GROUPS WITH NORMAL,
SOLVABLE HALL p-SUBGROUPS (%)

BY
D. S. PASSMAN

Let P be a p-group which acts faithfully as a group of automorphisms on solv-
able p’-group H. In this paper we discuss the existence of an element i € H having
a ‘“‘small’’ centralizer in P. We give two sufficient conditions for the strongest
possible result, that is the existence of an element h centralized in P only by the
identity. The first is that the pair (p, n(H)), where n(H) denotes the set of prime
divisors of IH | , be nonexceptional or essentially that it involve no Fermat or
Mersenne primes. The second is that the orbits in H under action of P all have
size smaller than pP.In any case we show that for some element h, | Cp(h) | = | P | 12

We apply these results to two distinct subjects. First we generalize a theorem
of Ito which concerns the minimum number of Sylow p-subgroups of a solvable
group G which intersect to O ,(G), the intersection of all of them. We show that
if (p, n(G)) is nonexceptional then there exists two such Sylow subgroups which
intersect to O,(G). In any case there always exist three which work.

Second, we obtain reduction theorems for the study of groups G all of whose
absolutely irreducible representations have degrees which are powers of a prime
p. In [3] certain relationships between the biggest of these degrees and the
existence of ‘‘large’’ abelian subgroups of G were studied. We show here how in
most cases these problems can be reduced to a study of p-groups.

1. Nonexceptional prime pairs.

DErFINITION. Let p be a prime and = a set of primes. We say the pair (p,n) is
nonexceptional provided it is not one of the following three types.

(m,2): p is a Mersenne prime and 2ex.

(2,m): p=2 and = contains a Mersenne prime.

(2,f): p=2 and 7 contains a Fermat prime.

In this section we prove the following result.

THEOREM 1.1. Let p-group P act faithfully on solvable p'-group H.

(i) If (p,m(H)) is nonexceptional then there exists he H with Cp(h) = {1}.

(i) If (p,n(H)) is not type (2,f) then there exists h;,h,,e H with
Cp(hy) NCp(hy) = {1} and the product €p(h,)Cp(h,) being an abelian group.

(iii) In any case there exists hy,h, e H with €x(h,) NEp(h,) = {1}.
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We can of course view this problem slightly differently. Let G = H x, P be the
semidirect product of H by P. Then H is equal to $(G), the Hall p’-subgroup
of G, and P, a Sylow p-subgroup, acts faithfully on H. The above theorem there-
fore has an obvious restatement in this context. It is convenient in the course
of the proof to take this point of view. We discuss first several lemmas which
allow us to reduce the proof to a study of certain special cases. In the following
all groups are assumed to have normal solvable Hall p’-subgroups. This property
is of course inherited by quotient groups and subgroups.

LeMMA 1.2. Let 2 be a property of groups which is inherited by subgroups
and quotient groups. Suppose we wish to prove that if P =G&,(G) acts faith-
Sfully on H(G) and if G has property & then one particular conclusion of Theorem
1.1 holds. Then it suffices to assume that $(G) is an elementary abelian q-group
and P acts irreducibly on it.

Proof. Since H = $H(G) is solvable so is G. Moreover P acts faithfully on H
so that ¥(G), the Fitting subgroup of G, is contained in H. Since §(G) contains
its centralizer [5, Theorem 7.4.7], P acts faithfully on &(G). Therefore it suffices
to prove the result for the group PF(G) or equivalently we can assume that H(G)
is nilpotent.

Let H be nilpotent and let ® denote its Frattini subgroup. By Theorem 7.3.12
of [5], P acts faithfully on H/®. If h is the image of i under the homomorphism
H - H|®, then €x(h) 2 €p(h). Hence it suffices to assume that @ = {1}. Now
P acts on each Sylow subgroup of H and so by complete reducibility
H =R, x R; x -+ x R,, where each R; is an elementary abelian g,-group acted
upon irreducibly by P. For each i we write H = R; x R¥ where R} is the product
of the remaining R;. Let P; be a Sylow p-subgroup of E4z(R;). Then
Cs(R) = HP,= R;N; where N;=R}P;. We sce easily that R, N N; = {1}
and that N;is normalin G.

Set G; = G/N;. Then G; is a homomorphic image of G having the structure
described in the statement of the lemma. Since €;(H) = H we see that G is con-
tained isomorphically in G, xG,x--xG, in such a way that
9(G) = H(G,) x H(G) x -+ x H(G,,). If the result is true for each G, it is clearly
true for G.

DEerFINITION. Let P be a Sylow p-subgroup of G and let H= $(G) be abelian.

(i) Let k,(G) denote the number of conjugacy classes a of H under the action
of P which contain an element h with €p(h) = {1}.

