SOME THEOREMS
ON DIOPHANTINE APPROXIMATION()

BY
CHARLES F. 0SGOOD

Introduction. The study of the values at rational points of transcendental
functions defined by linear differential equations with coefficients in Q[z] (2) can
be traced back to Hurwitz [1] who showed that if

(z)_vl.'_.l..__z__l.__.l_é.i..
Y= T " TT T hb+a) 2

where a is a positive integer, b is an integer, and b/a is not a negative integer, then
for all nonzero z in Q(( — 1)'/?) the number y’(z)/y(z) is not in Q((— 1)'/?).
Ratner [2] proved further results. Then Hurwitz [3] generalized his previous
results to show that if ’
f@ z  fO-fQ) 2
YO=THe0 T 70 20) 2
where f(z) and g(z) are in Q[z], neither f(z) nor g(z) has a nonnegative integral
zero, and degree (f(z)) < degree (g(z)) =r, then for all nonzero z in the
imaginary quadratic field Q(( — n)!/?) two of the numbers y(z), y"(z), -+, y*(z)
have a ratio which is not in Q(( — n)'/?). Perron [4], Popken [5], C. L. Siegel [6],
and K. Mahler [7] have obtained important results in this area.

In this paper we shall use a generalization of the method which was developed
by Mahler [7] to study the approximation of the logarithms of algebraic numbers
by rational and algebraic numbers.

DEFINITION. Let K denote the field Q(( — n)'/?) for some nonnegative integer n.

DerINITION. For any monic 6(z) in K[z] of degree k > 0 and such that 6(z) has
no positive integral zeros we define the entire function
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Presented to the Society, November 23, 1963 under the title A theorem on diophantine
approximation; received by the editors November 6, 1964.

(1) This paper formed part of the author’s doctoral thesis written under the direction of
Professor R. S. Lehman at the University of California, Berkeley.

(2) We denote the rational numbers by O and the integers by Z.
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(Note that f(z) satisfies a linear differential equation of order k with coefficients
in 0[z])

Let wg, -, ,~; be t distinct nonconjugate nonzero elements of K. We assume
that the w; for 0<j<t, —1 are in K but not in Q and that the w; for
t,<jSty+t,—1=t—1 are in Q. Set J={a+b.(—n)"'*;a,beZ}, and
define t3; =2t, +¢,.

THEOREM 1. If 6(z) has only rational roots, then for every & > 0 there exists
c(¢) > 0 such that for all positive integers q

max D'f(w,-)—-P—";— > c(g)g~ Uttt

where the maximum is taken over 0<r<k—1,0<j<t—1, and the p,; are
in J.

THEOREM I1. If 6(z) has only rational roots, then for every ¢ > 0 there exists
¢(e) > 0 such that
k-1 ¢t—1
T X ADf@)+A |z @H
r=0 j=0
for all nonzero (A, Ago,*++, Ay—1,-1) in J*** with |A| S H and |A,;| < H for
0<r<k-1,0=5j=st—-1.

Let 0,(z) be a polynomial of degree ¢t > 0 with integral coefficients and distinct
roots. We assume also that ,(0) # 0. The operator E is defined on the elements
of a sequence S; by ES; = S;,;. Let M be a nonsingular k¢t by k¢t matrix with
entries in Q. For 0 £ i < kt — 1 define S} by (,(E))*- S;=0and S,---,S}_,) is
the ith row of M. Finally define y; for 0<i < kt—1 by

Si
o '
el;[l 0(e)

W =
d

1 MM8

THeoreM II1. If 6(z) has only rational roots, then:
(i) for every ¢ >0 there exists c(¢) >0 such that
Di (L +1/ke 4
max |; — —| > c(e)g
0 gi k-1 q
for all positive integers q where the p; are integers.
(ii) for every &> 0 there exists c(¢) >0 such that

kt—1
! T Ap A | >4
z A
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where (4, Ag, -+, Ax,—,) is a nonzero element of Z**', |A| < H, and |A;| <H
for 0Zigkt—1.

We remark that it can be shown that Theorem III implies Theorems I and II.
ExXAMPLE. Let T, (x) denote the dth Chebyshev polynomial. Now

(E? = 2xE + 1) Ty(x) =0,

To(x) = 1, and T,(x) = x. Assume x # + 1, then z2 — 2xz + 1 has distinct roots.
Thus if x # + 1 we see by Theorem III that for every ¢ > 0 there exists c(g) >0
such that

§ dT,,(x)
d-‘—‘OI:[ 0(8)

Let the r; for 0 £ j <t~ 1 denote ¢ distinct nonzero rational numbers. We
choose (i,,j,) belonging to Z x Z such that 0<i; <t—1and 0<j, <t —1.

_ %, > c(g)g~2K*1+0)

THEOREM 1V. If 6(0) =0 and k > 1, then for every ¢ > 0 there exists c(e) > 0
such that

D' f("j) Dij ~(1+1/tkt=1)+e)
m —l — 2 > (e
ij \Dinf(r;) q 4

where q is a positive integer and the p;; for 0Si<k—1and 0<j<t—1 are
integers.

THEOREM V. If 6(0) =0 and k > 1, then for every ¢ > 0 there exists c(¢) >0
such that

k-1 t-1

r X Ai,-D'f(rj) >C(8)H‘(""1+c)
0

i=0 j=

where (Ago,*+*» Ax—1,4-1) is a nonzero element of Z* and |A;| < H for 0<i
<k-1,0<5jst—-1.

We define the S} and the y; as before Theorem TI1. Choose y;, arbitrarily from
the y, for 0<iZkt—1.

