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Let P be a p-group which acts faithfully as a group of automorphisms on solv-

able p'-group H. In this paper we discuss the existence of an element he H having

a "small" centralizer in P. We give two sufficient conditions for the strongest

possible result, that is the existence of an element n centralized in P only by the

identity. The first is that the pair (p,n(H)), where n(H) denotes the set of prime

divisors of | H |, be nonexceptional or essentially that it involve no Fermât or

Mersenne primes. The second is that the orbits in H under action of P all have

size smaller than pp. In any case we show that for some element n, | (£P(/i) j g | P |1/2.

We apply these results to two distinct subjects. First we generalize a theorem

of Ito which concerns the minimum number of Sylow p-subgroups of a solvable

group G which intersect to £)p(G), the intersection of all of them. We show that

if (p,7t(G)) is nonexceptional then there exists two such Sylow subgroups which

intersect to DP(G). In any case there always exist three which work.

Second, we obtain reduction theorems for the study of groups G all of whose

absolutely irreducible representations have degrees which are powers of a prime

p. In [3] certain relationships between the biggest of these degrees and the

existence of "large" abelian subgroups of G were studied. We show here how in

most cases these problems can be reduced to a study of p-groups.

1. Nonexceptional prime pairs.

Definition. Let p be a prime and n a set of primes. We say the pair (p, n) is

nonexceptional provided it is not one of the following three types.

(m,2): p is a Mersenne prime and 2en.

(2,m): p = 2 and n contains a Mersenne prime.

(2,/): p = 2 and n contains a Fermât prime.

In this section we prove the following result.

Theorem 1.1.   Let p-group P act faithfully on solvable p'-group H.

(i)   If (p,n(H)) is nonexceptional then there exists he H with C/>(n) = {l}.

(ii)   If  (p,n(H))   is   not   type   (2,f)   then   there   exists   hj^^^eH   with

GP(n,) ndp(n2) = {1} and the product ¡£P(h¡)(iP(h2) being an abelian group.

(iii) In any case there exists h1,h2eH with Gp(n,) oGP(n2) = {1}.

Presented to the Society, August 3, 1965; received by the editors February 19, 1965.

(0 This research was supported, in part, by funds received under NSF Grant GP-3933.

99



100 D. S. PASSMAN [May

We can of course view this problem slightly differently. Let G = H xaP be the

semidirect product of H by P. Then H is equal to §>(G), the Hall p'-subgroup

of G, and P, a Sylow p-subgroup, acts faithfully on H. The above theorem there-

fore has an obvious restatement in this context. It is convenient in the course

of the proof to take this point of view. We discuss first several lemmas which

allow us to reduce the proof to a study of certain special cases. In the following

all groups are assumed to have normal solvable Hall p'-subgroups. This property

is of course inherited by quotient groups and subgroups.

Lemma 1.2. Let & be a property of groups which is inherited by subgroups

and quotient groups. Suppose we wish to prove that if P = ®P(G) acts j'aith-

fully on&(G) and if G has property & then one particular conclusion of Theorem

1.1 holds. Then it suffices to assume that §>(G) is an elementary abelian q-group

and P acts irreducibly on it.

Proof. Since // =$j(G) is solvable so is G. Moreover P acts faithfully on //

so that 3(G), the Fitting subgroup of G, is contained in H. Since 3(G) contains

its centralizer [5, Theorem 7.4.7], P acts faithfully on 3(G). Therefore it suffices

to prove the result for the group P5(G) or equivalently we can assume that £)(G)

is nilpotent.

Let H be nilpotent and let <3> denote its Frattini subgroup. By Theorem 7.3.12

of [5], P acts faithfully on ///$. If h is the image of h under the homomorphism

//->///$, then $P(h) 2 (£P(h). Hence it suffices to assume that 0 = {1}. Now

P acts on each Sylow subgroup of H and so by complete reducibility

H = R ! x R2 x • • • x Rm where each R¡ is an elementary abelian g ¡-group acted

upon irreducibly by P. For each i we write H = R¡ x Rf where R* is the product

of the remaining Rj. Let P¡ be a Sylow p-subgroup of (£G(P>¡). Then

&G(R¡) = HP¡ = R¡Ni where N¡ = RfP¡. We see easily that R¡ n N¡ = {1}

and that N¡ is normal in G.

Set G¡ = G/JV¡. Then G¡ is a homomorphic image of G having the structure

described in the statement of the lemma. Since (£c(#) = H we see that G is con-

tained isomorphically in Gj x G2 x ••• x Gm in such a way that

§(G) = §(Gi) x §(G2) x •■• x §(GJ. If the result is true for each G„ it is clearly

true for G.

Definition. Let P be a Sylow p-subgroup of G and let H=§,(G) be abelian.

(i) Let &i(G) denote the number of conjugacy classes a of H under the action

of P which contain an element h with (£P(h) = {1}.

(ii) Let k2(G) denote the number of conjugacy classes a of H which contain

elements ht and h2 with (ipQi^ nC,P(h2) = {1} and CCP(Ä1)(£(fc2) abelian.

