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Introduction. The study of the values at rational points of transcendental

functions defined by linear differential equations with coefficients in Q[z] (2) can

be traced back to Hurwitz [1] who showed that if

, .      ,       1       z 1 z2

Az) = l+-b-lT+WTa)2l + -

where « is a positive integer, b is an integer, and b\a is not a negative integer, then

for all nonzero z in Q(( - 1)1/2) the number y'(z)jy(z) is not in g(( - 1)1/2).

Ratner [2] proved further results. Then Hurwitz [3] generalized his previous

results to show that if

nZ)     ,+g(0)   1!  +g(0)-g(l)2!   +

where f(z) and g(z) are in Q[z\, neither f(z) nor g(z) has a nonnegative integral

zero, and degree (/(z)) < degree (g(z)) = r, then for all nonzero z in the

imaginary quadratic field Q(( — n)1'2) two of the numbers y(z),y(l)(z),---,yir\z)

have a ratio which is not in Q(( - n)112). Perron [4], Popken [5], C. L. Siegel [6],

and K. Mahler [7] have obtained important results in this area.

In this paper we shall use a generalization of the method which was developed

by Mahler [7] to study the approximation of the logarithms of algebraic numbers

by rational and algebraic numbers.

Definition. Let K denote the field Q(( - n)i/2) for some nonnegative integer «.

Definition. For any monic 0(z) in AT[z] of degree k > 0 and such that 6(z) has

no positive integral zeros we define the entire function

oo d

f(z)= £   —--.
d^O       d

n oc«)

Presented to the Society, November 23, 1963 under the title A theorem on diophantine

approximation; received by the editors November 6, 1964.

(t) This paper formed part of the author's doctoral thesis written under the direction of

Professor R. S. Lehman at the University of California, Berkeley.

p) We denote the rational numbers by Q and the integers by Z.
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(Note that f(z) satisfies a linear differential equation of order k with coefficients

in ß[z].)   '

Let co0, •••,<«,_! be t distinct nonconjugate nonzero elements of K. We assume

that the co,- for 0 ¿j ¿ tt — 1 are in K but not in Q and that the coj for

ft ^j^ ii + t2 - 1 = i- 1 are in Q. Set J = {a + b_( - n)1'2; a,beZ}, and

define t3 = 2tl + t2.

Theorem I. If 6(z) has only rational roots, then for every e > 0 there exists

c(e) > 0 such that for all positive integers q

max DJ(coj)-^- > c(È)q-(l + l/*f3 + e)

where the maximum is taken over Ogrgfc-1, O^j^I-1, and the prj are

in J.

Theorem II. IfO(z) has only rational roots, then for every e > 0 there exists

c(e) > 0 such that

S   'Z   ArJDrf(o)j) + A    ^c(e)fí-(*'3+e)

for all nonzero (A,A00, • ■-,Ak_lt_1) inJk,+1 with \A\iiH and \Arj\z%H for

Ogrg/c-1, Oá/áí-1.

Let 0j(z) be a polynomial of degree í > 0 with integral coefficients and distinct

roots. We assume also that 0X(O) ̂ 0. The operator £ is defined on the elements

of a sequence Sd by ESd = Sd+1. Let M be a nonsingular kt by kt matrix with

entries in Q. For 0 ^ i g kt - 1 define S, by (Ö^E))* • S¿ = 0 and S'0) ■•■,S^) is

the ith row of M. Finally define p¡ for 0 Sj i ^ kt — 1 by

ft- 2
si

d = 0 u  0(e)

Theorem III. If 0(z) has only rational roots, then:

(i) for every e > 0 inere ex/sis c(e) > 0 sucn inaf

max
O <i <kt-i

H _ñ.|>c(£)í-(i + iA.+ -

for all positive integers q where the p¡ are integers.

(ii) for every e > 0 there exists c(e) > 0 such that

kl-l

2    ylrfi, +A \>c(s)H-(k'+r"
¡ = o
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where (A,A0, ■••,Ak,_l) is a nonzero element of Z*'+1, \A\ =H, and \At\ =H

for 0 á i ¿ kt - 1.

We remark that it can be shown that Theorem III implies Theorems I and II.

Example.   Let Td(x) denote the dih Chebyshev polynomial. Now

(E2 - 2xE + 1) T„(x) = 0,

T0(x) = 1, and T,(x) = x. Assume x # + 1, then z2 — 2xz + 1 has distinct roots.

Thus if x # ± 1 we see by Theorem III that for every e > 0 there exists c(e) > 0

such that

TAX)

Il   0(e)
> c(e)q

(2Jt+l -t-e)

Let the r¡ for 0—j = t—\ denote t distinct nonzero rational numbers. We

choose (ii,/j) belonging to Z x Z such that 0 — ij ■— t — 1 and 0 — jy í¡ í — 1.

Theorem IV.    // 0(0) = 0 and k > 1, then for every £ > 0 there exists c(e) > 0

such that

max
¡j

D'fjrj) _  Pij

D><f(rJt)        q
>c(£)í^-(1 + l/,,í'-,) + e,

where q is a positive integer and the ptjfor 0—i — k — \ and 0 ^j — t — 1 are

integers.

Theorem V.   // 0(0) = 0 and k> 1, then for every b > 0 there exists c(e) > 0

such that

k-i   r-l

I    2   AuDf(rj)    x^)//-«'-1^
¡=0   j=0

where (^oo»*"» 4t-i,«-i) ,s a nonzero element of Zk' and \AtJ\ = II for 0 5Í i

= k-\, 0=j = t~l.

We define the Sd and the p¡ as before Theorem III. Choose ph arbitrarily from

the p¡ for 0 = i^kt-i.

Theorem VI.   // 0(0) = 0 and k > 1, then :

(i) for every e.>0 there exists c(¿) > 0 such that

max
Aí¡,      q

= <e)q -(l + l/(K-l) + e)

where q is a nonzero integer and the p¡ for O^i^kt are integers.