THeOREM VI. If 6(0) =0 and k > 1, then:
(i) for every ¢ > O there exists c(g) > 0 such that

l‘_‘i
i,

max

_ %i_ l > ¢(g)g= 1+ /G- D+
i

where q is a nonzero integer and the p; for 0 < i < kt are integers.
(ii) for every &> 0 there exists c(e) > 0O such that
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ke-1
I Z Ay i 270)); MR
i=0

for all nonzero (Ag, -+, Ag-1) in Z*with IA,l SHfor0Zi<kt-1.

I. DEFINITION.  Let K denote throughout §I the field Q(( — n)'/?) for some non-
negative integer n.

DEFINITION. For any monic 0(z) in K[z] of degree k>0 and such that 6(z) has
no positive integral zeros we define the entire function

e d
) f)=% ——.
“=° 1T ()

e=1

DEerFINITION. Given ¢(z) a monic polynomial with rational coefficients of
degree 1 > 0 we define for each positive integer N,

1 f(2)z"dz
@ Pn=2ai ). Gop

where N=ml—h,m=1,0 < h <1, and C winds about the zeros of ¢(z) once in
the positive direction. ‘

A few words before proceeding. We shall begin by establishing five lemmas.
Lemma V contains the mathematical machinery which makes all of the proofs go
through. It asserts the existence of certain linear forms gy(é) (N =1,2,---) over
Z[(— n)'/*] having some very special properties. Each form gy(d) is defined to
equal an appropriate positive integer v(m) times Py(8) where Py() is the integral
Py defined above with some additional assumptions on ¢(z). Lemma I, which
proves the existence of many linear relations among the Py, is needed to help
show parts (i) and (ii) of Lemma V. Lemmas II through IV involve evaluating each
Py by the residue theorem as a linear form over Q(( — n)'/?), estimating the
absolute values of each Py and its coefficients, and determining v(m) so that
gn(6) = v(m) Py(8) has coefficients in Z[( — n)/?]. Thus we are able to establish
parts (iii) through (v) of Lemma V.

It is obvious that all linear forms with coefficients in Z[( — n)'/*] of fixed
numbers in Q((— n)'/?) must either equal zero or have their absolute values uniformly
bounded away from zero. The D"f(wj) of Theorems I, II, IV, and V are not all
zero. Thus by (i) of Lemma V one of the gy.,(6) is not zero (x=0,1, -+, (k + 2))).
But by (v) of Lemma V IgN“((S)l — 0 as N — oo. Therefore at least one of the
D'f(w,) is not in Q(( — n)"/?). Theorems I, II, IV, and V are proven by a more
sophisticated use of Lemma V. They may be viewed as merely making quantitative
the result shown above. (The proofs of Theorems ITT and VI depend upon the
proof of Lemma V, as well as its statement.)
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LemMa 1. There exist o; depending on N in K such that

(k+2)1
Py= X aPy,;

i=1

Proof. We shall show first that f(z) satisfies a linear differential equation.
From (1) it follows immediately that where

N 4/(@)
D f (") - dz
we have
®) [6(zD) — z1/(2) = 6(0).
Then we may simplify (3) and write
) ( }'f Bz2’D? -z ) (@) = 6(0),
ji=0

where the B; are in K and B, is nonzero. Multiplying (4) through by. z'~*
yields

( f‘. BZ/*'pi — z') f(2) = 6(0)z'~ 1.
ji=o0
This can be put in the form,
k
® 4= T B 4 @6 - )] ) - 60

Since ¢(z) is monic of degree I it follows that y(z) = ¢(z) — z' belongs to K[z]
and has degree less than I. Then we have

k
©  S@=6e([Z B 4 201 - 0027

Now substituting (6) for f(z) in (2) we obtain

k ,
1 ([/Eo B/ **h1pi g z"‘y(z)]f(z) - 0(0)2"“")dz
™ Py=7- A P+

DEerINITION. By the order (henceforth denoted as ord) of a rational function
we mean the order of the zero at infinity. Ord of the zero function is + .
If 6(0) is nonzero then, recalling that m = 1, we see that

ord [0(0) - 27 (p(z)) "™ ] 2 2.
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Hence we conclude that

P E [ )

1 f 22)f(2)dz
c @@)m+t”

2mi
The proof will now consist of showing that both

®

L[ 2o e
and
_2715 ) Zj+l+h—1(¢(z))‘(m+‘)]_)if(z)dz ©O=j=sk

can be expressed as linear combinations of the P,,;_,,; for i =1,2,.--(k + 2)l
with coefficients in K. We have in the latter case

_1“ zj+l+h—lef(z)dz B (_ 1)1‘ ; zi+l+h-1
®) 7 f @@r - m fcf @D ((¢(z»m+l)dz’

using integration by parts j times. Next we observe that

Ofd [Zj+l+h—l(¢(z))—(m+l)] =N + 1 _j,
hence

Ord [Dj(zj+l+h—l(¢(z))-(m+l))] gN + 1,
and

ord [9(2)($(2) ™2 N +1.