(ii) Let k,(G) denote the number of conjugacy classes « of H which contain
elements h, and h, with €x(h,) NEp(h,) = {1} and Cx(h,)E(h,) abelian.

(iii) Let k3(G) denote the number of conjugacy classes a of H which contain
elements hy,h, and h; with Cu(h) NCp(h,) = {1}, Cp(hy) NCp(hz) = {1},
Cp(h) NZEp(hy) # {1}, Cp(hy) NZCp(hs) = {1}. Here Z is the center of P.
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Since all Sylow p-subgroups of G are conjugate by elements of $(G) and $H(G)
is abelian, it follows that k;(G) are indeed functions of G.

Let G ~ C denote the wreath product of G by a cyclic group C of order p.
If $(G) is normal and abelian then so is H(G ~ C).

LEmMMA 1.3. Let p>2.

(i) k(G)=1 implies k{(G~C)=0,

(i) k(G)=2 implies k,(G~C)=2, and
(iii) k,(G) =2 implies k,(G~ C)=2.

LEMMA 1.4. Let p=2.

i) k(G)=1 implies k,(G~C)=0,

(i) k,(G)=2 implies k,(G~C)=1,

(i) k,(G) =3 implies k,(G~C)=3,

(iv) k,(G) =3 implies k,(G~C)= 3, and
v) k3(G) =1 implies ky(G~C)=1

Proof. Set G* = G ~ C. Then G* has a normal subgroup N*=G, x - x G,
the direct product of p copies of G, and G* = N* x ,C where C acts on N* by
cyclically permuting the G;. Clearly H* = $(G*) = H, x H, x --- x H, where
H; =$9(G)). Let o; denote a conjugacy class of H;, under the action of G;. Then
clearly the conjugacy classes of H* under the action of N* are all of the form
a* =0y X a, X o X, If h*=hh,---h,ea* then

Cro(h*) = Cg,(hy) x Cg,(hy) x -+ x € (h,).

Let &; denote the set of conjugacy classes «; of H; such that for some
hiew;,Cs(h;) = H;. If k=k,(G), then &; contains kK members. Clearly C per-
mutes the set £; x £, x -+ x £, which contains k? elements. If C fixes an ele-
ment in this set, then this element is uniquely determined by its £, component.
Hence C fixes precisely k elements and moves the remaining k?— k in orbits of
size p. These moved orbits then yield (k? — k)/p conjugacy classes a* under the
action of G* such that for some h* e a*, C;.(h*) = €y.(h*) = H*. On the other
hand, if «* has an element h* with E.(h*) = H*, then certainly a*e £, x £,
x -+ x £,. Hence we have k,(G ~ C) = (k? — k)/p. This yields Lemma 1.3(i), (ii)
and Lemma 1.4(), (ii), (iii) .

Using the same proof as above, we show that k,(G ~ C) 2 {(k,(G))” —k,(G)}/p.
This yields Lemma 1.3(iii) and Lemma 1.4(iv).

We need only consider part (v) of Lemma 1.4. Let a,b,c be the three given
conjugate elements of H = $(G). Since H is abelian there exists w,u e P with
b=a% c=a". Let T=Cp(a) so that T =Ep(b) and T*=Cp(c). Let z be a
central element of P of order 2. By assumption T"T contains a nonidentity central
element but T"T does not.

Now P* = P ~ C is a Sylow 2-subgroup of G ~ C. This group has as a normal
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subgroup of index 2 the direct product P, x P, = M* of two copies of P. In
dealing with the groups P; we will use subscripts so that for example T; = €p (a;).
Let C=<v). Set a* =a,a,, b*=c'c, and c¢* =c,;b,. Then b* = (a*)****“? and
c* = (a*)"""2. Thus we set w* =u,z,u, and u* =u,w,. Let T* = Ep.(a*) so
that clearly T*=(T,,T,,v). We show now that T*" N T* Z* # {1},
T**"NT*={1} and T**" N T*Z* = {1}, where Z* is the center of P*. This
will yield the result.

Now z*=7zz] =v v=0v""ve T*"'T* since z, and v have order 2 and
u,u, centralizes v. Clearly z* is central and not equal to 1. Now we consider
T* NT**". Since T*NM*=T, x T, and T** N M*=T" x T}* we see that if
T* N T**"> {1}, then this intersection must contain an element not in M*.
If x is such an element, then we can write x =1tt,ve T* with ;e T;. Also
x =i,6,z,z5ve T*"" with f,e T, since v*" = z,z'v. But then z, = t,i 'e T, T",
a contradiction. Thus T* N T**" = {1}.