(iii) Let k3(G) denote the number of conjugacy classes a of H which contain

elements huh2 and h3 with G^AJ n£P(h2) = {1}, ap(h,) ndP(h3) = {1},

^¡.(hj) nZ(iP(h2) ¥= {1}, (£p(A1)nZ(ip(/i3) = {1}. Here Z is the center of P.
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Since all Sylow p-subgroups of G ate conjugate by elements of §(G) and ¡5(G)

is abelian, it follows that k¡(G) are indeed functions of G.

Let G ~ C denote the wreath product of G by a cyclic group C of order p.

If £j(G) is normal and abelian then so is §(G ~ C).

Lemma 1.3.   Let p>2.

(i)    /v,(G) = 1 implies fc,(G ~ C) = 0,

(ii)   /c,(G) ä; 2 implies fc,(G ~ C) ^ 2, and

(iii) k2(G) = 2 implies fc2(G ~ C) = 2.

Lemma 1.4.    Let p = 2.

(i) /c,(G) = l

(ii) fe1(G) = 2

(iii) kx(ö) = 3
(iv) fc2(G)^3
(v) fc3(G)^l

mplies fc,(G ~ C) = 0,

mplies fc,(G ~ C) = 1,

mplies /c,(G ~ C) 5: 3,

mplies k2(G ~ C) ^ 3, a/u/

mplies k3(G ~ C) ^ 1

Proof. Set G* = G ~ C. Then G* has a normal subgroup N* = G, x ••• x G„

the direct product of p copies of G, and G* = JV* xCTC where C acts on N* by

cyclically permuting the G¡. Clearly ff* =§(G*) = Z/, x Z/2 x ••■ x Hp where

H¡ = ¡5(G¡). Let a¡ denote a conjugacy class of ZZ¡, under the action of G¡. Then

clearly the conjugacy classes of H* under the action of N* are all of the form

a* = oc, x a2 x ••• x ap. If n* = n,ñ2 ••• hpea* then

(£*.(/>*) = £Gl(«i) x GC2(«2) x - x MV-

Let fi¡ denote the set of conjugacy classes a; of Z/¡ such that for some

ft{ea¡,(£(;((/t{) = iff. If k = ki(G), then fí¡ contains fc members. Clearly C per-

mutes the set fi, x £2 x ••• x Qp which contains kp elements. If C fixes an ele-

ment in this set, then this element is uniquely determined by its £, component.

Hence C fixes precisely k elements and moves the remaining kp— k in orbits of

size p. These moved orbits then yield (kp — k)¡p conjugacy classes a* under the

action of G* such that for some h* ea.*, (£G.(/i*) = (£/V,(n*) = H*. On the other

hand, if a* has an element n* with Cc»(n*) = H*, then certainly a*e£, x £2

x ••• x 2p. Hence we have k,(G ~ C) = (kp — k)/p. This yields Lemma 1.3(f), (ii)

and Lemma 1.4(i),(ii),(iii).

Using the same proof as above, we show that k2(G ~ C) ^ {(k2(G))p — k2(G)}/p.

This yields Lemma 1.3(iii) and Lemma 1.4(iv).

We need only consider part (v) of Lemma 1.4. Let a,b,c be the three given

conjugate elements of H = %>(G). Since H is abelian there exists w,ugP with

b = à", c = a". Let T= GP(a) so that Tw = <lP(b) and V = £P(c). Let z be a

central element of P of order 2. By assumption TWT contains a nonidentity central

element but T"T does not.

Now P* = P ~ C is a Sylow 2-subgroup of G ~ C. This group has as a normal



102 D. S. PASSMAN [May

subgroup of index 2 the direct product Pt x P2 = M* of two copies of P. In

dealing with the groups P¡ we will use subscripts so that for example T¡ — ¡ZP¡(a¡).

Let C = <y>. Set a* = axa2, b* = c\lc2 and c* = c1b2. Then b* = (a*)"1""1"2' and

c* = (a*)UlWl. Thus we set w* = ulziu2 and ti* = w1w2. Let T* = (£P.(a*) so

that clearly T* = (TuT2,v}. We show now that T*w* O T* Z* # {1},

T*w* O T* = {1} and T*u* n T*Z* = {1}, where Z* is the center of P*. This

will yield the result.

Now z* = Zjz" = vUiziU2v = uw*t>e t*w*T* since zt and u have order 2 and

iijt/2 centralizes i>. Clearly z* is central and not equal to 1. Now we consider

r*nr*w'. Since T^nM*^^ x T2 and T*w*nM*=r^'x T22 we see that if

T* n T*w*> {1}, then this intersection must contain an element not in M*.

If x is such an element, then we can write x = txt2ve T* with t¡e T¡. Also

x = tJ2zízvlveT*w* with ¿"¡e 77', since vw*= z^z\v. But then zv = tj~le T^"',

a contradiction. Thus T* O T*w* = {1}.