Now we shall show that

a5 | @@ sz

and

j F@DIZ = 1(p(z))" ™+ ]dz

21u

can each be written in the form

3 | HO@E) sz

where g(z) belongs to K[z] and is of degree less than or equal to (m + 1 + k)!
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— (N + 1). Recalling that j < k, the representation of each rational function in
the integrands as g(z) - (¢(z))"™***® for some g(z) in K[z] is obvious. Setting

N +1=0rd[2"(2)(¢(z))" " V] = ord [g(2) - ($(2))”"*'*¥]
we obtain where d = degree (g(z)) = — ord(g(2))
(10) d<(m+ 1+ k)= (N+1).
Also, setting
N + 15 ord [D2) 14 (¢(2)) ™" ] = ord [g() ()™ "+ ]
we again obtain (10).
We can write
1d/1) )
8(2) = ,Eo 8i(2)(¢(2))’
where the g;(z) are in K[z] and degree g;(z) < I — 1. It follows then that

1 f gf(@dz _'§ 1 g4(2)f(z)dz
C

(th 2 ) @@~ 2, 2m ) Gy

Now each

1 —(m "
257 |, SD@E P p@z
is certainly a lincar combination of the

{Pylm+1+k—j—D+1ZySim+1+k—j}
with coefficients in K. Hence

L f @)@~ (2)dz
C

2ni
may be written as a linear combination of the P, for
ySIim+1+k)=N+lk+1)+h<N+(k+2)

This is the proper upper bound. Suppose that y, is the least integer such that P,
appears with a nonzero coefficient in the above representation of Py. Then

ord (g(2)((2)" "1 +9) = y,.

But we know that

ord (g(z)(¢(2)) ™" 1) 2 No + 1,
thus yo = N + 1 and Lemma 1 is proven.
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DEFINITION. Let ¢(z) = z°(Y(z))* where dis0 or 1 and 6 =0 if ¢(z) has an
irrational root.

We assume Y(z) has no repeated roots and Y(0) # 0. Let wg, -+, w,_, be the
roots of Y(z). (Then I =kt + §.) We define the set

S={Df(w);0=r=k-1,05j=t-1} U{l}.
Let Py(0) = Py to reflect the dependence on 4.

LeEmMA 2. (i) Each Py(9) is a linear combination of the elements of S over
the field K(wg,:-*,w,—1). (ii) In one such representation of Py(d) as a linear
combination of the elements of S the coefficients have absolute values less than
KT for a constant K, independent of m, (N = ml — h).

Proof. (i) From (2) we have

PO = 3 [ P @

By the residue theorem applied to Py(d), combined with (1) the power series
expansion of f(z) about the origin and (4) the differential equation, which may
be used to express all derivatives of f(z) as a linear combination of the elements of
{L,f(2), -, D*"'f(2)} if z # 0, we see that

km—1 t—1
(12) Py®)=e+ X X ¢&;Df(w))
0

r=0 j=

where ¢ and the ¢,; are in K(wg, -+, ®,_).
(ii) Recalling (4) we see that for r > k we have

k s I
(13) D'""(E:O B;z'D' — z)f(z) =0.

We define (5) where a is a nonnegative integer and y is a real number, to be
the coefficient of x” in the binomial expansion of (1 + x)°. Expanding (13) yields

{(éo Bi[o;‘,?gi (r;—k) ; .i_!j)! z;-;Dm,-n-f])

-z —(r - k)D"""} f( =0.

(14

Setting j = p + i — k, rearranging the double sum, and solving for D'f(z) we
obtain if z is nonzero,

=3t (E]

k p=1

Ea(,i7h) (o1, ) dresr]

— g kHipr—k r— k)z—kD'-k"1 ) f(@).

(15)
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Using (15) and (4) we may write for r =0, 1,-+ that
Df(z) = 43— D*7'f(2) + -+ + A DT (2) + - + Aof(2) + AT,

where the 4,_, are in K(z) 1=q=k+1).
We shall use (15) to show that

(16) | Ai-q| < (Kory

where1 < g £ k + 1, K, depends on z, and z is assumed to be nonzero. From (15)
we see that

D'f(2) = 9,-1D" 7 f(@) + -+ + 3D T f(2)

if r > k, where

(k + 1)*
| B

max(1,].z|7%)

2rPmax(l,|z|™) + —
max(l,|z|™) + A

|7:-5 =

an
+ (r — Dmax(L,|z| %) £ (K3r)”

(The inequality

(o s

is useful in (17).) Choose K4 such that | 4;_,| < (K,r) for0<r <k, 1< g < k+1.
Then choose K, = k - max(K3,K,). Using induction on r we assume that for
r—1zk, |42 S |Ky(r—1)|" " where 1 £ g S k + 1. We see

k+1
el = 2 [ | 457

k+1

Z KarP(Kalr = p)) 7

IIA

k+1
z (Kzr)' - k7F = (Kzr)'.

p=1

IIA

Hence (16) has been established.

Let I'; be the coefficient of D'f(w;), 0 < r < mk — 1,0 £ j £ ¢, in the evaluation
of Py(3) by the residue theorem. We shall show that |I';| < r’K§. Choose u;
such that |w;| > 2u; >0 and |w; — ]| > 2u; for all j’ # j. Let C; be a circular
path about w; in the positive direction with radius u;. Then

1 f(@dz ""5:" D'f(w;) ( 1 f (z — w))Z"dz )
C;

2ni c; (e@)™ s r!

2mi

(@)
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Hence,

1 u!(lwll +u )Hl
u [(kt+d)m

(18) |T5| = — =r'Kg,
for 0=j<t—1. If we choose K, such that (16) holds for z = wg, -, w,_,
simultaneously, then

km—1

max|e,| S Z (K.r) - (r'KP) S KT
r=0

We shall conclude the proof of (i) by demonstrating that |¢| < K§.

Let ¢’ be the contribution to & from the evaluation of the residues at w, ++-,w,_,
(due to the inhomogeneous term 6(0) in the differential equation (4)). The inequality
(18) applies to |&’| as well as |Ij|. Set &” = & — &". Let u,=min{|u;|;0<j<k — 1}
and let C, be a circular path about the origin in the positive direction and with
radius u,. Then

) po L (@ et 1 (L f Z"Jz_)
(o

27” Ce (¢(z))m d=0 1‘[ 9( ) 27ti t (¢(z))m
hence
, m=1  d+h+1 m
&'l = § m(kt+6)=K

d
This proves Lemma 2.