(ii) for every e > 0 there exists c(e) > 0 such that
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¿   Ajt,   ^c(6)Zi-(fa-1+t)

i = 0

for all nonzero (A0,-,Akt_l) in Zktwith \A,\ i% H for 0 ^ i ^ kt - 1.

I. Definition. Let K denote throughout §1 the field Q(( - n)1'2) for some non-

negative integer n.

Definition. For any monic 0(z) in K[z] of degree fc> 0 and such that 6(z) has

no positive integral zeros we define the entire function

OO d

(1) f(z)= 2   -^-.

«=° n m« = i
Definition. Given <f>(z) a monic polynomial with rational coefficients of

degree / > 0 we define for each positive integer N,

(2) p'-e*L
f(z)zhdz

(<f>(z)y '

where N — ml — h, m ^ 1, 0 ^ h< I, and C winds about the zeros of (¡>(z) once in

the positive direction.

A few words before proceeding. We shall begin by establishing five lemmas.

Lemma V contains the mathematical machinery which makes all of the proofs go

through. It asserts the existence of certain linear forms gN(ô) (N = 1,2, — ) over

Z[( — n)1/2] having some very special properties. Each form gN(ô) is defined to

equal an appropriate positive integer v(m) times PN(S) where PN(Ö) is the integral

PN defined above with some additional assumptions on <¡>(z). Lemma I, which

proves the existence of many linear relations among the PN, is needed to help

show parts (i) and (ii) of Lemma V. Lemmas II through IV involve evaluating each

PN by the residue theorem as a linear form over Q(( — nf12), estimating the

absolute values of each PN and its coefficients, and determining v(m) so that

gN(ô) = v(m)PN(ô) has coefficients in Z[( — n)1/2]. Thus we are able to establish

parts (iii) through (v) of Lemma V.

It is obvious that all linear forms with coefficients in Z[( — n)1/2] of fixed

numbers in Q(( — n)i/2) must either equal zero or have their absolute values uniformly

bounded away from zero. The Dlf(w¡) of Theorems I, II, IV, and V are not all

zero. Thus by (i) of Lemma V one of the gN+JJ>) is not zero (a=0,1, •••, (k + 2)1).

But by (v) of Lemma V | gN+a(ó)\ -» 0 as N -> oo. Therefore at least one of the

D'f(w¡) is not in Q(( — n)1/2). Theorems I, II, IV, and V are proven by a more

sophisticated use of Lemma V. They may be viewed as merely making quantitative

the result shown above. (The proofs of Theorems III and VI depend upon the

proof of Lemma V, as well as its statement.)



68 C. F. OSGOOD [May

Lemma 1.   There exist a¡ depending on N in K such that

(fc + 2)/

PN =    2w   a¡PN + ¡.
i=i

Proof.   We shall show first that /(z) satisfies a linear differential equation.

From (1) it follows immediately that where

om - T
we have

(3) [0(z/))-z]/(z) = 0(O).

Then we may simplify (3) and write

(4) (Z   BjZJDJ-zy(z) = 6(0),

where the B¡ are in K and Bk is nonzero. Multiplying (4) through by z'   '

yields

f Z   BJzJ+'-1DJ-z,y(z) = 6(0)zi-i

This can be put in the form,

i

<Kz)/(z) = [ So Bjz^'-W + (<¡>(z) - zl)^f(z) - -i-i

Since 4>(z) is monic of degree / it follows that y(z) = <¡>(z) — z ' belongs to K[z]

and has degree less than /. Then we have

(6) f(z) = (<Kz))-l/ i I   Bjzi+l- W + zh y(z)V(z) - 0(O)z*-1 ).

Now substituting (6) for f(z) in (2) we obtain

1 ( [ Z   BJzJ+,+h-1DJ+ z"y(z)l/(z) - rçO)*"'-1 \dz

(7) Pn = 2iri Jc * (</>(z))m+1

Definition. By the order (henceforth denoted as ord) of a rational function

we mean the order of the zero at infinity. Ord of the zero function is + oo.

If 0(0) is nonzero then, recalling that m = 1, we see that

ord [0(0) • z*+'-1(0(z))-(m+1)] = 2.
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Hence we conclude that

y   /ß J_   f  z' + l^-lD'f(z)dz\

(8) "   ~ j-o\J2ni Jc        (tf(z))»+i      )

+   l    f z*y(z)/(2)á2

:«' Jc2ni Jc     W»00)m+1 '

The proof will now consist of showing that both

JL J   zV(z)-(m+1)/(z)dz

and

¿ I zJ+,+,"'«z))"('"+"fl^^ (Olli k)

can be expressed as linear combinations of the Pml_h+i for i = 1,2,•••(fe + 2)1

with coefficients in X. We have in the latter case

J_   f   z^'^-^/(z)dz = (-Fy   f^pi/j^^iU
W    2si Jc (flz))-n 2tt¿     JC'U^  W(z))-+ijdZ'

using integration by parts j times. Next we observe that

ord ry+,+*-1(&z))-("+1)] = N + 1 -/

hence

ord [DV+'+*~1(#z))~(,"+1))] £ N + 1,

and

ord [zÄy(z)(«/.(z))-(m+1)] £2V +1.

Now we shall show that

2tt

and

L £ zfty(z)(0(z))-(m + 1)/(z)dz

£/(z)DV+'+'"1(^)r(m+1)]^
27TÍ

can each be written in the form

± jcg(z)(<f>(z))-(m+1+k)f(z)dz

where g(z) belongs to X[z] and is of degree less than or equal to (m + 1 + k)l
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— (N + 1). Recalling that j — k, the representation of each rational function in

the integrands as g(z) ■ (0(z))~(ra+1+*) for some g(z) in K[z~\ is obvious. Setting

N + 1 = ordr/y(z)(<Kz))-<ra+1)] = ord[g(z) • (</.(z))-(m+1+t)]

we obtain where d = degree (g(z)) = — ord (g(z))

(10) d g, (m + 1 + k)l - (N + 1).