Finally we consider T*"* n T*Z*. Let x belong to this intersection. If xeM*

then since Z*ç M* we have x = /1r2z,zi'6 T*Z* with t¡e T¡ and ¿j in the center

of P. Also x = ilt2eT*u" with ^eTf and l2eT2\ Then fx = ^i^^ T^Ti

and so zx=\. This yields tx = ti = l and i2 = i2 = 1 and so x = 1. Now sup-

pose x ^ M*. Then x = txt2vz* e T*Z* with í¡ e T¡ and z* e Z*. Since x normalizes

7;*«' nM* we see that y;«!* _ t^-2 = rw,t_ Hence since z* is central and t2 cen-

tralizes P! we have T"''1 = T"1. But then (Tf'Tj1 = T^Tj since i,6T,. Thus

if one of these terms contains a nonidentity central element of P^ so does the

other. This is a contradiction so we have T*"*C\T*Z* = {1} and the proof is

complete.

We need finally the following number theoretic fact.

Lemma 1.5.   Let p and q be primes satisfying p£ = qs — 1. Then we must

have

(i)    q = 2, e = 1 and p = 2 — 1 is a Mersenne prime,

(ii)   p = 2, <5 = 1 and g = 2" + 1  is a Fermât prime, or

(iii) p = 2,  s =3, q = 3, 8 = 2.

Proof. Clearly one of p or q is equal to 2. Suppose first that q = 2 so that

2'5 = p" + 1. If £ is even then since p is odd, p£ s lmod4. Hence 25= 2mod4.

This yields 2á = 2 and ps = 1, a contradiction. Thus £ is odd and

2Ö = (p + l)(pc_1 - pe~2 + ■■■ — p + 1). Since the second factor contains an odd

number of terms, it is odd and thus equal to 1. Hence £ = 1 and p = 26 — 1.

Now let p = 2 so that 2s = qd — 1. Suppose that 8 is odd. Then 2C =

(q — 1) (qô~x + qs~2 + ■■■ + q +1). Since <5 is odd, the second factor here

also contains an odd number of terms. Hence as above 8 = 1 and q = 2" + 1. If

8 = 2y is even then 2s = (qy - l)(qy + 1). Thus q7 - 1 = 2r, qy + 1 = 2s and

2 -2r = 2. This yields 2s = 4,2r = 2 and we have (iii).

We now proceed with the proof of Theorem 1.1. By Lemma 1.2, it suffices to
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assume that P acts faithfully and irreducibly on H an elementary abelian ¿/-group

of order q". We extend P to a Sylow p-subgroup of GL(n, q). It is clear that if

the theorem holds for this larger group then it holds for P. Hence it suffices to

assume that P is a Sylow p-subgroup of GL(n,q). There is a slight difference

in structure here according to whether p = 2 or not.

Let Q be an elementary abelian q-group for prime q ¥= p and let | Q | = qâ.

Let C be a cyclic group of order pE > 1 which acts irreducibly on Q. Let G, =

Qx„ C and for i > 1 set G, = G¡_, ~ C where C is cyclic of order p. Since

P acts irreducibly on H we see by [1] and [6] that H xaP = G¡ for some i pro-

vided p > 2 or p = 2 and q = 1 mod 4. Since C acts fixed point free on Q we have

in the terminology of Lemmas 1.3 and 1.4, k,(G,) = (qd — l)/p£. Suppose first that

p > 2. If k¡(Gi) ja 2 then by Lemma 1.3 and induction fc^G;) ̂  2 and the result

follows. The exception occurs when qs — 1 = p" and by Lemma 1.5, q = 2,e = 1

and p = 2á — 1 is a Mersenne prime. The result will follow if we show in this

case that k2(G2) ^ 2. We know of course that ki(G2) — 0. Now G2 has a normal

subgroup N of index p of the form N = (Q¡ x Q2 x ••• x Qp) xCT(C, x C2 x ••• x Cp

where <2¡ ̂ ô > Ci — C and Q acts irreducibly on Q, and centralizes the remaining

Q,. Let a* be the conjugacy class containing h* = h1h2---hp with n;GQ; and

/?¡ # 1. Since no element of C, x C2 x •■• x Cp fixes this element and (£P(/i*) > {1}

we have |dP(h*)| =p. Let (£P(n*) = <x>. Then £P(n*) is abelian and since x

commutes with one of its conjugates, a* yields one class of conjugates corre-

sponding to k2. A second class ß* is obtained by taking all conjugates of

h* = /?,/?2•••/)„_, with hteQ, and &,#1. In this case GP(n*) = Cp. Since Cp

is abelian and commutes with its disjoint conjugate C,, the result follows here.

Now let p=2. If fc,(G,) 2; 3 the result follows by Lemma 1.4 and induction.