Finally we consider T** N T*Z*. Let x belong to this intersection. If x e M*
then since Z¥*< M* we have x = t,1,7,z] € T*Z* with t;e T; and Z, in the center
of P. Also x = f,f,e T*" with i, e T{* and 7,eT;*. Then z, = it{ ‘e T"T,
and so Z; = 1. This yields t;, =7, =1 and ¢, =7, =1 and so x =1. Now sup-
pose x ¢ M*. Then x = t,t,vz* € T*Z* with t;€ T, and z* € Z*. Since x normalizes
T*** N M* we see that T}** = T;'>= T,***. Hence since z* is central and ¢, cen-
tralizes P, we have T{*!= T,*'. But then (T}'T,)'* = T{"'T, since t, € T,. Thus
if one of these terms contains a nonidentity central element of P; so does the
other. This is a contradiction so we have T*""N T*Z* = {1} and the proof is
complete.

We need finally the following number theoretic fact.

Ui1zuz

LEmMMA 1.5. Let p and q be primes satisfying p°=q° — 1. Then we must
have

(i) q=2,e=1and p=2°—1 is a Mersenne prime,

(i) p=2,6=1and q=2°+1 is a Fermat prime, or

(iii) p=2, ¢ =3,qg=3,6=2.

Proof. Clearly one of p or g is equal to 2. Suppose first that ¢ =2 so that
2° = p*+ 1. If ¢ is even then since p is odd, p® = 1mod4. Hence 2°= 2mod 4.
This yields 2°=2 and p®=1, a contradiction. Thus ¢ is odd and
2 =(p+ (' =p* 2 +-..—p+1). Since the second factor contains an odd
number of terms, it is odd and thus equal to 1. Hence e =1 and p=2° —1.

Now let p=2 so that 2°=g° — 1. Suppose that § is odd. Then 2° =
@-1D@*+4q¢ %+ -+ q+1). Since § is odd, the second factor here
also contains an odd number of terms. Hence as above § =1 and ¢ =2+ 1. If
6 =2y is even then 2°=(q"—1)(¢’ +1). Thus ¢*—1=2",4"+1=2° and
2 —2"=2, This yields 2°=4,2"=2 and we have (iii).

We now proceed with the proof of Theorem 1.1. By Lemma 1.2, it suffices to
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assume that P acts faithfully and irreducibly on H an elementary abelian ¢-group
of order ¢". We extend P to a Sylow p-subgroup of GL(n,q). It is clear that if
the theorem holds for this larger group then it holds for P. Hence it suffices to
assume that P is a Sylow p-subgroup of GL(n,q). There is a slight difference
in structure here according to whether p = 2 or not.

Let Q be an elementary abelian g-group for prime g # p and let |Q| =4’
Let C be a cyclic group of order p®> 1 which acts irreducibly on Q. Let G, =
0 x, C and for i>1 set G;=G,_, ~ C where C is cyclic of order p. Since
P acts irreducibly on H we see by [1] and [6] that H x,P = G; for some i pro-
vided p>2 or p=2and g = 1 mod4. Since C acts fixed point free on Q we have
in the terminology of Lemmas 1.3 and 1.4, k,(G,) = (¢° — 1)/p®. Suppose first that
p>2.1f k;(G,) =2 then by Lemma 1.3 and induction k,(G;) = 2 and the result
follows. The exception occurs when g° — 1 = p®and by Lemma 1.5, g =2,e=1
and p=2°—1 is a Mersenne prime. The result will follow if we show in this
case that k,(G,) = 2. We know of course that k,(G,) = 0. Now G, has a normal
subgroup N of index p of the form N = (Q, x @, X -+ x Q,) X,(C; xC, x---x C,
where Q; ~ Q, C;~ C and C; acts irreducibly on Q; and centralizes the remaining
Q,. Let «* be the conjugacy class containing h* = h;h,---h, with h;e Q; and
h; # 1. Since no element of C; x C, x --- x C, fixes this element and €p(h*) > {1}
we have [(Zp(h*)| =p. Let Cp(h*) =<x)>. Then Ep(h*) is abelian and since x
commutes with one of its conjugates, a* yields one class of conjugates corre-
sponding to k,. A second class f* is obtained by taking all conjugates of
h*=hhy-h,_, with h;eQ; and h;# 1. In this case €x(h*)=C,. Since C,
is abclian and commutes with its disjoint conjugate C,, the result follows here.