Also, setting

N + 1 Si ord[DV+,+"-1((/)(z))-(mM)] = ord[f(z)(^(z))-(M+1+fc>]

we again obtain (10).

We can write

wn
g(z) =  Z   gj(z)(tp(z))J

j = o

where the g¡(z) are in X[z] and degree gj(z) «g I — 1. It follows then that

nn J_ f &)mdz jf j_ r  gj(z)f(z)dz
K   ' 2ni Jc (0(z))»+i+*       jto 27TÍ Jc (^(z))»+i+*-/ '

Now each

¿ J í/*)w*)r&,+1+'""D/(*)*!

is certainly a linear combination of the

{Py; J(ro + 1 + k-J- 1) + 1 g y á '('» + 1 + fe -;}

with coefficients in X. Hence

may be written as a linear combination of the P7 for

y ̂  /(m + 1 + k) = N + l(k + 1) + h< N + (k + 2)1.

This is the proper upper bound. Suppose that y0 is the least integer such that Pyn

appears with a nonzero coefficient in the above representation of PN. Then

ord(g(z)((z))-(M+1+t)) = y0.

But we know that

ord (g(z)(<p(z))-(m+l+») = N0 + U

thus y0 = N + 1 and Lemma 1 is proven.
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Definition. Let </>(z) = z0(i¡/(z)f where <5 is 0 or 1 and ö = 0 if <f>(z) has an

irrational root.

We assume i¡/(z) has no repeated roots and i^(0) # 0. Let co0, ■■•,a),_1 be the

roots of \¡j(z). (Then I = kt + ô.) We define the set

S = {Drf(<Oj); 0á r £ k - 1,0£./ g t- 1} U{1}.

Let Pjv(¿>) — ̂ n to reflect the dependence on ô.

Lemma 2. (i) Each PN(ô) is a linear combination of the elements of S over

the field K(to0, ••■,cof_1). (ii) In one such representation of PN(S) as a linear

combination of the elements of S the coefficients have absolute values less than

K™ for a constant Kt independent of m, (N = ml — h).

Proof, (i) From (2) we have

PN(S) = ¿ jc z"(4>(z)Ymf(z)dz.

By the residue theorem applied to PN(ô), combined with (1) the power series

expansion of f(z) about the origin and (4) the differential equation, which may

be used to express all derivatives of/(z) as a linear combination of the elements of

{l,f(z),---,Dk~1f(z)} if z^O, we see that

km-l   (-1

(12) iV<5) = £+   I     2   6,jDrf(œj)
r=0    j=0

where s and the srJ are in K(to0,■■•,(o,_i).

(ii) Recalling (4) we see that for r > k we have

(13) Dr~k(l,   BiziDi-z)f(z) = Q.

We define (") where a is a nonnegative integer and y is a real number, to be

the coefficient of x" in the binomial expansion of (1 4- x)a. Expanding (13) yields

(14)
iii.sJT)^.^"-'])

- zD'~k -(r- kW"-1] f(z) = 0.

Setting j = p + i - k, rearranging the double sum, and solving for Drf(z) we

obtain if z is nonzero,

(1/'W-T fií.[¿*U7-\) (*-'»)<!'+<-Mo*-*"'])
- z-*+1zy-* -(r- k)z~kD'-k-l ) J (z).
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Using (15) and (4) we may write for r = 0, 1, ••• that

Vf(z) = Al^tf-'Hz) + - + Ark_qDk-f(z) + ■■■+ Ar0f(z) + A'_t

where the Ak-q are in K(z) (1 = q — k + 1).

We shall use (15) to show that

(16) \A'k_q\i(K2ry

where Í = q — k + l,K2 depends on z, and z is assumed to be nonzero. From (15)

we see that

D'f(z) = yr^D'-'Kz) + ■■■ + y^D'-o-'Kz)

if r > k, where

l7r-p|-"7B7f 2^max(1'lzl )+     \Bk\

(17)
+ (r-l)max(l,|z|-,I)^(K3r)i'.

(The inequality

is useful in (17).) Choose K4 such that | Ark_q | ^ (K4r)r for 0 ^ r^fc, l^q^/c + 1.

Then choose K2 = k- max(K3,K4). Using induction on r we assume that for

r-i = k, |^:J|^|/C2(r-l)|r_1where 1 = q = k + 1. We see

\a\.,\ ú Z1 |rr-,||4[:?|
p = l

g   I   (K3r)p(/C2(r-p)r-"
p = i

it+i
^   Z   (K2r)r • kTp = (K2r)T.

p = i

Hence (16) has been established.

Let Tj be the coefficient of Drf(o)¡), 0 í£ r — mk — 1, 0 — j = t, in the evaluation

of Pw(<5)by the residue theorem. We shall show that | ryj ^ r~rK". Choose u}

such that | cOj-1 > 2u¡ > 0 and | co,- — coj | > 2uj for all j' ^ j. Let Cj be a circular

path about (Oj in the positive direction with radius u¡. Then

j_ r f(z)zhdz = «ç1 gyçtoj) /j_ r (z_-»^Vdz_\

27TÍ Jc, (flz))»      ,ï0   '    r\      \2ni JCj      (0(z))»     j '
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'  ■"      r!      '   «.(*'+*)«        =        6'

for Qz%ji%t — 1. If we choose ZC2 such that (16) holds for z = co0, •••,ca(_1

simultaneously, then

fcm-l

max 1^1 g    2   (K2r)' • (/"'££) g Kmn.
r = 0

We shall conclude the proof of (ii) by demonstrating that I e J ̂  ^s-

Let e' be the contribution to e from the evaluation of the residues at u>0, •■•,oj,-1

(due to the inhomogeneous term 0(0) in the differential equation (4)). The inequality

(18) applies to |e'| as well as |rj|. Seta" = e — e'. Let ur = min{|uJ|;0;S;^fc — 1}

and let C, be a circular path about the origin in the positive direction and with

radius u,. Then

J_  f /(z)zVz      -¿>_i_ /j_   r Z^dz_\

1   ; " 2*i Jc, (4>(z)Y    - d% ^  0(e)   \2ni Jc.i<Kz)y}'

hence
»1-1     J + A+l

|e"|< £   ÎÎ-<k"
1    '-„7o ««t«+*)â    8

This proves Lemma 2.

