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1. Introduction. The problems treated in this paper derive from the viewpoint

of measure and integration developed in the book of P. R. Halmos [4]. We are

concerned, above all, with the formulation of Fubini's theorem in the product

of two locally compact spaces, assuming we are given a Borel measure on each of

the factor spaces. Our basic tools, treated elegantly in [4], are (1) the theory of the

product of two (T-finite measure spaces, and (2) the theory of a single Borel measure

on a locally compact space. But these tools alone fail to yield a satisfactory Fubini

theorem in the context of locally compact spaces. The reason for this failure is

that the domain of definition of the product of two Borel measures, as defined

in [4], may not be large enough. (Examples are given in §7 to illustrate insufficient

domain. However, a case is given in §8 in which the domain is sufficient.) To

explain this circumstance in greater detail, let us introduce some notations.

For the rest of the paper, p and v denote Borel measures on the locally compact

spaces X and Y, respectively. (At times we shall assume that p or v is regular, or

that X = Y.) For the definitions of Borel measure and regular Borel measure, the

reader is referred to [4, Chapter X]. Specifically, the Borel sets of X, Y, and

X x Y are the <r-ring generated by the compact subsets of X, Y, and X x Y,

respectively; we denote this class by @t(X), @I(Y), and 3S(X x Y), respectively.

By the product cr-ring of 3ä(X) and SS(Y), denoted

@(X)x@(Y),

we mean the c-ring generated by sets of the form E x F, where E e âS(X) and

Fe@(Y) [4, p. 140]. Since 3S(X) x @(Y) is in fact generated by rectangles with

compact sides [2, 35.2], we have

®(X)x@(Y) c ®(X x Y).

In general, this inclusion is proper. But if equality holds, we say that the Borel

sets in X and Y multiply or simply that the Borel sets multiply.

The product of p and v, p x v [4, 35.B], may thus fail to be a Borel measure
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for want of sufficient domain; that is the case whenever the Borel sets fail to

multiply. In §2 we see, however, that if p and v are regular, then there exists one

and only one regular Borel measure on X x Y which extends p x v. We may de-

note, in this case, the regular extension of p x v by p ® v.

Now we have a Fubini theorem for p x v; but if Borel sets do not multiply,

we would like to have a Fubini theorem for the regular Borel measure p ® v.

This is given in Theorem 5.8. The necessary machinery is developed in §§3 and 4,

and in §4 we develop extensions of p x v, under less restrictive conditions than

the regularity of both p and v.

2. The tensor product of two regular Borel measures. In this section we suppose

that p and v are regular Borel measures, and we find an extension of p x v to

a regular Borel measure on the product space. To this end, we make use of Baire

sets and Baire measures.

The Baire sets in a locally compact space are the c-ring generated by the

compact G¿'s. If X is a Borel measure, its restriction to the class of Baire sets is

a Baire measure X0, which we call the Baire restriction of A. A Baire measure

always has an extension to a regular Borel measure, and such an extension is

unique [4, 54.D]. In the proof of Theorem 2.1, we shall appeal to the following

elementary criterion for regularity (cf. [2, 59.1]):

Criterion. In order that a Borel measure X be regular, it is necessary and

sufficient that each compact set C be contained in a compact Gô D such that

X(C) = X(D).

What is the product of the regular Borel measures p and v? According to [4,

35.B], it is the unique measure p x v on the o--ring âS(X) x £%(Y) such that

(px v)(ExF) = p(E)v(F)

for all Borel sets E in X and F in Y.

Now if p0 and v0 are the Baire restrictions of p and v, respectively, then the

product of p0 and v0, namely p0 x v0, is readily seen to be a Baire measure on

X x Y; the reason is that the Baire sets in A" and F always multiply [4, 51.E].