If/c,(G,) = 1 or 2 we have qs— 1 = 2£ or 2E+1 and by Lemma 1.5, q is a Fermât

prime and «5 = 1. Since C is a Sylow 2-subgroup of GL(l,<j) we must have

2e= a - 1. Thus k,(G,) = 1 and fc,(G2) = 0. We show that k3(G2) ̂  1 in this

case. Let a* be the class containing h* = ñ,n2 with h¡eQ¡ and /i¡# 1. Since

£P(«*) > {1} and M«*)^, x C2) = {1} it follows that \d£P(h*)\ = 2. Say

dP(n*) = <x>. It is clear that we need only find two conjugates of x, say xw

and x", with x"xeZ — {1} and xux$Z where Z is the center of P. Let w be

an element of order 2 of C,. Then xwx = wwxeZ — {1}. Finally since 5 = lmod4,

q^5so|c|=2e^4. Thus let u be an element of C, of order 4. Then

xux = u2(uux). Since uuxeZ we see that x"xgZ implies m2gZ, a contradiction.

Thus k3(G2) S; 1 and the result follows by Lemma 1.4.

Now let p = 2 and q = 3 mod 4. Let W be the group generated by x and y

satisfying x2'=i, y2=f and y_1xy = x -1 + 2S 'and let Q be elementary abel-

ian of order q2. For suitable s, Wis a Sylow 2-subgroup of GL(2, q). Set G, = Q xaW

and for Í > 1 let G¡ = G,_, ~ C where | C\ = 2. Then by [1], ZZ X„P=G, for

some i. We study G,. Since <x> acts fixed point free on Q and <x> has index 2

in W we see that for any heQ- {1} we have |($V(n)| = 1 or 2. Conversely let
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weW — <x> be an element of order 2. Since iv is not central its minimal poly-

nomial on Q is (w + l)(w — 1) = 0. Thus Q1+w=&q(w) is a proper subspace

of Q. But |ß| = q2 so |(£Q(w)| =q. Now IF contains 2s"1 such elements w.

Hence we have easily k^GJ = {(q2 - 1) - 2s~l(q - 1)}/2S+1. If fc,(Gi) ^ 3 the

result follows by Lemma 1.4. Since q = 3 mod 4, kt(Gi) = 1 or 2 yields q = 3

and 8 = 2s + 2S+1 or 8 = 2s + 2S+2 which cannot hold. Finally fc^Gj) = 0 yields

g = 2s"' - 1, a Mersenne prime. In this case we have clearly k2(G¡) = (q2-1)/2\

If k2(G¡) ¡à 3 the result again follows. But by Lemma 1.5, k2(G¡) = 1 or 2 yield

q = 3. Since o = 2S_1 — 1 we have 2s = 8. Note that q = 3 is also a Fermât

prime. In this case it is quite easy to see that k3(G¡) = 1 and thus the result follows.

2. Small orbits. The main result of this section is the following:

Theorem 2.1. Let p-group P act faithfully and irreducibly on elementary

abelian q-group Q. Let all orbits in Q under the action of P have size at most

pe. Then there exists heQ with \ <ZP(h) \ < (pUp~1)e2 = 2e*. Moreover ife^p

then there exists heQ with £P(h) = {1} with the following exceptions which occur

when there is an orbit of size pp.

(i)    p = 2,q = 3
QxaP= (VxaC)~C where \v\=3, \c\=2

(i.i) q = 2, p = 2"— 1 is a Mersenne prime

QxaP = (V xaC)~C where |F|=2a, |c|=p.

Lemma 2.2. Let A be an abelian p-group acting faithfully on solvable

p '-group H. Then there exists he H with &A(h) = {1}.

Proof. Since the property of having an abelian Sylow p-subgroup is inherited

by subgroups and quotient groups, Lemma 1.2 applies. Thus it suffices to assume

that H is elementary abelian and A acts irreducibly. But then A is cyclic and

acts fixed point free so the result follows.

The following is essentially a restatement of Jordan's theorem for linear p-groups.

While the result contains more than we need here, the exact values of the bounds

may be of some interest in themselves.

Proposition 2.3. Let p-group P be a faithful irreducible complex linear

group of degree p". Then P has a normal abelian subgroup A with

\_P:A~]fi p(p"~1)lil'~1) and the latter bound is possible. Moreover if % is any

irreducible complex character of P then degx i= p(p"_1)/(',_1) and again

this bound is best possible.

Proof. Let A be an abelian subgroup of P and let / be an irreducible complex

character of P. If X is a constituent of % | A, then ^ is a constituent of X* (induc-

tion to P). Thus degx^degX* = \_P:A~\. We prove this proposition by first

obtaining the first bound. This then implies the second bound. Moreover by the
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above argument, if the second bound is best possible, then so is the first. Set

Xn) = (p"-l)/(p-l).
Let G be the character of the given faithful irreducible representation of P.

We obtain the first result by induction on degö = p". If p" = 1, then P

is abelian and the result follows. Let p" > 1. Since p-groups are monomial, there

exists a normal subgroup N of P of index p and an irreducible character \¡/ of N

with 0 = \¡/*. Then degi// = p"-1 and ö| JV = i>, + 1A2 + — + "Ap> the sum of p

conjugates of \¡>. Let K¡ be the kernel of i¡/¡ so that Kt is normal in N, the K¡

are conjugate in P, and (~}K¡ = {1}. By induction N/Kt has a normal abelian

subgroup v4,/ZC, with [N/Z^Mj/ZC,] ^ p/(n_1). Let .4 be the intersection of the

at most p conjugates in P of A±. Then A is normal in F and A' £ P|Zv¡ so 4 is

abelian. Also [PM]á/*"1)+1 = j)jW so the first result follows.