LEMMA 3. Let ¢(z) be a monic polynomial with rational coefficients of
degree k > 1 which has only rational roots, none of which is a positive integer.
Then there exists Ko > 0 such that the least common denominator of the fractions
(km)!| [Ts=1(¢(s) ~*| for r=1,2,-m is less that K3.

Proof. Set ¢(s) = H (s — ;). Let b; be the least positive integer such that
bn; is integral. We see that

A )
s=1

The factor (km)!(m!)~* is a multinomial coefficient, hence an integer. If we can
show for each 1 < i < k that there is a K, such that the least common denomi-
nator of the fractions r!|[[5=;(bss —bmn)| ™' for r=1,2,--,m is less than
K7,, we will have demonstrated the lemma.

We divide the set of all primes into three classes. Class 1 consists of all primes
which divide b;. Class 2 contains all primes less than m + 1 which do not divide
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b;. Class 3 contains all primes not in classes 1 and 2. We notc that no primes in
class 1 divide [ = ,(b;s — biy;) for r =1,2,---,m. For primes p not in class 1 the
congruence

(20) b;s — by, =0 mod p*

has a unique solution s, where 1 < s = p? for d =1,2,---. Hence the number
of solutions of (20) for 1 < s < r is between [rp~*] and [rp~%] + 1, where [ ]
denotes the greatest integer function. The number of solutions of s = 0 mod p?,
1<s<ris exactly [rp™®]. We reduce r!|[];-,(bis — big)| ™" to lowest terms.
Then for all primes p in classes 2 and 3, we see p does not divide the numerator
and p divides the denominator at most [(log(b;r + | bm:|))/log p] times. Let
T,(m) be the least common multiple of 1,2,--+,b;m + | by;|. (By Chebyshev’s
theorem, [8, p. 340], | To(m)| < K7,.) Let Ty(m) be the factor in [T;- ,(bis — b))
due to primes of class 1.

Let T3(r) be the total factor in [, - ,(b;s — bj;) dueto primes of Class 3. Note
that Ty(r) divides Ti(r +1). Thus the least common denominator of the
r!]l'I::,(b,-s - bm,)"| for r=1,---,m divides To(m) - T3(m). There are only a
finite number of primes p in class 1 and each such prime p divides m! exactly

moi[mp™*]<m/(p— 1) times. Hence T;(m)< K7,. We note that

Ty(m) m!

T - < 1.
i(m) I—-Ix (bis — bny) I
Hence
,l:[ (b;s — bi”i)l
Ty < Tyom) (=4 ) = &

This proves Lemma 3, since we have seen
Ty(m) « Ty(m) < (Kyy - Ky3)"
LEMMA 4. As before we write Py(0) = X, j&, ;Df(w)) +¢ for 0L isk—1,
0 <j=<t—1. (i) There is a positive integer v(m) < m*"K[", such that v(m) * s,
and v(m)e are algebraic integers. (ii) |P~+,(6)| S (K ;sm™" for0<a £ (k+2)l
where N =ml—h and 1=kt + 4.

Proof. (i) Let E be a positive integer such that E * @ j"", E - 6(0), E - B;, and
E - B; ! are all algebraic integers for 0<j<t—1,0< i<k — 1. From (4) and
(15) we see that for r 2 k

k
EDf(w)) = 21 G,D" " *f(w)) + G
»=

where the G, 0 < p < k, are algebraic integers. Hence
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k-1
E"*"YDf(w;) = £ HLD" ’f(w)) + Hj
p=0

where the H), are algebraic integers. Recall that I'; was defined to be the coef-
ficient of D’f(w;), 0 <r <km —1, in the evaluation of Py(d) by the residue
theorem. We shall set v,(m) = E"*~1) . p,(m) where v,(m) is a positive integer
less than m*"K7, and v,(m) - T} is an algebraic integer for 0 <r < km — 1,
0=<j=t—1. Then v,(m)s,; will be an algebraic integer for 0=r=<k -1,
0=<j=<t—1. Also v(m) - ¢’ will be an algebraic integer where ¢’ is the con-
tribution to € from the residues at w,:*+, , . Finally we shall determine a positive
integer v3(m) < K such that v,(m) - vs(m) - €” is an algebraic integer, where
¢’ +¢"=¢ Then we may set v(m)=v,(m) - viy(m).

Let L be a positive integer such that L- (w; — j)'l, L-(w j)'l, and L- w; are
algebraic integers, where i #j, 0<i<t—1,and 0<j<t— 1. We set

Uz(m) = (km)! . thm+km+kt < mka’ln&
From (18) we can conclude as before that

1 (z — w))z"dz

r 1
ERE RN S o

for 0Sr=mk—1, 0<j<t—1. Define the polynomial u(x) by u(z— ;)
= LM z" and note that since h < kt that u(x) has algebraic integral coefficients.
We see that

va(m) - I'y = [(k;’!')! (.I;IJ (w; fw,-) )km . (‘—"%-)M e ]

g [ emor e (] (o222

itj

. (1 +z_—3f_)-am]dz,
@j

The factor in square brackets before the integral is an algebraic integer as is
seen by using the definition of L; the integral is seen to be an algebraic integer by
use of the residue theorem and the definition of L. Set v3(m) equal to the least
common denominator of the fractions (km — 1) ([ ¢~ ,0(e)) ~*for0 < d < (km—1).
From Lemma 3 we know that v;(m) < K7T,. Referring to (19) we see that

vz(m) . U3(M) cg = Lk(t+m)—m, (km) . ’:z;:) ((km d"' 1)!03(m) )
el:[l o(e)