Now let p=2. If k,(G,) =3 the result follows by Lemma 1.4 and induction.
If k,(G,) =1 or 2 we have g’ — 1 =2° or 2°*! and by Lemma 1.5, q is a Fermat
prime and 8 =1. Since C is a Sylow 2-subgroup of GL(1,q) we must have
2*=g¢g —1. Thus k,(G,) =1 and k,(G,)=0. We show that k;(G,) =1 in this
case. Let o* be the class containing h* = h,h, with h;e Q; and h; # 1. Since
Cp(h*) > {1} and Cp(h*) N(C, x C,) = {1} it follows that I(Sp(h*)l =2. Say
Ep(h*) =<x). It is clear that we need only find two conjugates of x, say x"
and x", with x"xeZ — {1} and x"x¢ Z where Z is the center of P. Let w be
an element of order 2 of C, . Then x¥x = ww”e Z — {1} . Finally since ¢ = 1 mod 4,
q=5 so |C’| =2°24. Thus let u be an element of C, of order 4. Then
x"x = u*(uu™). Since uu® e Z we see that x*x € Z implies u”> e Z, a contradiction.
Thus k;(G,) = 1 and the result follows by Lemma 1.4.

Now let p=2 and g=3 mod4. Let W be the group generated by x and y
satisfying x**=1, y2=1 and y " 'xy=x"1*?""and let Q be clementary abel-

ian of order g2 . For suitable s, Wis a Sylow 2-subgroup of GL(2,4q). Set G, =Q x ,W
and for i>1 let G;=G,;_; ~ C where |C|=2. Then by [1], H x,P=G, for
some i. We study G, . Since {(x) acts fixed point free on Q and {x) has index 2
in W we see that for any he Q — {1} we have I(iw(h)l =1 or 2. Conversely let
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we W — (x) be an element of order 2. Since w is not central its minimal poly-
nomial on Q is (w+ 1)(w — 1) =0. Thus Q”“’=€Q(w) is a proper subspace
of Q. But |Q| =g so I(S',Q(w)l =gq. Now W contains 2° ! such elements w.
Hence we have easily k,(G,) = {(g® — 1) — 2°"*(qg — 1)}/2°**. If k,(G,) = 3 the
result follows by Lemma 1.4. Since ¢ =3mod4, k,(G,)=1 or 2 yields g =3
and 8 =2°+2°*! or 8 =2°+ 2°*2 which cannot hold. Finally k,(G,) = 0 yields
g =2°"'—1, a Mersenne prime. In this case we have clearly k,(G,) = (g2 —1)/2".
If ky(G,) = 3 the result again follows. But by Lemma 1.5, k,(G,) =1 or 2 yield
q=3.Since g=2""1—1 we have 2°=8. Note that g =3 is also a Fermat
prime. In this case it is quite easy to see that k;(G,) = 1 and thus the result follows.

2. Small orbits. The main result of this section is the following:

THEOREM 2.1.  Let p-group P act faithfully and irreducibly on elementary
abelian g-group Q. Let all orbits in Q under the action of P have size at most
P®. Then there exists he Q with | Cp(h) | < (p""™Y** < 2°°. Moreover if e< p
then there exists h e Q with €p(h) = {1} with the following exceptions which occur
when there is an orbit of size p”*.

(i) p=24q=3

Qx,P=(Vx,C)~C where |V|=3,|C|=2

(i) g=2, p=2"—1is a Mersenne prime

Q%x,P = (VX,C)~C where |V|=2%, |C| =p.

LEMMA 2.2. Let A be an abelian p-group acting faithfully on solvable
p’-group H. Then there exists he H with € (h) = {1}.

Proof. Since the property of having an abelian Sylow p-subgroup is inherited
by subgroups and quotient groups, Lemma 1.2 applies. Thus it suffices to assume
that H is elementary abelian and A acts irreducibly. But then A is cyclic and
acts fixed point free so the result follows.

The following is essentially a restatement of Jordan’s theorem for linear p-groups.
While the result contains more than we need here, the exact values of the bounds
may be of some interest in themselves.

PROPOSITION 2.3. Let p-group P be a fuithful irreducible complex linear
group of degree p". Then P has a normal abelian subgroup A with
[P:A] < p@~1®=D gnd the latter bound is possible. Moreover if y is any
irreducible complex character of P then degy < p®"~V®~Y and again
this bound is best possible.

Proof. Let A be an abelian subgroup of P and let y be an irreducible complex
character of P. If A is a constituent of x| A, then y is a constituent of A* (induc-
tion to P). Thus degy < degi* =[P:A4]. We prove this proposition by first
obtaining the first bound. This then implies the second bound. Moreover by the
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above argument, if the second bound is best possible, then so is the first. Set
Jm) =" - D/(p-1).

