and /" = g"| W0. Moreover, /;([/„) Un(F0) = X implies

f"eS(h(V0)), whence g"e R(X) and Q(X) c R(X).

Corollary 2. With the same hypotheses as in Theorem 4, suppose there is a

subset Ji'(X) of Ji(X) which forms a base for K(X) in its relative topology

and satisfies the conditions (1) that U, Ve Jl'(X) implies D U V lies in some

member of Jl'(X), (2) UeJ('(X), VeJi(X), and VcU implies VeJi'(X).

Then R(X) Ï {e}.

Proof. Let T'(X) = {feS(U): Ue Ji'(X)}, and consider the following

variants from Theorem 4:

(d')   g„ g2 e T(X) implies gtg2 e R(X),

(e')   T'(X) c R(X).

Clearly (a) => (b) => (c) =>■ (d'), and (e')=> (a). We will complete the cycle by

showing that (a")=>(e'). The proof that (d)=>(e) needs only to be modified by

replacing Jt(X) with Ji'(X) and T(X) with T'(X), except that n,(F,) g .#'(*)

needs to be verified directly. Now /^(K,) lies in the union of a finite collection of

members of J('(X), and conditions (1) and (2) imply that n,(F,) g JÍ'{X). Hence,

(d')=>(e')=> ••• => (e), and (e) implies Q(X) a R(X). To complete the proof, we

will verify (d') directly. Let g¡eS(U¡), 1/¡g^'(^) (i«1.2), and xeK(X) be

given. We have already seen that if xeK(X) — (Ol U 02), then (v) holds with

/= e. If xe t?, U D2, then we choose \}3eJi'(X) so that ¿7, U D2 c U3 and

notice that (v) is satisfied with/= gxg2 and U = F= U3. Therefore, gtg2eR(X).

Corollary 3. With the same hypotheses as in Theorem 4, R(X) # {e} if,

and only if, there is a subfamily Ji*(X) of Ji(X) which is a base for K(X) and

has the property that if U, V» ■■■, U„ e Ji*(X), x e U,f, e S(Ud,fifi-1 -/iW e U¡
(1^1^ n), and/,/„_! •••/,(x)e U, then there is a neighborhood V of x and an

feS(U) such that f=fn-f2fx\V.

Proof. If R(X) # {e}, then we can evidently set Jt*(X) = Ji(X). Suppose,

conversely, that Jt*(X) is given, and choose U eJi*(X) and geS(U). To show

that geR(X), let xe U and W<=. K(X) a connected neighborhood of x and g(x)

be given. Since Jf*(X) is a base for K(X), we can find a chain U1, ■•-, U„ e Ji*(X)

satisfying xe Uu g(x)e U„, and U{^¡: 1 = » = "} c W. Choose x¡e U¡ n t/1 + 1

and f¡eS(U¡) so that /(x,-,) = xt (1 g ¡ ^ n - 1), where we set x0 = x. Now

gfVnx -f;-\(xn-i) = gw e t/„

and from the definition of M*(X), we can find/, e S(C/n) and a neighborhood F of

x„_! such that /„ = g/r1/^1-/;-i | F- Then g =/„-/,/, | V, where F'

=/i 72 l---fñ-x(V) is a neighborhood of x, while f„---f2f\eS(W). Hence,

geR(X).
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4. Normed linear neighborhoods. An open subset U of a topological space X

will be called a normed linear neighborhood if U, in its relative topology, is

homeomorphic to an open ball of positive radius in a normed linear space JV over

the real numbers. We will call X a regional normed linear space if every open

subset contains a normed linear neighborhood. The choice of JV may vary for

different neighborhoods. Finally, we denote by ^(X) the family of all open

subsets of A" with the following property:

(vi) There is a neighborhood F of 0 and a homeomorphism 0 which maps F

onto an open subset of a normed linear space JV in such a a way that 0(D) is a

closed ball of positive radius in JV.

This evidently implies that 0(L/) is the interior of 0( 0). We note that in a regular,

regional normed linear space, ^F(A') is not empty. For if IF is a normed linear

neighborhood and 0(W) <= JV, then we can find an open F satisfying Fe W, and

an open ball B c N such that E cz 0(F), whence U = 0~*(B) and F fulfill the

conditions of (vi). If h e H(X) and U e~r(X), then clearly h(U)ejV(X).

Lemma 3. Suppose A,B, and C are concentric, open balls in a normed linear

space N, where Ä c B and B c C, and let W^ JV be a neighborhood of C. Then

there is an feS(W) such that /= e\A and f(B) =>C.