We show now by example that the second bound is best possible. Let C denote

the cyclic group of order p. Set P0 = C if p > 2 and let P0 be the cyclic group

of order 4 if p = 2. Define P„ inductively for n 2:1 P„ = F„_, ~ C. We show

inductively that Pn is a faithful irreducible linear group of degree p" and that

Pn has at least 3 irreducible characters with degree at least pjM. This is trivially

true for n = 0. Let n S: 1 so that P„ has a normal subgroup N of index p with

rV = J?, x R2 x ••• x Rp, the direct product of p copies of P„_,. Let 9 be the

given irreducible faithful character of degree p"'1 of i?, viewed as a character

of A/. Then we see easily that 0* is a faithful irreducible character of P„ of degree

p". Now let fi¡ be the set of irreducible characters of R¡ of degree at least pj("~ "

and set |fi,| = fc>î3. Then £ = £, x fi2 x ••• x Qp is a set of size kp of

characters of A/ of degree at least pw("-1'. As in the proof of Lemma 1.3,

PJN permutes the elements of Q, fixing k characters and moving the remaining

ones in orbits of size p. Thus there are (kp— k)/p Sí (3P— 3)/p S: 3 orbits of size

p. Each of these orbits yields an induced character of P„ which is irreducible and

ofi degree at least p«("-1> + 1 = p'<n). This completes the proof.

We now proceed to prove Theorem 2.1. We can of course assume the maximal

orbit size to be pe. If |p| = pe, then certainly for some heQ, (£P(n) = {l}.

Thus we assume that | P | > pe. Let N be a normal subgroup of P of order pe+1.

Then N has at most (pe+1 - l)/(p— 1) subgroups of order p. Let heQ. Then

(£N(n) > {1} and therefore h e£Q«x» where <x> is a subgroup of N of order p.

Thus ô = U (£Q«x>). If £Q«x» denotes one of the right-hand groups of maxi-

mal order, then counting nonidentity elements we have |ß| — 1 :g (|(£Q(x)| — 1)

•(pc+1 - l)/p - 1). Since P acts faithfully |Cß(x)| < | ß| and thus

|Q|/|e:QW|<(|ô|-l)/(|(£e(x)|-l)^(pe+1-l)/(p-l).

Let M be the normal subgroup of P generated by all conjugates of x. Clearly

MsJV. If M < N, then | M | ;£ pc so M is generated by a set of at most e con-

jugates of x. If M = AT, then since N cannot be abelian by Lemma 2.3, the same
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result holds. Thus M = <x1,x2,---,xJ-> where the x¡ are j — e conjugates of x.

Clearly [Q:^)] < (pe+1-l)/(p-l). Thus [Q:GQ(M)]<i(/+1 -l)/(p - 1)}".

Now M is normal in P and P acts irreducibly on Q. Thus (£e(M) = {1} and

|e|<{(pe+l-i)/(p-i)}e.

Let 0 be an absolutely irreducible constituent of the action off on Q. Let

GF(q)(0) = GF(qr). Then the representation of P on Q must contain the r con-

jugates of 0 under the Galois group of GF(qr)¡GF(q). Hence | Q \ = qrdee°. Since

the representation associated with 0 is realizable over GF(qr) (since we are

dealing with representations over finite fields) it follows that GF(qr) contains

a pth root of unity. Hence p divides q' — 1 and qr ~=p + \. This yields

\Q\=(p + l)deî8. If deg0 = e2 we obtain

{(pe+1-l)/(p-l)r>(p + ir2
or

ipl > i (c.\p\

0 0      \   '  /

a contradiction. Hence deg0<e2.

Since all the other absolutely irreducible constituents of the representation

of P on Q are algebraic conjugates of 0 under the above mentioned Galois group,

it follows that 0 must be faithful. Let deg0 = p". Then by Proposition 2.3, P has

an abelian subgroup A with \_P:A~\ = p^"1«*-« < (pli(p-»y2 = 2e\ Note we

used the fact that 0 is equivalent to a complex character of P. Since A is abelian,

by Lemma 2.2, there exists heQ with £P(h) C\A = <iA(h) = {1}. Thus

|(£P(/i)| g [P:A~\ and the first result follows.

Now let p — e. Since P is nonabelian deg0 > 1 . But degO < e2 < p2. Hence

deg0 = p. By Proposition 2.3, P has a normal abelian subgroup A of index p.

By Lemma 2.2, \A\^pe so |,4| = peand |p| = pe+1.