Let 0 be the character of the given faithful irreducible representation of P.
We obtain the first result by induction on degf = p". If p"=1, then P
is abelian and the result follows. Let p" > 1. Since p-groups are monomial, there
exists a normal subgroup N of P of index p and an irreducible character {y of N
with 0 =y*. Then degy =p"~! and 0| N =y, + Y, + - +,, the sum of p
conjugates of ¥ . Let K; be the kernel of y; so that K; is normal in N, the K;
are conjugate in P, and () K; = {1}. By induction N/K, has a normal abelian
subgroup A4,/K; with [N/K,:4,/K,] < p/® V. Let 4 be the intersection of the
at most p conjugates in P of A;. Then A is normal in P and A’ < nKi so A is
abelian. Also [P: 4] < p?" " D*!1= p/™ 5o the first result follows.

We show now by example that the second bound is best possible. Let C denote
the cyclic group of order p. Set P, = C if p> 2 and let P, be the cyclic group
of order 4 if p=2. Define P, inductively for n=1 P,=P,_; ~ C. We show
inductively that P, is a faithful irreducible linear group of degree p" and that
P, has at least 3 irreducible characters with degree at least p’™. This is trivially
true for n =0. Let n = 1 so that P, has a normal subgroup N of index p with
N =R; X R, x --- X R,, the direct product of p copies of P,_;. Let 0 be the
given irreducible faithful character of degree p"~! of R, viewed as a character
of N. Then we see easily that 6* is a faithful irreducible character of P, of degree
p". Now let £; be the set of irreducible characters of R; of degree at least p/™~ 1
and set |£25| =k=3. Then 8=, x8, x-+xQ, is a set of size k? of
characters of N of degree at least p”~". As in the proof of Lemma 1.3,
P,/N permutes the elements of £, fixing k characters and moving the remaining
ones in orbits of size p. Thus there are (k?— k)/p = (37— 3)/p = 3 orbits of size
p. Each of these orbits yields an induced character of P, which is irreducible and
ofy degree at least pP/"~D*! — pi™ This completes the proof.

We now proceed to prove Theorem 2.1. We can of course assume the maximal
orbit size to be p°. If |Pl = p°, then certainly for some he Q, Cu(h) = {1}.
Thus we assume that |P| > p® Let N be a normal subgroup of P of order p°*!.
Then N has at most (p°*! — 1)/(p— 1) subgroups of order p. Let he Q. Then
Ex(h) > {1} and therefore h e €y({x)) where {x) is a subgroup of N of order p.
Thus Q = UE,({x)). If €4({x)) denotes one of the right-hand groups of maxi-
mal order, then counting nonidentity elements we have |Q| —1 < (|€g(x)| = 1)
«(p°*' = 1)/p— 1). Since P acts faithfully |€y(x)| <|Q| and thus

[2]/]€)| < (2]-D/(Cx)| -1 = ("= Di(p - D).

Let M be the normal subgroup of P generated by all conjugates of x. Clearly
M < N.If M <N, then |M| < p° so M is generated by a set of at most e con-
jugates of x. If M = N, then since N cannot be abelian by Lemma 2.3, the same
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result holds. Thus M = {(x,,x,,--+,x;> where the x; are j < e conjugates of x.
Clearly [Q:Co(x)] < (p°*' = D(p—1). Thus [Q:C(M)]<{(p""' = D)/(p — D}*.
Now M is normal in P and P acts irreducibly on Q. Thus €y(M) = {1} and
|| <{(@**' - Di(p - D}".

Let 6 be an absolutely irreducible constituent of the action of P on Q. Let
GF(q)(0) = GF(q"). Then the representation of P on Q must contain the r con-
jugates of 6 under the Galois group of GF(q")/GF(q). Hence |Q| = ¢"“*®”. Since
the representation associated with 6 is realizable over GF(q") (since we are
dealing with representations over finite fields) it follows that GF(q") contains
a pth root of unity. Hence p divides ¢"—1 and ¢"= p+ 1. This yields
|Q] 2 (p + 1)*¢°. If degf = e® we obtain

" = D/(p -} > (p+ 1
or

Zp> % ( ‘ )p',
0 0 l
a contradiction. Hence deg0 < e2.

Since all the other absolutely irreducible constituents of the representation
of P on Q are algebraic conjugates of § under the above mentioned Galois group,
it follows that 0 must be faithful. Let degf = p". Then by Proposition 2.3, P has
an abelian subgroup A with [P: 4] < p®" =@~ < (pl/P=Dye* < 2¢* Note we
used the fact that 6 is equivalent to a complex character of P. Since A4 is abelian,
by Lemma 2.2, there exists heQ with Cph)NA=C,h)={1}. Thus
|€4(h)| < [P: 4] and the first result follows.

Now let p = e. Since P is nonabelian degf > 1. But deg0 < e? < p. Hence
deg = p. By Proposition 2.3, P has a normal abelian subgroup A of index p.
By Lemma 2.2, |A| < p®so |A| =p®and |P|=p°*'.