* 5;{;; dZ.

thm L™ z" +h
J;:. (P2
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Also we have

thm J‘ - zr+h t—1 L km 1
_ dz = -~ R Lm . Srth—m
g (L G) - wf.ee

(L (-3)

Using the definition of Land the residue theorem, we see that v,(m) - vs(m)e” is
an algebraic integer.
(i) We must estimate | P,;_4(6)|. Without loss of generality we may assume
w;] <m*[2for0<j <t — 1. Let C be a circle of radius m*. From (1) we see that
f(2%)| £ Kyg|z|. Hence

f(2)z"dz
c (e@)m

If m is sufficiently large (K,om™%™ is monotonically decreasing. Thus
| Pysa| S (Kysm™)™ for 0 a < (k+2)L

Recall S = {D’f(w;); 0<j<t—1,0=r<k—-1}y{1}. Alsorecall6 =0or 1
and I = kt + 6. We define the height of a linear form to be the maximum of the
absolute values of the coefficients of the form.

mke+ D, gm
= (m /2)kml

1
|Pu-i®] = | 57

= (K19m-k)mx-

LEMMA 5. There exist linear forms gy(0) for N =1,2,--- in the elements of
S with coefficients in K(wg,:*,w,_;) which possess the following properties:

k+2)1

(l) D'f((l)l) = ;0 Yrja gN+¢(6)

where 0 < r < k — 1 and each y,;, belongs to K(wg,**,w,-,).
(ii) If either 6 # 0 or 6(0) # 0 then

(k+2)

1= z 7¢gN+¢(6)

a=0
for numbers vy, in K(wg, -+, 0, ).
(iii) If 6 = 0and 0(0) = O then each gy ,,(0)for l £ N < 0 and0 L« < (k + 2)l
has no constant term.
(iv) The height of gy..(d) is less than (Kyom)™ for 0 < a < (k +2)l. The
coefficients of gy(d) are algebraic integers for 1 £ N < oo.
(v) For every ¢ > 0 there exists an N such that if N = N, then

|gn+(0)| S [(Kzom)™]~ ¢,

Proof. Let L= K(wg, **,®;-1). Set gy(6) = v(m)Py(6). (By Lemma 2, part (i)
the number Py(6) was shown to equal a linear form in the elements of S over the
field L.) We shall demonstrate (i), (ii), and (iii) for Py(5), hence also for the gy(J).
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(i) We need only prove (i) for N = 1 since we may obtain part (i)for N=N’'>1
by applying Lemma 1 N’ — 1 times. We see that

ey @) _ L[ _f@dz__ 1 [ 0@z

Tl T i) G-oytt T 2mi )e (@yrr

where Q(z) belongs to L[z] and the degree of Q(z) is (r + 1)({ —1). Then
0(z) = X;-0Q,(2) * (¢(2))* for Q,(z) in L[z] where 0 < degree (Q,(z)) <! for
0= u=<r. Hence

Df(w;) _ 1 0u(2) * f(2)dz
r! a0 2mi Jo @@y Tim
Each

1 [ f(2)Qu2)dz
211 Jo @@y 1

is a linear combination of the elements of {Py(d); (r — p)l < N < (r — p + 1)1}.
(ii) Again we need only demonstrate the result for N = 1. Assume 6(0) # 0.
Then by (4) we have

1=

—_—

(z - wo) 0(0) 2mi (z — wy) ’

k
1 . 1 J‘ 0(0)dz 1 1 (Eo szjDJ - z)f(z)dz
00) 2ni Jc

k
1 1 (jz BZ'D’ + wo) f(2)dz

=0

= .0(_0). ) % c (Z - (l)o) ’
UL op [ Gy PIOE 1 ¢ a0
T 00 ;2 2m‘f #(2) 90) 2a c ¢z

Using repeated integration by parts and collecting terms we may write

Lo L[ @@
21 o T @@F

where Q,(2) belongs to L[z] and degree (Q,(z)) < (k + 1) - I — 1. By the proof of
part (i) then we can express 1 as a linear combination of {Py; 1 S N < (k+2) - I}.

Assume 6 = 1. Then

L[ 1@, _ e —
e2) l*fﬁfc ER T B ¢(2)
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from line (1). The extreme right side of (22) can be expressed as a linear combi-
nation of {Py;1 < N =<1-1} over L.
(iti) In writing
= [ @)
2ni c z “

as a linear combination of the elements of S we first evaluated the integral by the
residue theorem. If 6 = 0 there was no pole at 0. About the points w;, 0<j=<t -1,
we used (4) to express Df(w;), 0 <r=<km —1, in terms of the elements of
{D’f(®;),0(0); 0 < r £ k —1}. If 6 = 0(0) = O then Py(0) has a zero constant term
for N=1,2,.--.

(iv) By Lemma 2, part (ii) and Lemma 4, part (i) we see that the height of gy(5)
is less than or equal to (m*™ - K7,) « (K7) £ (K,,m)™. Hence

height (gy +4(6)) < (Kzom)™
for 0 < a < (k+ 2)Il. The coefficients are algebraic integers by Lemma 4, part (i).

() | gn+a(®)| £ (K sm™™ -+ (Kyom)™ by Lemma 4, part (i) and Lemma 5,
part (iv). Hence, for 0 < a = (k + 2)l,

| gn+d(8)| S [(Kpomy™] ¢~V *e
if N=N,.