Let R be an irreducible ,4-submodule of 0. Then by Clifford's Theorem [2,

Theorem 49.2], Q= EfK, where R¡ = Rx' and P = </4,x>. If two of these

are inequivalent ,4-modules then they are all inequivalent and the sum 0 = T.R:

is direct. We consider this case first. Since A is abelian, if aeA then (£„.(«) is

an ,4-submodule. Hence either a centralizes R¡ or it moves all nonidentity ele-

ments of Ri. Let h* = hlh1---hp with h¡eR¡ and ht# 1. If ae(iP(h*) C\A then

a centralizes each h¿. Hence a centralizes Q and a = 1. Since (iP(h*)> {1} it

follows that P contains an element, say x, of order p with x <£ A. Now let

h* = h2h3--- hp with ft,- e R,- and h¡^\. Since every element oí P — A cyclically

permutes the R¡, it follows that &P(h*) ç A. Since dp(ft*) > {1} we can choose

y e (£P(h*) with y of order p. Then y centralizes each h¡(i = 2) so y centralizes

each /?| with i = 2. Clearly y does not centralize Rt. Let yJ- = y:tJ • Then

y¡ centralizes all R, with i # ; and does not centralize Rj. With this we see that

the p elements y,, •••,yp are independent and thus generate an elementary abelian
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subgroup of A of order pp. But \A\ = peandp 2: e so p = eandA = <[yl,---,yp}.

Thus G = Q x„P is the group G = (R xaC) ~ C where Ici = p. Moreover for

this group kl(G) = 0. Now if \r\ = q", then /c,(K x(TC) = (ail- l)/p. Thus by

Lemmas 1.3 and 1.4, k1(Rx„C) = l or equivalently p = q"—l. By Lemma

1.5 this occurs for a = 2 and p = 2*— 1 or p = 2 and q = 3. These are groups

(i) and (ii).

We need to consider the case now where all the ,4-modules R¡ are equivalent.

Since the action of A on Q is faithful we see that R, is a faithful irreducible A-mo-

dule. Thus since A is abelian, it is cyclic and acts fixed point free. Let heQ with

n # 1. Then (EP(ñ) > {1} and CP(n) C\ A = {1}. Thus P has an element of order p

not contained in A. Note that if p = 2 then | P | = 8. With this we see that P

has the following structure. P = <x, a> with xp = l,ap"= 1 and x " 'ax = a' +p* .

But then B = <x, ap> is a noncyclic abelian subgroup of P of index p. Using B

instead of A we obtain the first case already discussed. With this the result fol-

lows.

Corollary 2.4.   Let p-group P act faithfully on solvable p'-group H.

(')   U (P'^H)) is nonexceptional or if all the orbits have size less than pp,

then there exists he H with (EP(n) = {1}.

(ii)   If (p,n(H)) is not (2,f) then there exists he H with \<ZP(h)\ ̂  |p|1/3.

(iii)   In any case there exists he H with |<£P(/¡)| á |-P|1/2-

Proof. The first part of (i) follows from Theorem 1.1 (i). Since the property

of having small orbits is inherited by subgroups and quotient groups, we con-

clude by Lemma 1.2 that the second part of (i) follows from Theorem 2.1. For

(ii) let n, and h2 be given as in Theorem 1.1 (ii). Then GP(n,) n(£P(/¡2) = {1} and

A = (£P(/;,)(£P(n2) is abelian. By Lemma 2.2 there exists h3eH with (£¿(n3) = {1}

or <iP(h3)nA = {]}. Thus

|M«,)| |(£P(«2)| |M«3)| = |£P(n,)ŒP(/l2)GP(n3)|^|P|.

Choose ñ = n,, h2 or h3 so that |(£P(n)| ;£ |£P(ñ,)| • Then (ii) follows immediately.

Part (iii) is clear from Theorem 1.1 (iii).

We remark that the second part of Corollary 2.4(i) follows also from Satz (5)

of [4] and properties of regular p-groups.

Corollary 2.5. Let G be a solvable group, P a Sylow p-subgroup of G and

Op(G) the intersection of all Sylow p-subgroup of G.

(0   U(p>n(G)) is nonexceptional then there exists aeG with P C\P" — Op(G).

(ii)   In any case there exists a,beG with P C\P"C\Pb = DP(G).

Proof. Clearly we can assume £>P(G) = {1}. Let H = g(G), the Fitting sub-

group of G. Since H is nilpotent P C\H = {1}. Also since H contains its cent-

ralize^ it follows that Op(PZZ) = {1}. Hence it suffices to assume that G = PH,

that is that H = §(G) is normal and solvable and P acts faithfully on H. Let
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a e H. Clearly P r\ P" 2 <ZP(a). Conversely let xePnF1. Then x » y" with

yeP. Thus (y,a) = y~iy" = y~lxeP. But aeH and H is normal in G so

(y,a)eH. Henee (y,a)eP O//= {1} and x = ye(£P(a).

If (p,7i(G)) is nonexceptional then there exists a e H with &P(a) = P HP" = {I}.

Thus (i) follows. By Theorem 1.1 (iii) there exists a,beH with {1} = £P(a) n(£p(J?)

= PnP°nPn Pb = PnP"r\Pb and (ii) follows.