Lemma 3. Let (¡>(z) be a monic polynomial with rational coefficients of

degree fe > 1 which has only rational roots, none of which is a positive integer.

Then there exists K9 > 0 such that the least common denominator of the fractions

(fem)!|nsr=i(0(s))"1|/<"' r = \,2,-m is less that Kg.

Proof. Set (¡)(s) = n*=i(s - "¡)- Let b¡ be the least positive integer such that

b¡r]i is integral. We see that

tP^-U•(£)'■ Ik)' ■ n (-r-^—-)■n «»)        v     Vl"     ■■' v n (v-Mi) '
's=l s = l

The factor (fem)!(m!)-t is a multinomial coefficient, hence an integer. If we can

show for each 1 ^ i rg fe that there is a K10 such that the least common denomi-

nator of the fractions H|rj£=1(b¡s — 2>¡n¡)|-1 for r = 1,2,—,m is less than

K7o> we "will have demonstrated the lemma.

We divide the set of all primes into three classes. Class 1 consists of all primes

which divide b¡. Class 2 contains all primes less than m + 1 which do not divide

Hence,

(18)



74 C. F. OSGOOD [May

b¡. Class 3 contains all primes not in classes 1 and 2. We note that no primes in

class 1 dividef]r5_ i(Pfi — b¡r¡¡) for r = l,2,---,m. For primes p not in class 1 the

congruence

(20) biS - b-rii = 0 mod pd

has a unique solution s0 where 1 = s0 — pd, for d = 1,2,•••. Hence the number

of solutions of (20) for 1 i£ s rg r is between [rp-1*] and [rp-'1] + 1, where [

denotes the greatest integer function. The number of solutions of s s 0 mod pd,

1 — s = r is exactly [rp-d]. We reduce r!| FIs = i(^£s — b¡n¡)\ ~l to lowest terms.

Then for all primes p in classes 2 and 3, we see p does not divide the numerator

and p divides the denominator at most [(log(fc,r + | b^i |)) /log p] times. Let

T2(m) be the least common multiple of l,2,---,b¡m + \bini\. (By Chebyshev's

theorem, [8, p. 340], | T2(m)| < K^t.) Let T^m) be the factor in JJUiibiS - b¡n¡)

due to primes of class 1.

Let T3(r) be the total factor in ns = i(^¡s — M«) due to primes of Class 3. Note

that  T3(r)  divides   T3(r +1).  Thus  the  least  common  denominator  of the

r!¡f]' = 1(bis — bini)~1\ for r = l,---,m divides T2(m) • T3(m). There are only a

finite number of primes p in class 1 and each such prime p divides m! exactly

I^jfmp'^m/^-l) times. Hence Tt(m) = IC?2. We note that

T3(m) ml i

T,(m)

Hence

T3(m) = Ti(m)

fl   (biS-b^i)
i

)«
K7:

ml

This proves Lemma 3, since we have seen

T2(m)-T3(m) = (Ku-Kl3r.

Lemma 4. As before we write PN(8) = ~LrJ£rjDrf(o)¡) + c for 0 = i^k- 1,

0 =j = t — 1. (i) There is a positive integer v(m) < m*m/í¡4 such that v(m) • r.rj

and v(m)e are algebraic integers, (ii) |P¡v+u(¿)| ^ (K15m~k)m for 0 = a = (k + 2)l

where N = ml — h and I = kt + 8.

Proof, (i) Let E be a positive integer such that E • a»/*, E • 0(0), E • Bh and

E ■ Bfc-1 are all algebraic integers for 0 = j = t — 1, 0 — i = k — 1. From (4) and

(15) we see that for r = k

EDrf(coj) =  Z   Gyy-'f(a>j) + G0
p = i

where the Gpr, 0 g p ^ k, are algebraic integers. Hence
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Em«-»Drf(coj) =  2   HpDr-pf(coj) + Hrk
)=0

where the Hrp are algebraic integers. Recall that V) was defined to be the coef-

ficient of Drf(coj), 0 iï r i£ km — 1, in the evaluation of PN(ô) by the residue

theorem. We shall set vt(m) = Em^k~1} ■ v2(m) where r;2(m) is a positive integer

less than mkmK"6 and v2(m) • Vj is an algebraic integer for Q&r&km — l,

O^j^t— 1. Then vl(m)er¡ will be an algebraic integer for 0 ^ r ^ k — 1,

0 i%j ^ t — 1. Also v^m) • e' will be an algebraic integer where s' is the con-

tribution to e from the residues at co0,-■ -, co,_ 1. Finally we shall determine a positive

integer v3(m) < X™7 such that v2(m) • v3(m) • e" is an algebraic integer, where

e' + ê" = e. Then we may set v(m) = v^m) ■ v3(m).

Let L be a positive integer such that L- (co¡ — coj) ~1, L • (coj) ~ , and L • coj are

algebraic integers, where i ¿j, 0 ^ i £í t — 1, and 0 ^jF £¡ t — 1. We set

»2(m) = (km)! • Lk,m+km+k' < mkmKmi6.

From (18) we can conclude as before that

J     r!  2k i JCj

(z - a)j)rz"dz

<Kz)

for O^r^mk —1, 0^;^i — 1. Define the polynomial p(x) by p(z — coj)

= Lkt ■ zh and note that since h ^ ki that p(x) has algebraic integral coefficients.

We see that

•¿JJ^-j--- *-*•( n (i +i=a-)f

The factor in square brackets before the integral is an algebraic integer as is

seen by using the definition of L; the integral is seen to be an algebraic integer by

use of the residue theorem and the definition of L. Set v3(m) equal to the least

common denominator of the fractions (km — l)!([]f=10(e))-1forO ^ d z% (km —I).