Let R be an irreducible A-submodule of Q. Then by Clifford’s Theorem [2,
Theorem 49.2], 0 = PR, where R;= R* and P ={A4,x). If two of thesc
are inequivalent A-modules then they are all inequivalent and the sum Q = XR;
is direct. We consider this case first. Since A is abelian, if a € A then § (a) is
an A-submodule. Hence either a centralizes R; or it moves all nonidentity ele-
ments of R;. Let h* = h h,---h, with h;eR; and h; # 1. If aeCp(h*) N 4 then
a centralizes each h;. Hence a centralizes Q and a = 1. Since €p(h*) > {1} it
follows that P contains an element, say x, of order p with x¢ A. Now let
h* = h,h3--- h, with h;e R; and h; # 1. Since every element of P — A cyclically
permutes the R;, it follows that €x(h*) = A. Since €p(h*) > {1} we can choose
yeQp(h*) with y of order p. Then y centralizes each h(i = 2) so y centralizes
each R; with i >2. Clearly y does not centralize R,. Let y; = y* ™", Then
y; centralizes all R, with i # j and does not centralize R;. With this we see that
the p elements y,, -+, y, are independent and thus generate an elementary abelian
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subgroup of A of order p®. But |A| pfandp=esop=eand A= y;,+,y,).
Thus G = Q x,P is the group G =(R X,C) ~ C where ICI p. Moreover for
this group kl(G) 0. Now if |R| = g% then k(R x,C)=(q°— 1)/p. Thus by
Lemmas 1.3 and 1.4, k;(R Xx,C)=1 or equivalently p=¢g“— 1. By Lemma
1.5 this occurs for g =2 and p=2"—1 or p=2 and g = 3. These are groups
(i) and (ii).

We need to consider the case now where all the A-modules R; are equivalent.
Since the action of A4 on Q is faithful we see that R, is a faithful irreducible A-mo-
dule. Thus since A4 is abelian, it is cyclic and acts fixed point free. Let h e Q with
h # 1. Then €p(h) > {1} and €p(h) N A = {1}. Thus P has an element of order p
not contained in A. Note that if p =2 then |P| = 8. With this we see that P
has the following structure. P = (x,a) with x?=1,a?" =1 and x “'ax = a1 77",
But then B = {x,a’) is a noncyclic abelian subgroup of P of index p. Using B
instead of A4 we obtain the first case already discussed. With this the result fol-
lows.

COROLLARY 2.4. Let p-group P act faithfully on solvable p'-group H.

(i) If (p,n(H)) is nonexceptional or if all the orbits have size less than p°,
then there exists he H with €p(h) = {1}.

(ii) If (p,n(H)) is not (2,f) then there exists he H with IGP(h)] = IPII/3

(iii) In any case there exists he H with |Cp(h)| < | P|'/2

Proof. The first part of (i) follows from Theorem 1.1(i). Since the property
of having small orbits is inherited by subgroups and quotient groups, we con-
clude by Lemma 1.2 that the second part of (i) follows from Theorem 2.1. For
(i) let h, and h, be given as in Theorem 1.1 (ii). Then €p(h,) NEp(h,) = {1} and
A = Cp(h,)Ep(h,) is abelian. By Lemma 2.2 there exists hy € H with € (h;) = {1}
or Cp(h3) N A ={1}. Thus

|(5P(h1)| Icgp(hz)l I(Y«P(hs)l = |€P(h1)(gP(h2)¢P(h3)| = IPl

Choose h=h,, h, or h; so that l(Cp(h)l =< IGP(hi)]. Then (ii) follows immediately.
Part (iii) is clear from Theorem 1.1(iii).

We remark that the second part of Corollary 2.4(i) follows also from Satz (5)
of [4] and properties of regular p-groups.

COROLLARY 2.5. Let G be a solvable group, P a Sylow p-subgroup of G and
O,(G) the intersection of all Sylow p-subgroup of G.

(i) If (p,n(G)) is nonexceptional then there exists a€ G with P N P* = O (G).

(i) In any case there exists a,be G with P NP*N P*=9O,G).

Proof. Clearly we can assume O,(G) = {1}. Let H = &(G), the Fitting sub-
group of G. Since H is nilpotent P N H = {1}. Also since H contains its cent-
ralizer, it follows that O,(PH) = {1}. Hence it suffices to assume that G = PH,
that is that H = $(G) is normal and solvable and P acts faithfully on H. Let
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aeH. Clearly P N P" 2Ep(a). Conversely let xe P N P*. Then x = y* with
yeP. Thus (y,a) =y 'y"=y 'xeP. But aeH and H is normal in G so
(y,a)e H. Hence (y,a)e PNH = {1} and x = yeCp(a).