3. Reduction theorems. Let G be a finite group and p a fixed prime. If

// =§(G), the Hall p'-subgroup of G, is normal and abelian then the degrees

of the irreducible complex characters of G are all powers of p. If the biggest

such degree is equal to pe, then we let e = e(G) be the character exponent of G.

We say G has r.x.e (representation exponent e) if e(G) ^ e and G has r.x.(e, s)

if e(G) = e and e(Sp(G)) = s. We apply the results of the previous sections to

obtain relations between certain functions studied in [3]. In the following, all

groups are assumed to have normal abelian Hall p'-subgroups.

Definition, (i) Let / be the smallest function with the following property.

If G has r.x.e, then G has a subinvariant abelian subgroup whose index in G divides
pnc).

(ii) Let /p be the smallest function with the following property. If G is a

p-group with r.x.e then G has an abelian subgroup whose index in G divides prP(e)

(iii) Let g be the smallest function with the following property. If group G

has r.x.(e, s), then G has a subinvariant abelian subgroup whose index in G divides
pl(e,s)

Theorem 3.1. We have f(e) = fp(e). Moreover for p#2, if G is a group

with r.x.e having no subinvariant abelian subgroup with index dividing p/(c)_1,

then 0(G) is central.

Theorem 3.2. // either p^2 and p is not a Mersenne prime or p > e, then

for e = s we have g(e, s) = e + fp(s) — s. Moreover under these assumptions, if

G is a group with r.x.(e,s) which has no subinvariant abelian subgroup whose

index divides p*(e,s)_1, then G/£(<5(G)) is abelian.

Proof. Let P be a Sylow p-subgroup of G and H = §>(G). If Pl is a Sylow

p-subgroup of (£(//) then:(¡t(í/) = Pi x H and Pt is normal in G. Thus p-group PIP¡

acts faithfully on abelian p'-group H. Therefore p-group PjP^ acts faithfully on H,

the abelian p'-group of linear characters of H. We apply Corollary 2.4 to this

action. We show first that if G has r.x.e then all orbits have size at most pe. Let

A be a linear character of H and % a constituent of X* (induction to G). Since H

is normal in G we have by Clifford's Theorem, x \ H = a 2T, X¡ where the X¡ are the

t distinct conjugates of X. Thus t = at = deg/ = p eand this fact is proved. Define

8 to be 0 if p # 2 and p is not a Mersenne prime or if p > e. Let <5 = 1/3 if p is

Mersenne and p g e and let 8 = \ if p = 2 Sj e. Let \P:P^\ = pm. Then by Corol-
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lary 2.4, H has a linear character X whose inertia group T(X) (the analog of the

centralizer) satisfies T(X) 2 (£(H) and [T(1):(£(ZZ)] ^ pSm.

Let e, = e(P,) and let 0 be an irreducible character of P, of degree p". Then

OX is an irreducible character of (£(Z/). Let x be a constituent of (6X)* so that

x|G(ZZ) = a H[(OX)¡. Since both ZZ and P, are normal in G, we have clearly

T(0¿) S T(0). Thus í = [G: T(01)] 2î [G: T(i)] lp"-ä)ra. Since pe ^ deg* = at

dtgQ^p^'ô)mpei we have e, ^e-(l -o)m.

We now consider Theorem 3.1. Clearly /(e) ¡tfp(e). We show the reverse in-

equality below. Since P, has r.x.(e — (1 — 6)m), by definition of/p, P, has an

abelian subgroup A with [P,:^4]=pfl and a ^/p(e — (1 — ô)m). Then Ax H

is a subinvariant abelian subgroup of G whose index equals p"+m. By Lemma 3.6

of [3], which applies equally well to/p, we have for any r, s,fp(r + s) ^fp(r) + 2s.

Thus

a + m   í= fp(e — (1 — ö)m) + m

^ fp(e) - 2(1 - S)m + m m fp(e) - (1 - 2S)m.

Since <5^2- we have a + m ^f„(e) and by definition of/ as the smallest such

function with the appropriate property, f(e) ^fp(e). Thus f(e) =fp(e). Finally

a + m =fp(e) implies (1 - 2<5)m = 0 and if p # 2 then ô < \ so m = 0. Thus

<rj(G) is centra] in this case.

We now consider Theorem 3.2. Here ö = 0 and Px has r.x.(e — m). By Lemma

3.6 of [3], if e è s then g(e,s) 5: e — s +fp(s). We show the reverse inequality.

Now if e(P1) = ex then ex ^ e — m and e, ^ s. By definition of fp, P has an

abelian subgroup A of index p" with a ^/p(e,). Then /I x ZZ is a subinvariant

abelian subgroup of G of index p"+m. Since m ^ e — e, we have

a + m gf/ej + m g e +/„(<?,) - e,.

But <?, ̂  s so /p(c,) ^f„(s) - 2(s - e,) and

a + mSe +fp(s) - s - (s - e,).

Hence g(e,s) = e +fp(s) — s. If a + m = e +fp(s) — s then s = e,. By Lemma

5.5 of [3] this implies that PIPt a GI<Z(H) is abelian. Thus the result

follows.