From Lemma 3 we know that v3(m) < K™7. Referring to (19) we see that

v2(m) ■ v3(m) ■ 8' = L«<+->-"- (km) • V (fcÜtoEÖ. )
"=° V      n   0(e)       '

k- f L    z     dz.
2n¡ JcMzyy
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Also we have

2*iJc, (*(*)>" IMUJj        2*1 JCtL    Z

Using the definition of Land the residue theorem, we see that tf2(m) • u3(m)£" is

an algebraic integer,

(ii) We must estimate |Pm,_Ä(5)|. Without loss of generality we may assume

o)j\ < mkß for 0 =j = t — 1. Let C be a circle of radius mk. From (1) we see that

f(zk)\ =K18\z\. Hence

, , 1     r/(z)z»rfz   ,m^".JC8 k   ,
lP»-^|-   2^rJc  (i(zF" -    (m/2)*-'     -(Xl9m   )  •

If  m   is   sufficiently   large   (Kigm~k)ml   is   monotonically   decreasing.   Thus

| PN+a\ = (K15m-kr' forO = aS(k + 2)1.

Recall S = {Drf(ojj); 0=j = t-l,0 = r = k-l}u {1}. Also recall 8 = 0 or 1

and l = kt + 8. We define the height of a linear form to be the maximum of the

absolute values of the coefficients of the form.

Lemma 5. There exist linear forms gN(8) for N = 1,2, ••• in the elements of

S with coefficients in K(co0, ■■•,cot-1) which possess the following properties:

(I:+ 2)/

(i) W«j) =    S    yrJa gN+i(8)
a = 0

where 0 = r = k — 1 and each yrjx belongs to K(œ0, •• •,«,_¡).

(ii) // either 8 # 0 or 0(0) * 0 ifcen

(fc + 2)l

1 =   Z    yxgN+a(8)
* = 0

/or numbers ya in K(o}0,---,co,.¡).

(iii) //¿ = 0and0(0) = 0 then each gN+x(0)for 1 ̂  N < oo andO = a = (k + 2)1

has no constant term.

(iv) The height of gN+x(8) is less than (K20m)mk for 0 = a = (k + 2)1. The

coefficients of gN(8) are algebraic integers for 1 = N < oo.

(v) For every e > 0 there exists an N0 such that if N = N0 then

\gN+x(8)\èl(K20mrkr(l-1)+c.

Proof. Let L= K(m0,•■■,cot^1). Set gN(8) = v(m)PN(8). (By Lemma 2, part (i)

the number PN(8) was shown to equal a linear form in the elements of S over the

field L.) We shall demonstrate (i), (ii), and (iii) for PN(8), hence also for the gs(ß).
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(i) We need only prove (i) for N = 1 since we may obtain part (i) for N = N' > 1

by applying Lemma 1 N ' — 1 times. We see that

zr/K) = j_ f    f(z)dz      j_ r
K   ' r! 2ni ]c(z-a>jy+i      2ni J c

Q(z)f(z)dz

(¿(z))'"

where Q(z) belongs to L[z] and the degree of Q(z) is (r + l)(/ —1). Then

Q(z) = l; = oß,(z) ■ (4>{z)f for ß„(z) in L^] where 0 ^ degree (Qp(z)) < I for

0 ^ p á r. Hence

yf(o>j) „ ¿ j_ r
H „=0 2ni Jc

W»y) _ v     !    f   Q¿*)-fíz)dz
le   0Kz))'+1-"

Each

/(z)Ö,(z)dz

Í«¿ J<27TÍ  Jc   (</>(z))'+l-"

is a linear combination of the elements of {PN(ô); (r — p)l < N ^ (r - p + 1)1}.

(ii) Again we need only demonstrate the result for N = 1. Assume 0(0) ^ 0.

Then by (4) we have

k

1=     1
0(0)

0(0)

1    f   0(Q)a-z   _    1    .   1    f   (,?, BjZÍDÍ - Z)mdZ

2ni Jc (z- £»o)     0(0)    2ni Jc (z-co0)

j        (l   B^ + o>o \fiz)dz

2ni Jc (z - co0)

<IM- . »f(z)dz       _       t     rTP^f(z)dz
i    f _e¿_f       (z - o>o)      2-     Ie"0   J_ f (z-mo)

'  0(0) ,70 2*i Jc 4>(z) 0(0) 2*1 Jc <p(z)

Using repeated integration by parts and collecting terms we may write

2*¿JC    (tf>(z))*+<    '

where ßi(z) belongs to L\z] and degree (Qi(z)) ^ (k + 1) • / - 1. By the proof of

part (i) then we can express 1 as a linear combination of {PN; 1 ^ N ^ (k + 2) • I}.

Assume 5 = 1. Then

(22) » r ¿a*, »f
2ttj Jc     z 27ti Jc

(&,) /(z)az

«z)
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from line (1). The extreme right side of (22) can be expressed as a linear combi-

nation of {PN; 1 g N = I - 1} over L.

(iii) In writing

¿Jc/(z)z^(z))-^z

as a linear combination of the elements of S we first evaluated the integral by the

residue theorem. If «5 = 0 there was no pole at 0. About the points Wj, 0^j = t — 1,

we used (4) to express Drf(u>j), 0 = r — km — 1, in terms of the elements of

{Dj(ojj),0(0); 0 = r = k-l}.U8 = 0(0) = 0 then PN(0) has a zero constant term

foriV= 1,2,-.
(iv) By Lemma 2, part (ii) and Lemma 4, part (i) we see that the height of gN(8)

is less than or equal to (mkm • K%) ■ (K")^(K2lm)mk. Hence

hàght(gN+a(S)) = (K20m)mk

for 0 ;£ a - (k+ 2)1. The coefficients are algebraic integers by Lemma 4, part (i).

(v) |gN+a(<5)| £(Ki5m~k)m' ■ (K20m)mk by Lemma 4, part (ii) and Lemma 5,

part (iv). Hence, for 0 g a = (k + 2)1,

\gN+a(8)\<L[_(K20mrr°-int

if N ^ N0.