If Borel sets do not multiply, /z x v fails to be a Borel measure on the simple

grounds that its domain is not large enough. Nevertheless, there is a regular

Borel measure p on A" x Y ready at hand; namely, the unique extension of

p0 x v0 to a regular Borel measure [4, 54.D]. We are allowed to hope that p

is an extension of p x v, and this hope is indeed fulfilled :

Theorem 2.1. If p and v are regular Borel measures on the locally compact

spaces X and Y, respectively, then there exists one and only one regular Borel

measure on X x Y which extends p x v. This measure, which we may denote

p ® v, and call the tensor product of p and v, is simply the measure p described

above.
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Proof. We show that the regular Borel measure p, described above, extends

fi x v.  It is sufficient, for this, to show that

(1) p(C x D) = (p x v)(C x D)

for every rectangle with compact sides. Indeed, the ring Si generated by such

rectangles is the class of all finite disjoint unions of rectangles of the form

(C, — C2) x (Z), — D2), where the C¡ and D¡ are compact sets, and C2 cC,,

D2 cr D, [4, 51.F and 33. E]. Since such a rectangle can be written in the form

(2) [(C, x D,) - (C2 x £>,)] - [(C, x D2) - (C2 x Z)2)],

where all of the differences are proper, it is clear from subtractivity that the

validity of (1) implies that p = pxv on rectangles of the form (2). It then fol-

lows from additivity that p = p x v on Si; but then p = p x v on the cr-ring

generated by á? [4, 13.A], that is, on the «r-ring @)(X) x 38(Y) on which pxv

is defined.

Now, let us suppose C and D are arbitrary compact sets in X and Y, respectively.

By the regularity criterion listed above, we may choose compact Gá's, K, L, and

M, in the appropriate spaces, such that

CczK,      p(C) = p(K),

D<=L,       v(D) = v(L),

CxDcM,     p(CxD) = p(M).

Now, p and pxv agree on the Baire sets of X x Y, for they are both extensions

of p0 x v0. Since both K x L and M are Baire sets containing C x D, we have

(p x v)(C xD) ^ (px v)(M) = p(M) = p(C x D),

and

p(C x D) = p(K xL) = (p x v)(K x L) = p(K)v(L) = p(Qv(D) = (p x v)(Cx D);

this establishes the relation (1). Uniqueness is clear [4, 52.H].

This raises the following question: If p and v are arbitrary Borel measures,

not necessarily regular, is it always possible to extend p x v to a Borel measure?

We do not know. In §4 we shall show that such an extension is possible if at

least one of p or v is regular. In any case, the next theorem shows that if p x v

is nonzero, then no regular Borel extension of p x v is possible, unless p and

v are both regular to begin with:

Theorem 2.2. If p is a nonzero regular Borel measure on X x Y which

extends pxv, then both p and v are regular.

Proof. If p is a regular Borel extension of p x v, it is a regular extension of

the Baire measure p0 x v0. It follows from Theorem 2.1 that p extends p' x v',
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where p' and v' are the regular Borel extensions of p0 and v0, respectively. Hence

|i'xv' = /ixv, and so

p'(E)v'(F) = p(E)v(F)

for all Borel sets £ in A* and F in Y. Since p, and hence p x v, is nonzero, it

follows that p = p' and v = v'.

JVofe. Theorem 2.1 will follow as a corollary to Theorems 4.5 and 5.7. Never-

theless, it is pleasant that this result can be established relatively easily using

only the tools mentioned in the Introduction.

3. Sections of Borel sets and Borel functions. Following [4, p. 141], if M is a

subset of A" x Y, we define the y-section [x-section] of M, denoted My [Mj,

as follows:

My = {xeX :(x,y)eM},

Mx = {yeY:(x,y)eM}.

UPtx and Pry are the projection mappings of A" x Y onto X and Y, respectively,

then

M> « Jftx{M r\(X x {y})},

M   = Pry[Mn({x}x Y)].