IT. Proof of Theorem I. Set 2t, +t, =t;. Let
{vj; 0 é] < t3 — 1} = {wo’"'swu—l’am”"th-l’mu""’wnﬂz-l}a

where the bar denotes complex conjugation. We apply Lemma 5 to see that there
exist linear forms gy(1), N =1,2,.- in the D’f(v;) and 1 with algebraic integral
coefficients in K, 0 < r< k—1,0=j < t; — 1). Let V be the vector space over K
generated by the Df(v), 0Sr=<k—1,0=<j=<t;—1, and 1. As =1 here,
Lemma 5 implies that for every positive integer N the gy, gv+ 1> v+ (k+2)kes +1)
span V. Let I'=[V:K]. Then I' = 1. Choose a basis for V of the form e,
=1,e,,--er_, where ¢, (1Si<T —1) belongs to {D'f(v);0=r=<k-—1,
0 <j < t3 — 1}. Now there exist positive integers K,, and K, such that for every
positive integer N, K,, * gy(1) is a linear form in {e, =1, e,, -+, ep_,} where the
coefficients are algebraic integers and

(23) height (K,,gx(1)) = K,,(K 2om)km =K 23m)km-

To see (23) one need only use the dependence relations which exist among the
D'f(v;) and 1 to express each gy in terms of {e, =1, e,,---,er_}and then observe
how the coefficient of ¢; for 0 £ i < I" — 1 is generated. For every gy > 0, if N is
sufficiently large, then
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(24 | K228n1) | S [(Ky3m)m]~*e* =

Let p,,-, pr—, be numbers of the form a + b(— n)"/? for a and b integers.
Let V* be the dual space of V. We define ef, 0 < i < T — 1 to be the element of V*
defined by ef(e;) = &{. Then e§ + Xi {(p;/q)e} isanonzero vector in V* for any
choice of the p;. Hence there exists o, such that 0 < oy < (k + 2)(kt5 + 1) and

@25) (5 + T2t ) (ar o) #0
If we set Ky, * gyia(l) = E’;'__’}yje, + y0€o then (25) may be rewritten as
Z WPi o #0.,
i=1 4
This implies that
1
2 ‘Ylpi + g el
I. L g e ' q’

since here L= K = Q(( — n)'/?). Hence if we know that |K22 . gN+,D(1)| <1/2q
then

Vibi _ > 1
(26) ‘Kzzgnn(.(l) ‘El q 70’ =2
Thus
r-1
1
27 ) i(ei - '&) 25
@7 i=1‘y q 2q

We let y = max; | y,l for 0 < i <T — 1. Observe that line (27) implies that T" = 2.
Then

ok s 1
‘“?"I %7 g | 2 2q@— 1)
If e;=Df(w)) let p; = p,;; if e;=Df(®;) = (D'f(w;))~ let p; = p,;. Then

1 > _ 1
=~ AT — gy ~ 2ktsqy
where 0<r<k-1,0<j<t-—1,and 0LZisTI-1.
We take ¢, < kt; and choose &, > 0. Then it will be shown that if q is suf-
ficiently large we can always find an m such that

(29) (2q)(l +e1)/(kt3—20) g (K23m)km g (Zq)l/(m, - 20) .

@)  max|Df(w) - P | 2 max|e -2
r,j q i q

We assume that (2)/* 3> (K %) and choose m > 1 to be the largest integer
such that

@Y7 2 (Kyym — 1),
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We note that if m is sufficiently large, say m = m,, then

[(K23(m — 1))"("'—1)]1 ez (Kzsm)km-
If g is sufficiently large then we will have m = m,. Then it follows that

(Kp3m)™ = (2g)"/ %3~
and
(2g) TR > [(Kya(m — 1" D] M+ 2 (K 3m)*™.

This demonstrates (29). From (24) and (29) it follows that for sufficiently large g
we can find an N with

(30) height (K 28y +4(1)) < (2g)(! + &/ =e0)
while .
| K228 +(D)| = 53

for all 0 < o < (k + 2)(kt; + 1). (We note that g large implies that m is large
which implies that N is large.) Then in (28) we may assume that

(31) y < (zq)—(l+(1+zn)/(kta—en)) .

Thus

(32) max D'f(wj) _ Drj > _!'__(zq) =(1+(1+e1)/(kt3—eo0))
rJj q - kt3

if g is sufficiently large. We choose ¢, and ¢, such that

1+81 1 t4
kt3—80<7€t_3-+§

Then if g is sufficiently large
(33) max | Df(w,) — Eq'i
r.J

=(1+1/kt3+e)

24q

From (33) it follows that there exists c(¢) >0 such that

max l D’f(w;) — ._’;_f > c(e)g kst
r’j

for all g.

Proof of Theorem II. Let | x| = x — [x]. Khintchine’s transference principle
[9, p. 80] states that if 8, ---, 6, are any irrational numbers and w, = 0 and w, =0
are the respective upper bounds of the values w,’ such that

iy + - +u,8,] < (max]u,l)—"-a ,
j

max | x0)] ||t
i
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have infinitely many integral solutions, then

)y
P p—

I claim that because of Theorem I we may apply Khintchine’s transference prin-
ciple to the numbers,

{650Sj<t3— D={Re Df(w); 0<j<t,~1,0Sr<k—1)

o[BI ogjgh -1, 05r5k-1)

U{Df(); hSjSt-1,0sr<k—1}.