IT. Proof of Theorem I.   Set 2i, +t2 = t3. Let

{vji0£j£ts- 1} = {œ0,-,(on_1,oj0,-",uj,l_i,œtl,—,(o,l+l2-1},

where the bar denotes complex conjugation. We apply Lemma 5 to see that there

exist linear forms gjv(l), N = 1,2, ••• in the Drf(v¡) and 1 with algebraic integral

coefficients in K, (0 = r ^ fc — 1, 0 = j — t3 — 1). Let F be the vector space over K

generated by the Df(v¡), 0 g r = k — 1, 0 = j ^ f3 — 1, and 1. As 8 = 1 here,

Lemma 5 implies that for every positive integer N the gN, gN+i,"m,gN+(k+2)(kt3 + i)

span V. Let r = [V: X]. Then r 2: 1. Choose a basis for V of the form e0

= l,c,,"-cr_, where e¡ (í^i = T-l) belongs to {Drf(vf); 0 ^ r g k - 1,

0^j = t3 — 1}. Now there exist positive integers K22 and K23 such that for every

positive integer JV, K22 • gN(l) is a linear form in {e0 = 1, e|,---,er_,} where the

coefficients are algebraic integers and

(23) height (K22gv(l)) è K22(K20m)km = (K23m)km.

To see (23) one need only use the dependence relations which exist among the

Drf(vj) and 1 to express each gN in terms of {e0 = 1, eu -s^r-Jand then observe

how the coefficient of e¡ for 0 — i = F — 1 is generated. For every £0 > 0, if JV is

sufficiently large, then
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(24) | K22fi»(l)| á l(K23m)kmy<ka^<°.

Let P],---,pr-i be numbers of the form a + b(— n)1/2 for a and b integers.

Let V* be the dual space of V We define e*, 0 ;£ i ^ T — 1 to be the element of F*

defined by efte,-) = ô{. Then e* + %í=¡(p¡lq)ef is a nonzero vector in V* for any

choice of the p¡. Hence there exists a0 such that 0 g a0 ^ (k + 2)(ki3 + 1) and

(25) («S + ï ^*î ) • (K22 ■ gN+Jl)) # 0.

If we set K22 • &,+„„(!) = 2, = }yJ-e/+ y0e0 then (25) may be rewritten as

r-i

2  ^ + y„*0.
i -1

This implies that

r-i

2   Mi + v
a      7o

>

since here L= K = Q(( - n)1/2). Hence if we know that |ZC22 • gN+aa(l)\ á 1 ßq

then

(26)

Thus

(27)

K22BN+J.I)
1-1   fl

1

2a

lí/T'       «/  I-2a'

We let y = max, | y, | for 0 = í g T - 1. Observe that line (27) implies that T ^ 2.

Then

max I e, — —     >    _  .„—77—.
,   I   '        a      -    2a(T-l)y

If e, = D'fivj) let Pt = pr]; if e, - Drf(c5j) = (D7(o>y))- let ft - ft,,. Then

(28) max
r.j

D'f(coj) - hL ^ max
<

ef -
P¡ 1 1

2(T - l)ay - 2kf3ay

where 0 g r = fc - 1, 0 = ; = í- 1, and 0 ^ i = T - 1.

We take e0 < kt3 and choose ^ > 0. Then it will be shown that if a is suf-

ficiently large we can always find an m such that

(29) çiqft+nvm-*) ^ (K23m)km^ (2q)il(k"-eo).

We assume that (2a)1/(k,1"eo)> (.K2*3) and choose m > 1 to be the largest integer

such that

(2a)1/(*'3_£0) è (^(m - l))*0""1* -
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We note that if m is sufficiently large, say m = m0, then

[(K23(m - l))*<m-1>]1+^(K23mr.

If q is sufficiently large then we will have m — m0. Then it follows that

(K23m)km^(2q)llik,3-':o)

and
(2(?)U+*.)/<*<3-eo) ̂  [(x23(m - !))*(-»-D]i + «. ^JC^ro)*"*.

This demonstrates (29). From (24) and (29) it follows that for sufficiently large q

we can find an JV with

(30) hdght(K22gN+x(l)) = (2?)<1+«>>/<*"-«'>

while

\K22gN+x(l)\  S Tq

for all 0 = a g; (fc + 2)(/cr3 + 1). (We note that q large implies that m is large

which implies that JV is large.) Then in (28) we may assume that

(31) y ^ (2^)-(l+o+^)/(fcr3-£o» _

Thus

(32) max
T.J

D'fta,.) -EïL     = -¡L(2q) -tt+(!+••>«*»-«•»
q       *<3

if q is sufficiently large. We choose £0 and £: such that

1 + e, 1       £

kt3     £q     kt3      2

Then if q is sufficiently large

(33) max I Drf(co})      P'
r,J q

>      -U + l/*f3 + e)

From (33) it follows that there exists c(e) > 0 such that

max I Drf(o)j) - &■   = c(e)q ~(1+1/tos+e)
r.j ' q

for all q.

Proof of Theorem II. Let || x || = x — [x]. Khintchine's transference principle

[9, p. 80] states that if 0l5 ••■,6„ are any irrational numbers and col=0 and oj2 2; 0

are the respective upper bounds of the values co,co' such that

\\ul61 + -+une„\\ =  (max|u,|)"

max|x0j g|x|-«1+'a')W



1966] SOME THEOREMS ON DIOPHANTINE APPROXIMATION 81

have infinitely many integral solutions, then

0)l
(34) o, ^ co2 Z

n2 + (n — l)co1

I claim that because of Theorem I we may apply Khintchine's transference prin-

ciple to the numbers,

{0y;O Sjúh- 1) = {Re Drf(coj); 0 á j á h - MS r ¿ k - 1}

ujImD/(a>y);0g.gf_1>ogrgfc_1|

u{D'/(û)y); tiajáf-l. 0 = r^fc-l}.