If M e 3HX) x @(Y), then M e @(X) for all yeY, and Mx e âS(Y) for all x e AT

[4, 34.A]. It may be surprising that the same result holds for any Borel set M

in A"x Y:

Theorem 3.1. If Me @(X x Y), then My e £(X)for all yeY, and Mx e @(Y)

for all xeX.

Proof. Let i be the class of all M c A" x Y such that My e 3»(X) for all

yeY, and MxeâS(Y) for all xeA". Since sections preserve countable unions

and set-theoretic differences, S is a c-ring. The theorem will be proved if we show

that ê contains the compact sets in X x Y.

Let C be a compact set in X x Y, and let y e Y. Then A* x {y} is closed ;

CO (A" x {y}) is compact; and

C^ = Pr^[Cn(A-x{y})]

is compact by the continuity of Prx. Hence Cye Sê(X) for all y e Y. Similarly,

Cx e Ú&(Y) for all x e A". Hence C e S, as we wished to show.

From Theorem 3.1 we conclude the following:

®(X) = {My: Me@(X x Y), yeY},

@(Y) = {Mx:Me@(X x Y), xeX}.
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In particular, if the class ¿%(X x Y) is known, then the classes 3S(X) and â$(Y)

are determined. Conversely, if ¿S(X) and ¿%(Y) are known, can one determine

3S(X x Y)1 We do not know.

We recall that a real valued function/on X is called a Borel measurable func-

tion if it is measurable with respect to the <r-ring of Borel sets [4, §51]. The briefer

term "Borel function" will be used, and we shall favor the letters/, g, and h

for functions defined on X, Y, and X x Y, respectively.

Suppose n is a real valued function on X x Y. The sections of h are defined

as in [4, p. 141]; thus, if xeX, we define hx(y) = h(x,y) for all ye Y, and if

ye Y, we define ny(x) = n(x,y) for all xeX. Using Theorem 3.1, we see that

if h is a Borel function on X x Y, then all its sections are Borel functions on

the appropriate spaces.

Corollary. If h is a Borel function on X x Y, then hx is a Borel function

on Y and hy is a Borel function on X, for all xeX and yeY.

Proof. If M is any set of real numbers, then (hx)~1(M) = (h~1(M))x and

(hy)~1(M) = (h~1(M))y. The corollary now follows directly from Theorem 3.1.

4. Extension of products of not necessarily regular Borel measures. Under

suitable conditions we shall construct Borel measures p, and p2 on X x Y which

extend pxv. Our procedure is similar to that of [4, Chapter VII] or [1]. The

machinery developed here is used to prove the Fubini-Tonelli theorems of §5.

The gateway to the results of this section is the conclusion of Theorem 4.1.

Our construction of p, and p2 is based on integration. We now describe the

basic theory used. Suppose (X,if,X) is an abstract measure space. As in [2],

we reserve the terms measurable and integrable for real (finite) valued functions

only. If an extended real valued function / is equal a.e. [A] to a measurable or

integrable function g, we call f a.e. measurable or a.e. integrable, respectively.

If / is a.e. integrable and g is an integrable function equal to / a.e., we define

§fdX to be ¡gdX. It is easily seen that the value for ¡fdX does not depend on

the representative g. Strong use will be made of the following theorem :

Monotone Convergence Theorem [4, 27.B]. Let (X,£^, X) be an abstract

measure space. Suppose f is an extended real valued function on X, and sup-

pose f„ is an increasing sequence of nonnegative a.e. integrable functions on

X such thatfn increases to f a.e. (that is,f„(x)^f(x)for almost all xeX). Then

f is a.e. integrable if and only if jfndX is bounded. In this case, \fndX^ ¡fdX.

If M is a Borel set in X x Y, every x-section of M is a Borel set in Y (Theorem

3.1). We may therefore define a nonnegative extended real valued function fM

on X by the formula

fM(x) = v(Mx)
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for all x e A" (cf. [1]). We propose to integrate fM for at least bounded Borel sets

and hence must check to see that fM is integrable for such sets. That is the case

if/c is a Borel function, for each compact set C in X x Y.