Theorem I implies that for x a nonzero integer
35) max || x6; | 2 e(e)x™ 1 +eMD,
i
Elementary theorems on diophantine approximation tell us that the 6; for

0=<j = kty—1 are irrational because of (35). Using (35) we see that w, <0.
But @, = 0 always. Hence o, = 0. Then (34) yields

®y
(kt3)* + (kt; — Do~

(36) @,y

v

0

v

Hence w, =0.
Thus we see that for every ¢ >0

(37 ” uolo + -+ + g ¢ Oppy—1 " < (maxlujl)—m—e

has only finitely many solutions where ug,---,u,,-; are integers. Let the 4,
be in J. Define

”x + y(—n)llz " = max(" x " s " y"ni/z).
Then from (37) we see that
(38) | T E A0 S (max| 4,

has only finitely many solutions. (Separate line (38) into two inequalities and use
(37).) Theorem II follows easily from (38).

Proof of Theorem IV. From Lemma 5 we know that there exist the linear forms
gy(0) in the Df(r;) with rational integral coefficients and zero constant term

for N=1,2,---. Also

height (gy +4(0)) < (Kzom)™™
and for every ¢ > O there exists Ny such that if N> N
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' gN+a(0)I =< [(Kzom)""']("" 14e)

Let us pick i, such that 0< i, <k —1 and D"*f (rj,) # 0. (Since equation (4) is
homogeneous and f(z)# 0 this is possible.) Then {gy(0)/D"*f(r;,); N =1,2,--}
is a set of linear forms in 1 and {D'f(r;)/D*f(r;); 0Si<k-1,0<j<t—1,
(i,J) # (i2,j)} - If Vis the vector space over Q spanned by 1 and the D'f(r DIDH(r;)
then for every N = 1 the {gy+,(0)/D* f(r;,); 0 < « < (k + 2)(kt)} spansV.Applying
the method of proof used in Theorem I to the linear forms gy(0)/D*f(r;,) yields
the result: For every ¢ > O there exists ¢(¢) > O such that

Df/("j) Pij - -
39 max | —2d P S e)gm 1 (HUGKt=1)+e)
) i \Daf(r;) g (€}

where 0 isk—-1,0=5j=<t-1, (i,j) # (i,i,). Since any r real numbers can
always be approximated infinitely often better than g~ ' *'/"~9 we see that
(39) is impossible if any of the numbers being approximated are rational. Hence
D'f(r;,) # 0. Then we may take i, = i,. This proves Theorem IV.

Proof of Theorem V. As in the proof of Theorem II from Theorem I we
can apply Khintchine’s transference principle to the irrational numbers
D¥f(rp)[D"f(r;) where (i,j)# (iy,j;)- By Theorem IIl we see that w, = 0,
hence it follows @, = 0 and we have: For every ¢>0 there exists ¢(¢) >0 such that

k=1 t-1 D':f(rj)
. > —(ki—1+e)
“0) Eo j§o AUD’If("j.) 2 coH
where the 4;; are integers which are not all zero and | 4,;| < H. Multiplication
of (40) by D**f(r;,) gives Theorem V.
Proof of Theorem III. Let wq, -, w,_; be the roots of 0,(z). Then from the
calculus of finite differences we conclude that

k=1 t-1
41) Sa= X I y,d"(0)°,

q=0 j=0

where the coefficients y,; are unique and belong to the field L= Q(w,"**,@, - 1). Now

k-1 t—1
) i © E Z ?. 'dq(w')d k-1 t—-1 ) d
we B oS Feen T S (3 der )
d=0 1:[1 B(e) da=0 1:‘[l o(e) q=0 j=0 d=0 1:[1 e(e)l
Thus if
© d
f&=%X 42—,
d=0 l‘I O(e)

e=1
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then

L e - 2 DT (2).
d=0 l‘[ o(e)

Hence where the a¥(x) are polynomials with rational coefficients,

k=1 t—-1 -
m= I I (E y.,,a':(w,))o'f(w,)

r=0 j=0 \g=0
(42)
k-1 -1
r=0 J=0
where
k-1

Bjr = X Yq]ag(w‘l)
q=0

Let w;, denote throughout the rest of this proof ¢ - w; where ¢ is some element of
G(L/Q). We shall show that B; , = ¢ - B;,. From (41)

k-1 t—-1
Si=0S; =X X 0-7,4d%;)".

q=0 ji=0

But the coefficients in (41) are unique. Hence oy,; = y,;,. Clearly g a}(w;) = of(; ).
This shows that ¢ - B;, = Bj,,.

Let the degree of the minimal polynomial with integral coefficients satisfied by
; be 1;. Define 8}, in Q by

Aj—1

(a)j) = E 6,,,((0,)
Then there exists K,, such that
| %] = K

Suppose that g(z) = Xi-,C,z* is an entire function. Then

gw) = :i;o C, (lil 5‘,’,,((0,)") * -l (:go Cdéfp)(mj)v.

p=0 p=0

Where g(z) is taken to be D"f(z) we define

= 2 Cdalp’
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Then
Aj—1
D'f(wj) = Eo Al ().
p=
Hence from (42) we obtain

Aj=1 k=1 t—1
(43) w=X X X B (w)A,.

p=0 r=0 j=0

We note that A, = Al.. Let L;bethe least normal extension of Q which contains
jip Jjp J

w;. Suppose [L;: Q] =1;. Then

Aj-1 k-1
44 W= Z'[ X X % - trace L;/o(B;, - wf)Aj'p],
j p=0 r=0 °%j

where the summation on j is over a set of representatives of the conjugacy classes

of the wy,- -, w,_; over the rationals. There are k - ¢ distinct numbers (at”most)

among the Aj,, and we note that the coefficients of the Aj, in (44) are rational.
It is now possible to outline the course which the remainder of the proof will

take. (a) We shall show that for each A},

where S, is an appropriately chosen rational valued sequence satisfying (0,(E))*S,
= 0. From this it follows that each Aj, is a linear combination of the y; with
rational coefficients. (We recall that the S; for 0 <i < kt — 1 are linearly in-
dependent.) (b) We shall show the statement of Theorem III, part (ii) for the
distinct A}, (not the y;) from which, by (44) and (a), it will follow for the y;.
Using Khintchine’s transference principle with w, = 0 we may conclude w, = 0,
i.e., part (i) of Theorem III holds for the y;. Now to show (a). We see that

S de(d—r+ 15"
d=0 ﬁ 0(8)
e=1

We observe that 54, " takes values in Q. From the calculus of finite differences we
know that if

r —
Aip -

0,(E)55, =0
then :
O(EN[d--(@d~r+15,"]=0
for 0sr=k—-1. '

Consider the equation.