There is good reason to believe that g(e,s) = e +fp(s) — s in all cases. How-

ever the last statement of Theorem 3.2 is definitely not true without the additional

assumptions. For example the exceptional groups of Theorem 2.1 have r.x.(p, 1)

and G/(i(Q) is nonabelian. Since g(p, 1) = p + 1 these groups are counterexamples

to that statement.

We conclude by discussing two conjectures of the nature of a Chinese Re-

mainder Theorem. They make sense only for p > e.
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Conjecture 3.3. Let G be a p-group with e(G) = e. Let xux2,---,x„ be any

v = p — e nonidentity elements of G. Then there exists an irreducible character

X of G of degree pe such that for all i,x¡ is not in the kernel of x-

Conjecture 3.4. Let G satisfy e(G) = e. Let xi,x2,---,xv be any v = p — e

elements not contained in §(G). Then there exists an irreducible character x of

G of degree pe such that for all i, x¡ is not in the kernel of /.

The latter is of course a generalization of the former. We note that the con-

dition x¡£§(G) cannot be replaced by x¡ # 1. For example, let P be an abelian

p-group and let H be an abelian noncyclic p'-group. Set G = P x H so that e(G) =0.

If p>|//| we get an easy counterexample by choosing {x,} = H — {1}. It is

not hard to show by example that if Conjecture 3.3 is true then v = p — e is best

possible. At present the validity of this conjecture is known only for small values

of e.

Proposition 3.5. Conjectures 3.3 and 3 A are equivalent.

Proof. Certainly Conjecture 3.4 implies Conjecture 3.3. We assume the latter

now. Let e(G) = e and let xu---,xv be v = p — e elements of G not in H = «¡3(G).

Since v ê 1 we have p > e. Assume the numbering so chosen that x^x^-'-.x,,,e (£(//)

and the remainder do not. Let Pi be a Sylow p-subgroup of tj(/i) so that

(£(//) = P, x H. For each x,-e £(//), write xlr=yihi with y¡ePt, h¡eH. Since

x¿H, y,#l.

Let P be a Sylow p-subgroup of G. Then PjP,^ acts faithfully on H and hence

on H, the group of linear characters of H. Since p > e, Corollary 2.4 implies

that there exists a linear character X of H whose inertia group T(X) is equal to

(£(//). Let 0 be any irreducible character of P¡. Then OX is an irreducible character

of £(/L). We show that (OX)* is irreducible. Let x be a constituent of (01)*. Then

X | £(H) = a Zi (0X)i where the (0X)¡ are the t conjugates of OX. Now

t = [G: T(QX)~\ = [G :T(X)] = [G:(£(//)]. Thus [G:(£(//)] deg0 ̂  aideg0 = deg*

and degx adeg(0A)* = [G :(£(//)] deg 0. Hence X = (0X)*. In particular, if

e(G) = e, e(P1) = e1 and [G:(£LfO] = />"", then e = ev + m. This follows by

choosing 0 to have degree pei.

Now let x be a character of G of degree pe and let \¡j be a constituent of /1 (£(//).

Then % is a constituent of \¡i* so pe= degx = pmdeg\¡/. Thus degi/f 2: pe~m and

e((£(//)) ^ e — m. Since e(d(//)) = e(Px) = ex, this yields eL = e — m. Now we

apply Conjecture 3.3 to the set {y¡} of size w — v = p — e^p — ei and obtain

an irreducible character 0 of Pj of degree pei with all y¡ not in the kernel of 0.

Set % = (OX)*. Then # is an irreducible character of G of degree pei+m = pe.

Since OX is a constituent of x \ &(H) we see that x ,,-••, xw $ ker x • Finally x vanishes

off (£(//) so that none of the remaining x¡ are in the kernel either. This completes

the proof.
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Added in proof.   By modifying slightly the techniques of §1 we can obtain

the following results which yield better bounds in the (m,2) case.

Theorem. Let p-group P act faithfully on solvable p'-group H. Then there

exists elements h¡,h2,---,hpeH  such that for i = 1,2, •■•,p — 1

<GP(n,), (£P(h2), -, ep(n,.)> n GP(n¡+1) = {1}.

Corollary.   Let p-group P act faithfully on solvable p'-group H. Then there

exist element hell  with |(£P(n)| g |P|1/P.

References

1. R. Carter and P. Fong, Sylow 2-subgroups of the finite classical groups, J. Algebra

1 (1964), 139-151.
2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative alge-

bras, Interscience, New York, 1962.

3. I. M. Isaacs and D. S. Passman, A characterization of groups in terms of the degrees

of their characters, Pacific J. Math. 15 (1965), 877-903.

4. N. Ito, Über den Kleinsten p-Durchschnitt auflösbaren Gruppen, Arch. Math. 9 (1958),

27-32.
5. W. R.Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.

6. A. Weir, Sylow p-subgroups of the classical groups of finite fields with characteristic prime

to p, Proc. Amer. Math. Soc. 6 (1955), 529-533.

University of California,

Los Angeles, California