Theorem 4.1. // v is regular, then fc is a Borel function, for each compact

set C in X x Y.

Proof. Suppose C is a compact set in A" x Y. Since fc = 0, it will suffice to

show that for each positive number a, the set

A = {x:fc(x) = a}

is a Borel set. We shall in fact show that A is compact. Moreover, since A c PrA C,

a compact set, it will suffice to show that A is closed.

Suppose z e X — A ; that is, v(Cz) < a. Since v is regular, we may choose an

open Borel set F in Yso that Cz e= Fand v(F) < a. Let U = X- Prx[C-(Z x F)].

It is easy to see that U is open and that x e U if and only if Cx c F. It follows

that U is a neighborhood of z which is disjoint from A. Since z is arbitrary, A

is closed.

We now prove a type of sequential upper semicontinuity for fc, where C is

a compact set in X x Y. For first countable spaces (spaces in which each point

has a fundamental sequence of neighborhoods) the result implies upper semi-

continuity of/c.

Theorem 4.2. Suppose C is a compact set in X x Y and that x„ is a sequence

in X converging to xeX. Iffc(x„) ^ a for all n, then fc(x) ^ a.

Proof. Assuming v(CXn) = a for all n, we wish to show that v(Cx) ja a. To

do this, we show that limsup CXn (the set of all points which belong to CXn for

infinitely many n) is a subset of Cx having v-measure greater than or equal to a.

Each CXn is a subset of a common set of finite measure, PryC. Hence we may

quote the Arzela-Young Theorem [2, 17.2] to assert that v(limsup CXi) = a.

Now if E = limsup CXn, we show that 73 is a subset of Cx. Suppose y e E. Given

a positive integer k, there exists an integer n(k) = k such that y e CXn(k). That

is, (x„w,y)eC. Since x„ converges to x, so does xn(k); hence (x„(k),y) converges

to (x,y). Because C is closed, (x,y)eC, which means yeCx. Therefore E<= Cx,

and v(Cx) = a, as we wished to show.

Theorem 4.3. // X is first countable, then fc is a Borel function, for each

compact set C in X x Y.

Proof.   It suffices to show that for each positive number a, the set

A = {x: fc(x) = a}

is closed. (Cf. proof of Theorem 4.1.) Suppose x is an accumulation point of A.
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Since X is first countable, there exists a sequence x„ in A converging to x

[5, 2.8]. By Theorem 4.2, xeA, so that A is closed.

We now proceed axiomatically, assuming the following axiom:

Axiom (M,):   fc is a Borel function, for each compact set C in X x Y.

We emphasize that in view of Theorems 4.1 and 4.3, Axiom (M,) is always

verified when v is regular or X is first countable. We also emphasize, however,

that Axiom (M,) does not always hold. An example will appear in a future paper.

Lemma 1. If M = C — D, where C and D are compact sets in X x Y such

that DcC, then fM =fc—fD, and in particular, fM is a Borel function.

Lemma  2.   If M and N are disjoint Borel sets in X x Y, then

/aíun = /m + /n •

In particular, if fM and fN are Borel functions, then so isfMuN.

Proof of Lemmas 1 and 2. The proofs follow immediately from subtractivity

and additivity of measure.

We denote by Si the class of all finite disjoint unions of proper differences of

compact subsets of X x Y. From [4, 51.F], we know that M is a ring and that

the c-ring generated by ^ is ¿%(X x Y). We observe from Lemmas 1 and 2 that

fM is Borel measurable for all M e á?.

Let us write 3Sb(X x Y) for the class of all bounded Borel sets in X x Y. These

are the members of ¡M(X x Y) which have compact closure or, cquivalently,

are contained in a compact rectangle. We observe that (%b(X x Y) is a ring con-

taining 01, and that the er-ring generated by Jâb(X x Y) is the class ¡M(X x Y) of

all Borel sets in X x Y. We now show that/M is pleasant when M is any bounded

Borel set in X x Y:

Lemma 3. If Me08b(X x Y), then fM is a Borel function; indeed, it is

p-integrable.