Theorem I implies that for x a nonzero integer

(35) max || x0; || ^ c(e)x~a '+ "/(l"5).

Elementary theorems on diophantine approximation tell us that the 6¡ for

0 5j j r¿ kt3 — 1 are irrational because of (35). Using (35) we see that co2 ̂  0.

But co2 5; 0 always. Hence to2 = 0. Then (34) yields

(36) to,>0>-s-^i-.
K   ' ' -    - (ki3)2  + (fer3  -  l)«,

Hence to, =0.

Thus we see that for every e > 0

(37) I «coo+ -+i<*,3-t-¿Will = (maxl^l)"^"

has only finitely many solutions where w0, ■■-,ukti-1 are integers. Let the Arj

be in J. Define

||* + X-n),/2|=max(||x||,|M|n,/2).

Then from (37) we see that

(38) 2    2 ^07(^)1 g (max jAr;|)-»"-'

has only finitely many solutions. (Separate line (38) into two inequalities and use

(37).) Theorem II follows easily from (38).

Proof of Theorem IV. From Lemma 5 we know that there exist the linear forms

gN(0) in the Dlf(r}) with rational integral coefficients and zero constant term

for N = 1,2,-. Also

heightfev^iO)) ^ (K20m)km

and for every e > 0 there exists N0 such that if N ^ N
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\gN+a(0)\^í(K20m)kmr-1+c)  .

Let us pick i2 such that 0 = i2 g k - 1 and Dhf(r}i) ± 0. (Since equation (4) is

homogeneous and/(z)féO this is possible.) Then {gN(0)ID'2f(rJt); JV = 1,2,•••}

is a set of linear forms in 1 and {Df^^/D'YO-j,); 0 = i^k-l,0^j = t-l,

(Uf) # (hJi)} • If Fis the vector space over Q spanned by 1 and the JD'/(r_/)/D,'2/(ri/-1)

then for every JV = 1 the {gw+a(0)//)''2/(rJI); 0 g a g (fc + 2)(fcf)} spansV. Applying

the method of proof used in Theorem I to the linear forms g^O)//)'2/^,) yields

the result : For every £ > 0 there exists c(e) > 0 such that

(39) max
i.j

D'firj)        Pu

D»f(rh)       q
>c(£>T1(+I/(*'-1) + £)

where 0 = i — k — 1, Ogj'gi — 1, (i'J) ^ (i2, i,). Since any r real numbers can

always be approximated infinitely often better than g-(l+1/>—*) we see tnat

(39) is impossible if any of the numbers being approximated are rational. Hence

Dlif(ru) # 0. Then we may take i2 = i¡. This proves Theorem IV.

Proof of Theorem V.   As in the proof of Theorem II from Theorem I we

can   apply   Khintchine's   transference   principle   to   the   irrational   numbers

ßy(0)/D"/(ri.) where (Ufi+ihJt)- % Theorem III we see that o»2 = 0,

hence it follows co, = 0 and we have: For every £>0 there exists c(e)>0 such that

(40)

k-l   i-l

z  z      WM
¡"o A     yD'./(ryi)

=  c(B)H-(k'-1+')

where the A¡j are integers which are not all zero and | Atj | = H. Multiplication

of (40) by D"/(ryi) gives Theorem V.

Proof of Theorem III. Let co0, •••,co,-1 be the roots of 0^(z). Then from the

calculus of finite differences we conclude that

(41) sd= Z1 'z yq]d"(<o¡)i,
î=0  /-O

where the coefficients yqj are unique and belong to the field L — Q(co0,- •-,(«,_!). Now

i-l   i-l

»        o¡            »    Z    Z   yqjdq(o}j)      k-1 i-i        /0o     j«/,., y1   \

Mt- £   ~jIá—= Z *=*-«=«-=Z    Z   yqJ (Z   Ä..
d=o n ö(e)   d=°    n «M      "=° j=°   Vd=° n «wi

e = l e = l e = l

Thus if

/(*) = S
d = 0

z'

n ö(e)
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then

co jq  d *-l

= (zd)"f(z) =   2   oi(z)///(z).
<-o  ^    0(g) r=0

e = l

Hence where the aqr(x) are polynomials with rational coefficients,

P¡ =  21 'l ( 21 y,XK)WK)
r = o y = o \« = o /

(42)

=   2  '2   B;rD7(o,;)
r = 0   /-0

where

*-i
By, - 2 yqji4(o)j).

? = 0

Let coJl denote throughout the rest of this proofs • íu¡ where a is some element of

G(L/Q). We shall show that Bjir = a ■ BJr. From (41)

« = 0  j = 0

But the coefficients in (41) are unique. Hence ayq] = ywV Clearly ff «*(»,) = txvr((oJt).

This shows that tr • B7> = B,ir.

Let the degree of the minimal polynomial with integral coefficients satisfied by

coj be Xj. Define ôfp in Q by

(co¡f =ï ôj^y.
p=0

Then there exists K24 such that

Suppose that #(z) = 2^°=0Cd2d is an entire function. Then

g(û>y) =2 cd   2   ¿í>/ =2      2 C^Jp («,)".
<(=0 \p=0 /        p = 0\d=0 /

Where g(z) is taken to be Drf(z) we define

A'JP= 2  CAV
<f = 0
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Then

Vficoj) = í'   A%(cojY.
p = 0

Hence from (42) we obtain

(43) pf =   2      2    2   BjJfOjYA'j,.
p=0     r = 0   j=0

We note that ArJlP — Ajp. Let L,-be the least normal extension of Q which contains

io¡. Suppose [Lj : Q] = l¡.  Then

(44) p, =   2' í *Z'   21 ^ • trace LjlQ(BJr ■ a®Afp],
j     Lp = 0   r = 0    'j J

where the summation on j is over a set of representatives of the conjugacy classes

of the to0, ■•■,to,_1 over the rationals. There are k • t distinct numbers (at most)

among the A/p, and we note that the coefficients of the Ajp in (44) are rational.