Proof. We will assume, for convenience, that the common center of the balls

is the origin of JV, and their radii are 0 < a. < ß < y. For each x e JV, let p(x) be

the distance from x to JV — W, and 7t(x) = x/| x || for x # 0. If u is a unit vector

and X = 0 a scalar, then we will define/(Au) = <f>(X)u, where <f>(X) is a scalar, and <j>

is a piecewise linear function joining the points (0,0), (a, a), (ß',y), and (p(yu),

p(yu)), in which /?' is chosen so that a < ß' < ß. Specifically, we define

x for I x || — a,

*(x) {« + ^=^(|*||-«)} fbr>;g|x|á¿'.

X "   n(x) {y + Piyn^y-ß' ("x« -n}forß'* H * * + ****»•

. x for I x I = y + p(yn(x)).

The definitions clearly agree for || x | = a, ß', and y + p(yn(x)), if we recall that

x = || x ¡7t(x). The continuity of p on JV and of n on JV — A implies that / is

continuous on each of four closed subsets of JV, whence/is continuous on all of JV.

The expressions for/-1 are easily found to be of the same sort as those for/,

and we conclude that feH(N). Setting D = {xeJV: ||x| = ß'} and

V= {x 6 JV: || x I < y + p(yn(x))},

we have f(D) = C, and D <= B implies f(B) aC. Moreover, xeJV — W implies

p(yn(x)) = || x || — y, whence xeN—V and Kc W. Since feS(V), we have

feS(W). By construction, f=e\A.
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Theorem 5. IfX is a normal, regional normed linear space, then 0 ^ ^V(X)

<z:Ji(X).

Proof. We have already seen that J^(X) ^ 0. Let U eJf(X) be given, and

suppose N, V, and 0 are as in (vi), but with 0(U) = C. Since C is connected, so is U.

It was shown in [3, Lemma 4] that S(C) acts transitively on C, so the same is

true of S(U) and U, whence U eX(X). We will verify (iii) and (iv) together in the

following form:

(vii) For every pair of open subsets W¡,W2 of X and every xe U such that

xeWx c U and 0 c W2, there is an h e S(W2) and a neighborhood W3 of x with

the properties h = e\ W3 and h(Wt) => D.

Choose g e S(C) so as to map 0(x) onto the center of C, and let A and B be

open balls concentric with C satisfying Ä <= B c gO(W¡) and B cz C. Let D be a

neighborhood of C such that D cz 0(F), and choose a neighborhood F, of D so

that F, c Fn W2 nO~\D). Evidently (0(F,))~ c 0(F), whence 0(F,) = (0(F,))~.

By Lemma 3, we can find/eS(0(F,)) with the properties/ = e\A and f(B) =>C.

If wedefinen = 0_1g"7g0| F, and h = e\X-Vu then clearly heH(X) and,

indeed, /igS(H/2). In addition, /; = e\d~ig~x(A), where 8~lg~l(A) is a neighbor-

hood of x, and

n(IF,) = 0-1g-1/g0(IF,) =»0-^-7(5) =>0-'g-'(C")= ft

Therefore, (vii) is verified, U e Jl(X), and  Jf(X) a Jt(X).

Following an earlier result, we observe that if K(X) is connected and -^"(X) ^ 0,

then K(X) = \J{UeJr(X)}. Theorem 5 tells us that if we assume X to be a

normal, regional normed linear space with K(X) connected, then Theorems 2-4

apply to X, and Theorem 1 applies with the additional assumption that the

dimension of N is at least 2.

We will adopt the terminology of Brown and Gluck [1] and say that a regional

normed linear space X has a stable structure if K(X) — {J{UX: aeA}, where A

may be an infinite set, and Ua is a normed linear neighborhood which is mapped

by 0a homeomorphically onto the open unit ball B with center at the origin of a

normed linear space N which is the same for all a. The 0a are further assumed to

satisfy the following condition:

(viii) If Ux n Uß # 0 and x lies in the domain of 0x0p~ ', then there is a neighbor-

hood F of x and an feS(B) such that /= da6f~l\ V.

Theorem 6. Let X be a normal, regional normed linear space with K(X)

connected. Then X has a stable structure if, and only if, R(X) # {e}.

Proof. Suppose that R(X) # {e}. Choose UeJr(X), and let 0 be the cor-

responding homeomorphism into N, where 0(17) is the unit ball B with center at 0.