Proof. Suppose M g ¿%b(X x Y). Choose compact sels G and H such that

M c G x H. Then M belongs to the class

[®(Xx 7)]n(GxZZ),

which is the tr-ring generated by the ring

mn(Gx H) [4, 5.E].

Let us write J( for the class of all Borel sets N in X x Y such that N <=.G x H,

and such that/v is a Borel function. Since M C\(G x H) is a subring of 0t, we

have

&r\(G x H)<=:jr
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by the remarks following Lemma 2. We assert that Jt is a monotone class [4,

p. 27]. That Jt is closed under increasing sequences follows from the fact that v

is continuous from below [4, p. 39]. That Jt is closed under decreasing sequences

follows from the finiteness of v on 2$( Y) n H and the fact that v is thus continuous

from above on such sets. Hence Jt is a monotone class containing the ring

.'M D(G x H). It follows from [4, 6.B] that Jt contains the c-ring generated

by ¡Mr\(G x H), namely \ß(X x Y)] C\(G x H). In particular, MeJt, and

so fM is a Borel function by the definition of Jt. Finally, since

0=fM = v(H)Xo,

where /(; is the characteristic function of G, we conclude that fM is /i-integrable

[4, 27.A].

Lemma  4.   For each Meâ&b(Xx Y), define

Pi(M) =  j fMdfi.

Then, pi is a finite measure on the ring âSb(X x Y).

Proof. The definition of p¡ is of course justified by Lemma 3. It will suffice

to show that px is additive and continuous from below [4, 9.F].

Additivity follows from the additivity of integration. We show that px is con-

tinuous from below. Suppose M„ and M are bounded Borel sets in X x Y such

that Mn\M. Then/Mn \fM, since measure (in this case, v) is continuous from

below. Hence,

Pi(Mn) f Pl(M)

by the Monotone Convergence Theorem.

By the Unique Extension Theorem [4, 13.A], pj has a unique extension to

the a-ring generated by âSb(X x Y), in other words, to the a-ring 38(X x Y)

fof all Borel sets in X x Y. We continue to use px to denote the new measure

on Stl(X x Y). Summarizing:

Theorem 4.4. // Axiom (Mx) holds, there exists a unique Borel measure

Pj on A" x Y such that

PÁM) = j fMdp

or all bounded Borel sets M in X x Y.

Theorem 4.5. Assuming Axiom (Mi), let pt be the unique Borel measure

on X x Y, as given by Theorem 4.4, such that

PÁM) = j fMdp

for all bounded Borel sets M in X x Y. Then pj is an extension of px v.
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Proof. It suffices to show that p, and pxv agree on rectangles whose

sides are compact sets (see the proof of Theorem 2.1). Let E x F be such a rec-

tangle.Then/£xF = v(F)xE,so that pt(E xF)= $fEXFdp = v(F)p(E) = (p x v)(E x F).

Our next result is an analogue of [2, 40.1].

Theorem 4.6. Assume Axiom (M,), and let p, be the Borel measure of

Theorem 4.4. Suppose M is a Borel set in X x Y. Then, Pi(M) < oo if and

only iffu 's a.e. integrable with respect to p. In this case, p^(M) = §fMdp.

Proof. Suppose M g @¡(X x Y). Choose, as is clearly possible, a sequence of

bounded Borel sets M„ such that M„ \ M. Since measure is continuous from

below, we have p^MJ fp^M) and/M„ \fM.

Suppose p,(M) < oo. Then, the integrals $fin,dp are bounded, since

$fM,dp = Pi(M„) ^ Pi(M). Thus, fM is a.e. integrable by the Monotone Con-

vergence Theorem.