It is now possible to outline the course which the remainder of the proof will

take, (a) We shall show that for each Arjp

CO o

" = °n   0(e)
e= 1

where Sd is an appropriately chosen rational valued sequence satisfying (Ol(E))kSd

= 0. From this it follows that each Arjp is a linear combination of the p¡ with

rational coefficients. (We recall that the S'd for 0 á i = kt — 1 are linearly in-

dependent.) (b) We shall show the statement of Theorem III, part (ii) for the

distinct Ajp (not the p,) from which, by (44) and (a), it will follow for the p¡.

Using Khintchine's transference principle with to, = 0 we may conclude co2 = 0,

i.e., part (i) of Theorem III holds for the p¡. Now to show (a). We see that

-   d-jd-r + DS'j;'
air -   ** d •

u   0(e)

We observe that ôjprtakes values in Q. From the calculus of finite differences we

know that if

0,(E)^;r = o

then
(0,(E))V-W-'- + l)4"r]=0

for 0 = r = k-l.

Consider the equation

(45) codr=  2   c*;TcojY
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and the equations obtained from (45) by replacing to,- by its conjugates. Let us

define the matrix A by

(46) A = (ofi/j)

where p is the column index (0 g p < X¡ — 1), i is the row index, and the afo¡

(O^i^ Xj — 1) are a complete set of conjugates of co,-. Then by the nonvanishing

of the Vandermonde determinant we see that A is nonsingular—hence we may

write 8j~r as a linear combination of the (oi(oJ)d~r. Thus

(O^E^r^O.

We note that up to this point we have not used the assumption that the roots of

0(z) are rational.

To show (b), that the distinct A]p satisfy part (ii) of Theorem III, we need to

produce linear forms hN(8) in the Arjp (and 1 if 8 = 1) which have the properties

(i)-(v) of the forms gN(8) defined in Lemma 5, but with the AJ. replacing the

Drf((Oj). Given the existence of such forms hN(8) we can set 8 = 1 and conclude

Theorem II for the Arjp. As a first step we shall show that the linear forms gN(8) in

the Drf(a>j) may be rewritten as linear forms in the ArJp with rational coefficients.

Now gN(8) is an integral multiple of (lßni) §cf(z)zh((j)(z))~mdz where

JV = (kt + 8)m - h.

Recall that

0(z)= (n\z-co;))'-zä.

We note that

(z-cojf-dz

J_   C f(z)z"dz _ _ 1_   r ^ ; ^(z-a)y) + fl)j

2ni Jc ~(<Kz))m " 2ni Jc (z - co,)**

from which it is not hard to see that the process of evaluation of the residue at ojj

and also the use of the differential equation (4), at z = co,- ̂  0 to express the

residue in terms of {Drf(oj¡)\ 0 — r-—k — \} will be such as to yield conjugate

coefficients at conjugate points, i.e., if

(47) gN(8) = Z1 'Z   BrJD'f(o>j) + £
r = 0   j=0

then o-(e,j) = crjl. Now c is rational since the residue at z = 0 is rational and if

s'j is the contribution to £ from the residue at cj, then as) = £j\. Hence

(48) gN(8) = Z' ( Z1    2 ' ^ trace L, I ¿$,rf¡M,) + E>

where the sum over j indexes a set of representatives of the classes of conjugate
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elements of too.—.to,.,. If M is a positive integer such that M ■ to,- is an algebraic

integer for each j, set hN(ô) = M ~lgN(ô). Then hN(ó) is a linear form in the ArJp

and 1 with integral coefficients.

We wish to show the analogue of the statements (i)-(v) in Lemma 5 for the

njv(<5). Parts (iv) and (v) hold but for different constants. Parts (ii) and (iii) hold

for the hN(ô) as for the gN(ô). To prove the analogue of (i) we need only show

that A',, for 0 ^ j ^ t - 1, 0 ^ p ^ A, - 1, and 0 ^ r g k - 1 can be expressed

as a linear combination with rational coefficients of the gN+x(S), hence the hN+a(S),

for 0 g a ^ (k + 2) (fci + <5) in the case N = 1, since Lemma 1 will then yield

the cases N = 2,3, • • •. Now

ma,* - H S    «z)dz   -JL f /(Z)L (7=^)3   dz
UnWj)      2ni Jc (z-to,)'+i     27ii Jc (<Kz))'+i

zy/Ko =      2      YfNgN(ô)
N = l

where oYfN = y/lJV. Recalling the definition of the matrix A, from (46), we see that

(A%,-, a;,Aj_,) • ̂  = (D7Kto,),-,D7(ffAj_,to7.))

where a0íOj = oj¡, Gj^coj, •••,<t^_1coj-  are a complete set of conjugate numbers.

Hence writing

a;,= 2'*y>7K-)

where the sum is over a complete set of conjugates, we see that

Consequently
aXjp = xhp

AJP - 2 Xj/lj trace LJ/Q(Z}í,ypgJV(Ó).
N = l

This proves Theorem III.

Proof of Theorem VI. We need only set ô = 0 in the proof of Theorem III

and change the references to Theorems I and II into references to Theorems III

and IV respectively.

Theorem VI implies Theorems IV and V obviously. It is less obvious that

Theorem III implies Theorems I and II, since the a>¡ in Theorems I and II may be in

Q( - n)1'2 but not in Q. We set

OAE) =   ( 'ff (E - co,) (E - coj)) " ft       (E - coj).
\;=o /   j=tx
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Our k ■ (f j + 2/2) linearly independent sequences consist of the

d   ,    — d d       —d
CO:    +   CO; CO: — CO:

d\l(d - a)! -±-~! and dl/(d - a)\      '_     '

for 0 ^ a = k - 1 and 0 =j g r, - 1 along with the d!/(d - a)!co/for 0 ^ a = k-1

and r, ^ j :g r( + t2 — 1. Applying Theorem III under these circumstances yields

Theorems 1 and II.
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