(45) wj =X 8, (0)

P
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and the equations obtained from (45) by replacing w; by its conjugates. Let us
define the matrix 4 by

(46) A= (008

wherc p is the column index (0 < p<4;—1), i is the row index, and the o,w;
(0 =i = 4;—1)are a complete set of conjugates of w;. Then by the nonvanishing
of the Vandermonde determinant we see that A is nonsingular—hence we may
write 0, " as a linear combination of the (o,0;)*~". Thus

(8,(E)d%, " =0.

We note that up to this point we have not used the assumption that the roots of
0(z) are rational.

To show (b), that the distinct Aj, satisfy part (i) of Theorem III, we need to
produce linear forms hy(8) in the Aj, (and 1 if 6 = 1) which have the properties
()-(v) of the forms gy(5) defined in Lemma 5, but with the Aj, replacing the
D'’f(w;). Given the existence of such forms hy(6) we can set 6 =1 and conclude
Theorem 1I for the A’,. As a first step we shall show that the linear forms gy(d) in
the D’f(w;) may be rewritten as linear forms in the A}, with rational coefficients.
Now gy(d) is an integral multiple of (1/2mi) [¢ f(2)z"(¢(z)) ™dz where

N = (kt + 6)m — h.
Recall that

9(2) = (n G-t -2

We note that

z — w;)"™dz
2) - Zh . (" Cl)_,)

1@ 9(z — w;) + w;

(z — @;)km

1 f(z)z"dz__ 1

2ni Jo (@) 2mi fc
from which it is not hard to see that the process of evaluation of the residue at w;
and also the use of the differential equation (4), at z =w; # 0 to express the
residue in terms of {D’f(w;); 0 < r < k — 1} will be such as to yield conjugate
cocflicients at conjugate points, i.e., if

k—1 t—1
(47) @@= X & D’f(w;) + ¢
. r=0 j=0
then o(e,;) = ¢,;,. Now ¢ is rational since the residue at z = 0 is rational and if
¢} is the contribution to & from the residue at w, then o¢} = ¢;,. Hence
k-1 ;-1

(48) @)= X' ( > X 4 trace L;/ o(e, jw‘})A;o,,) +¢,
J

r=0 p=0 lj

where the sum over j indexes a set of representatives of the classes of conjugate
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elements of wy, -+, w,—;. If M is a positive integer such that M - w; is an algebraic
integer for each j, set hy(5) = M ~' gy(8). Then hy(5) is a linear form in the A},
and 1 with integral coefficients.

We wish to show the analogue of the statements (i)~(v) in Lemma 5 for the
hy(5). Parts (iv) and (v) hold but for different constants. Parts (ii) and (iii) hold
for the hy(d) as for the gy(d). To prove the analogue of (i) we need only show
that A7, for 0<j<t—-1,0=p=<4i;—1,and 0=r=<k—1 can be expressed
as a linear combination with rational coefficients of the gy ,,(6), hence the hy , ,(5),
for 0 S a<(k+2) (kt +0) in the case N =1, since Lemma 1 will then yield
the cases N = 2,3,:--. Now

Drf(wj)___r_!fc_f_(z_)dz___ { fc f(z)[aiﬁi%j)]rﬂdz

2ni Jo z—w)y*t  2mi (P(x)y+1 ’
S0
(k+2)(kt+d)+1
D 'f(w,) = N_zl Yj’NgN(a)

where oY}y = Y} 5. Recalling the definition of the matrix A4, from (46), we see that

(A;n Tty A;,;.,-1) A= (D'f(aowj), ‘“,D'f(az,-ij))

where 6ow; = w;, 6,0),*+*,0;,~@; are a complete set of conjugate numbers.
Hence writing

Ajp, = 2.:’ X5D'f ()
J

where the sum is over a complete set of conjugates, we see that

oX,=X;

Jip
Consequently

(k+2)(kt +3)+1
A, = NE A;/l; trace L;/o(X7,Y0)8n(5).
This proves Theorem III.

Proof of Theorem VI. We need only set § =0 in the proof of Theorem III
and change the references to Theorems I and II into references to Theorems III
and 1V respectively.

Theorem VI implies Theorems 1V and V obviously. It is less obvious that
Theorem III implies Theorems I and 11, since the w; in Theorems I and II may be in
Q(— n)'/? but not in Q. We set

t1—1 )t1+t1—l

0,(E) = ( M E-v)E-5)

j=0

i=ty




1966] SOME THEOREMS ON DIOPHANTINE APPROXIMATION 87

Our k - (t; + 2t,) linearly independent sequences consist of the

0! + o¢ 0! - &
Wd — ) —2— (d—a)! —2 1
dlj(d — a)! > and d!/(d — a)! (=7

for0sa<k—-1and0=<j=<t, — 1alongwiththed!/(d — oc)!co}'forO fasgk-1
andt, £j <t +t,— 1. Applying Theorem 1II under these circumstances yields
Theorems I and 11.
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