If (p,n(G)) is nonexceptional then there exists a € H with €p(a) = P N P* = {1}.
Thus (i) follows. By Theorem 1.1 (iii) there exists a, b € H with {1} = €p(a) NECp(b)
=PNP°NPN P =PNP" NP and (ii) follows.

3. Reduction theorems. Let G be a finite group and p a fixed prime. If
H = $(G), the Hall p’-subgroup of G, is normal and abelian then the degrees
of the irreducible complex characters of G are all powers of p. If the biggest
such degree is equal to p®, then we let e = e(G) be the character exponent of G.
We say G has r.x.e (representation exponent e) if e¢(G) < e and G has r.x.(e,s)
if e(G) = e and e(S,(G)) <s. We apply the results of the previous sections to
obtain relations between certain functions studied in [3]. In the following, all
groups are assumed to have normal abelian Hall p’-subgroups.

DEerINITION. (i) Let f be the smallest function with the following property.
If G has r.x.e, then G has a subinvariant abelian subgroup whose index in G divides
pf(e).

(ii) Let f, be the smallest function with the following property. If G is a
p-group with r.x.e then G has an abelian subgroup whose index in G divides p/"

(iii) Let g be the smallest function with the following property. If group G

has r.x.(e, ), then G has a subinvariant abelian subgroup whose index in G divides
(e,s)
pFY .

THEOREM 3.1. We have f(e) = f,(e). Moreover for p#2, if G is a group
with r.x.e having no subinvariant abelian subgroup with index dividing p’® ™",
then $(G) is central.

THEOREM 3.2. If either p# 2 and p is not a Mersenne prime or p > e, then
for e2 s we have g(e,s) = e + f,(s) —s. Moreover under these assumptions, if
G is a group with r.x.(e,s) which has no subinvariant abelian subgroup whose
index divides p*®97!, then G/C($(G)) is abelian.

Proof. Let P be a Sylow p-subgroup of G and H = $(G). If P, is a Sylow
p-subgroup of C(H) then'€(H) = P, x H and P, isnormalin G . Thus p-group P/P,
acts faithfully on abelian p’-group H . Therefore p-group P/P, acts faithfully on H,
the abelian p’-group of linear characters of H. We apply Corollary 2.4 to this
action. We show first that if G has r.x.e then all orbits have size at most p°®. Let
A be a linear character of H and yx a constituent of A* (induction to G). Since H
is normal in G we have by Clifford’s Theorem, x| H = a X', 1; where the A; are the
t distinct conjugates of 4. Thus ¢ < at = degy < p ®and this fact is proved. Define
dtobe0if p#2 and pis not a Mersenne prime orif p>e. Let =1/3if pis
Mersenne and p<e and let 6 =4 if p=2 < e.Let[P:P,] = p™ Then by Corol-
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lary 2.4, H has a linear character 4 whose inertia group T(1) (the analog of the
centralizer) satisfies T(1) 2 €(H) and [T(4):C(H)] < p*™

Let e, = e(P,) and let 0 be an irreducible character of P, of degree p**. Then
04 is an irreducible character of €(H). Let y be a constituent of (6A)* so that
XI(E(H)= a X9(07);. Since both H and P, are normal in G, we have clearly
T(04) < T(0). Thus t = [G: T(0A)] = [G: T(A)] = p* ~®™ Since p* = degy = at
deg0 = p"' ""p°* we have e, <e— (1 —)m.

We now consider Theorem 3.1. Clearly f(e) 2 f,(e). We show the reverse in-
cquality below. Since P, has r.x.(e — (1 — é)m), by definition of f,, P, has an
abelian subgroup 4 with [P,:A]=p® and a < f,(e — (1 — 6)m). Then A x H
is a subinvariant abelian subgroup of G whose index equals p°*™. By Lemma 3.6
of [3], which applies equally well to f,,, we have for any r, s, f,(r + 5) 2 f,(r) + 2s.
Thus

a+m = fle—(1—=8m)+m

< fe)=2(1 = 0)m +m = f(e) - (1 ~ 28)m.

Since d <4 we have a + m < f,(e) and by definition of f as the smallest such
function with the appropriate property, f(e) < f,(e). Thus f(e) = f,(e). Finally
a+ m=f,(e) implies (1 —20)m =0 and if p#2 then 6 <% so m=0. Thus
$(G) is central in this case.

We now consider Theorem 3.2. Here 6 =0 and P, has r.x.(e — m). By Lemma
3.6 of [3], if e=s then g(e,s) = e — s + f,(s). We show the reverse inequality.
Now if e(P;) =e, then e; Se—m and e, <s. By definition of f,, P has an
abelian subgroup A4 of index p“ with a < f,(e;). Then 4 x H is a subinvariant
abelian subgroup of G of index p°*™. Since m < e —e, we have

at+msfle)+m=se+fle)—e.
But e; <5 so f,(e;) S f,(s) —2(s —e;) and
a+m=e+f()—s—(s—e).