We will show that {h(U): h e Q(X)} satisfies (viii), where 0/i _I maps h(U) onto B,
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and the domain of 0/j-1 is restricted to h(U). Suppose h^U) r\h2(U) =£   0 and

lies in the domain of 0/i1_1/i20_1. Since

h:%eQ(X) c R(X), 0_1(x), h\-ïh2(9-\x))eUt

and 17 is connected, we can find geS(fJ) and a neighborhood Wc U of 0_1(x)

with the property g = hylh2\ W. If we set /= 0g0_1 \B and /= e\N - B, then

feS(B) follows from the fact that 0 is defined on Ü. Evidently (viii) is satisfied

with V= 0(W). Since Q(X) acts transitively on K(X), we have K(X) = \J{h(U)

: h e Q(X)}, and A" has a stable structure.

Conversely, suppose that X has a stable structure, where K(X) = \<j{Ux:cceA}

and 0X(UX) = B. We define ¿V*(X) to be the set of neighborhoods U <= Ux, for

some a, with the properties Ü <= Ux, 0X(U) is a ball, and (0a(L7))~ <= B. Clearly

~T*(X) c ^(A") c ^(X), and JV*(X) is a base for K(X). We will show that the

hypotheses of Corollary 3 of Theorem 4 are satisfied with J¡Í*(X) = Ar*(X).

Let U, L/1,---,C/„eJ/'*(A'),/i£S(Lfi), and xeU be given, where f-f2fi(x)e U,

and f„---f2fi(x)e U. If we set x¡ =fi---f2fi(x) (i = i = n), then our hypothesis

implies x,e U¡ n l/¡+1 (0 ^ i = n), where we set x0 = x, t/0 = U, and the sub-

scripts are reduced modulo n + 1, so that L/„+1 = U0. Now £7i c {7a/ for some

u¡eA, and we will abbreviate 0.,. to 0¡. From (viii) we know that there is a neighbor-

hood Ffof (0i+i0f'(öiX*;)) and a g^Siß) satisfying g( = Wr'jK,. Let0i(l/i) =
B„ and choose /i e W(JV) so that h(B) <= B0. If we extend 0^"l to be e in JV - B,-,

then hOJßrlh-\ hg¡h~l eS(B0). We now define

f=o^h-1{(hgnh-i)(hd„fne;ih-1)-(hg2h-1)(ho2f2e2-1h-1)

■ (hg.h-1) (hej&'h-1) (hgoh-^Kd

in D0 and extend/to be e in X — 170, so that/eS(L7). Moreover, we can rewrite

the equation as

/ = Öö1(0o0;,)0„/„0„_1 ■■<o3oix)o2f2o2i(o2o-li)oiflo-l\oio-0>)Q0

= fn-f2fi\W,

where

w = 0ö'(Fo) n/7'07"(7,) n/f '/2-*02-'(F2) n - n/f l/f» •••/; '0;'(f„)

is a neighborhood of x. Hence, /?(A") # {e}.

Corollary. Let X be a normed linear space N with an additional point p at

infinity, where the neighborhoods of p are complements of closed, bounded sets

in JV. Then X has a stable structure.

Proof. Since an inversion h in the boundary of an open ball B <= JV with

respect to its center is clearly a homeomorphism of A", and since B e J((X), we
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have p g h(B) e Jl(X), and K(X) = X. Also, X is clearly normal. If we can show

that the hypotheses of Corollary 1 of Theorem 4 are satisfied, then R(X) =£ {e}

and Theorem 6 gives the desired result. Now if F<= X is open, we can choose for U

either an open ball in N or the image of such a ball under an inversion, depending

on whether peV or peX-V. We also note that P(X) = Q(X) = R(X).

The assumption that K(X) be connected can not be dropped in Theorem 6.

As a counterexample, let X = Y U Z, where Y is a 2-sphere, Z is real projective

2-space, and YnZ = 0. Brown and Gluck [1] have shown that the existence of a

stable structure for a combinatorial manifold is equivalent to its orientability, so

that X has no stable structure. However, R(X) = R(Y) = Q(Y) = P(Y) =¿ {e}.

Finally, we consider the question of whether, in general, R(X) = Q(X) or

R(X) = P(X), assuming R(X) ^ {e}. If X is a closed ball in euclidean n-space,

then we know from [3] that Q(X) consists of all h e H(X) such that h = e on a

neighborhood of the boundary of X. But any rotation about the center of X

evidently belongs to R(X), hence to R(X), so that R(X) # Q(X). Brown and

Gluck [1] have shown, in effect, that if X is a locally euclidean manifold with

stable structure, then R(X) = P(X), whence, by Theorem 4, R(X) = P(X). When

X is infinite dimensional, the only case in which we have determined R(X) is that

of the preceding corollary.
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