Hence g(e,s) =e+f,(s)—s. If a+ m=e+f,(s) —s then s=e,. By Lemma
5.5 of [3] this implies that P/P; ~ G/C(H) is abelian. Thus the result
follows.

There is good reason to believe that g(e,s) = e + f,(s) — s in all cases. How-
ever the last statement of Theorem 3.2 is definitely not true without the additional
assumptions. For example the exceptional groups of Theorem 2.1 have r.x.(p,1)
and G/C(Q) is nonabelian. Since g(p,1) = p + 1 these groups are counterexamples
to that statement.

We conclude by discussing two conjectures of the nature of a Chinese Re-
mainder Theorem. They make sense only for p > e.
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ConJECTURE 3.3. Let Gbe a p-group with e(G) =e. Let x,x,, -, X, be any
v = p — e nonidentity elements of G. Then there exists an irreducible character
x of G of degree p° such that for all i,x; is not in the kernel of x.

CoNJECTURE 3.4. Let G satisfy e(G) =e. Let x,,x,,--,x, be any v = p—e
elements not contained in $(G). Then there exists an irreducible character y of
G of degree p° such that for all i,x; is not in the kernel of y.

The latter is of course a generalization of the former. We note that the con-
dition x; ¢ H(G) cannot be replaced by x; # 1. For example, let P be an abelian
p-group and let H be an abelian noncyclic p’-group. Set G = P x H so that e(G) =0.
If p>|H| we get an easy counterexample by choosing {x;} = H — {1}. It is
not hard to show by example that if Conjecture 3.3 is true then v = p — e is best
possible. At present the validity of this conjecture is known only for small values
of e.

ProrosiTiON 3.5. Conjectures 3.3 and 3.4 are equivalent.

Proof. Certainly Conjecture 3.4 implies Conjecture 3.3. We assume the latter
now. Let ¢(G) = e and let x,,---,x, be v = p — e elements of G not in H = $(G).
Since v = 1 we have p > e. Assume the numbering so chosen that x,,x,, +-,x,,€ C(H)
and the remainder do not. Let P, be a Sylow p-subgroup of ®(H) so that
€(H) =P, x H. For each x;eC(H), write x; = y;h; with y,eP,, h;e H. Since
xi¢H, y;#1.

Let P be a Sylow p-subgroup of G. Then P/P, acts faithfully on H and hence
on H, the group of linear characters of H. Since p > e, Corollary 2.4 implies
that there exists a linear character A of H whose inertia group T(A) is equal to
©(H). Let 0 be any irreducible character of P, . Then 04 is an irreducible character
of €(H). We show that (6A4)* is irreducible. Let y be a constituent of (4)*. Then
b4 | C(H) = a X1(04); where the (01); are the t conjugates of 6i. Now
t=[G:T(6A)] =2 [G:T(A)] = [G:C(H)]. Thus [G:C(H)]deg0 < atdegd = degy
and degy < deg(0)* =[G:C(H)]degf. Hence x=(0A)*. In particular, if
e(G)=e, e(P;)=¢, and [G:C(H)] =p™, then e=e, +m. This follows by
choosing 6 to have degree p°'.

- Now let x be a character of G of degree p®and let i be a constituent of x [ C(H).
Then y is a constituent of Y* so p°=degy < p™degy. Thus degy = p*~™ and
e(C(H)) = e—m. Since e(C(H)) = e(P,) = e,, this yields ¢; = e — m. Now we
apply Conjecture 3.3 to the set {y;} of size w<v<p—e=<p—e, and obtain
an irreducible character 6 of P, of degree p°* with all y; not in the kernel of 0.
Set x = (6A)*. Then y is an irreducible character of G of degree p®'*™ = p°.
Since 04 is a constituent of xl ©(H) we see that x,, -+, x,, ¢ ker x. Finally y vanishes
off €(H) so that none of the remaining x; are in the kernel either. This completes
the proof.
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Added in proof. By modifying slightly the techniques of §1 we can obtain
the following results which yield better bounds in the (m,2) case.

THEOREM. Let p-group P act faithfully on solvable p’-group H. Then there
exists elements h;,h,,---,h,e H such that for i=1,2,---,p—1

<€P(h1)a Cp(hy), -, G:P(hi)> N Gp(hu )= {1} .

COROLLARY. Let p-group P act faithfully on solvable p'-group H. Then there
exist element he H with |€x(h)| <|P|"".
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