Conversely, suppose fM is a.e. integrable. Then the measures Pi(Mn) = Ifußl1

are bounded (by  \fMdp), and so their limit, pi(M) is finite.

The preceding theorem yields an analogue of [4, 36.A]:

Theorem 4.7. Assume Axiom (M,), and let p, be the Borel measure of

Theorem 4.4. Suppose M is a Borel set in X x Y. Then pY(M) = 0 if and only

'//m = 0 a.e. [p].

Proof. If p,(M) = 0, then fM is a.e. integrable by Theorem 4.6, and

¡fMdp =p,(M) = 0. SincefM ̂  0, we conclude from [4, 25.B] that/M = 0 a.e.[p].

Conversely, if fM = 0 a.e. [p], then fM is obviously a.e. integrable. Citing

Theorem 4.6 again, we have Pi(M) — $fMdp = )0dp = 0.

We now "dualize" the foregoing results. If M is any Borel set in X x Y, we

define a nonnegative extended real function gM on Y by the formula

gM(y) = p(My)

for all yeY.

Paraphrasing the proofs of Theorems 4.1, 4.2, and 4.3, we have:

Theorem 4.8. If p is regular, then gc is a Borel function, for each compact

set C in X x Y.

Theorem 4.9. Suppose C is a compact set in X x Y and that y„ is a sequence

in Y converging to yeY. If gc(y„) ^ a for all n, then gc(y) ^ a.

Theorem 4.10. If Y is first countable, then gc is a Borel function, for each

compact set C in X x Y.

Theorems 4.11-4.14 are the duals of Theorems 4.4-4.7, and we may clearly

omit their proofs. In these theorems, the following axiom, the dual of Axiom (M,),

is assumed:
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Axiom (M2):   gc is a Borel function, for each compact set C in X x Y.

Theorem 4.11. Assuming Axiom (M2), there exists one and only one Borel

measure p2 on X x Y such that

Pz(M) = j gMdv

for all bounded Borel sets M in X x Y.

Theorem 4.12.   p2 is an extension of p x v.

Theorem 4.13. If M is a Borel set in X x Y, then p2(M) < co if and only if

gM is a.e.  integrable with  respect to v. In  this case p2(M)= ¡gMdv.

Theorem 4.14. If M is a Borel set in X x Y, then p2(M) = 0 if and only if

gM = 0a.e. [v].

5. Iterated integration, and the Fubini-Tonelli theorems in locally compact spaces.

Let (Xl,£Pli Aj) and (A"2, ¿f2, X2) be abstract measure spaces. Suppose h is

an extended real valued function onï,xI2. We say that the iterated integral

¡¡hdX2dXy exists if and only if there exists a set E in £f\ of measure zero

(briefly, a Ij-null set), and a /^-integrable function /, such that xeXx — E im-

plies hx is 22-integrable, and \hxdX2=f(x). The value of JjhdX^Xi is then

defined to be ¡fdXy, and is clearly independent of the particular E and/ selected

to exhibit the existence of the iterated integral. Iterated integrals ^jhdXidX2

are treated dually. We cite, for reference, the classical theorems of Fubini and

Tonelli concerning iterated integration in cr-finite measure spaces:

Fubini's theorem [cf. 2, 41.1]. // (A"1; £fx, Xt) and (X2,Sf2,X2) are

cr-finite measure spaces, and if h is a (Xl x X2)-integrable function on X1 x X2,

then both of the iterated integrals of h exist, and

hdX2dX^ = hdX1dX2 =      hd(Xl x X2).

Tonelli's Theorem [cf. 2, 41.2]. If(Xt, 6fi, Xt) and (X2, Sf2, X2) are a-finite

measure spaces, and if h is a nonnegative measurable function on X1 x X2

such that at least one of the iterated integrals of h exists, then h is (Xt x X2)-

integrable.

We emphasize that the functions h which occur in the Fubini-Tonelli theorems

are required to be measurable with respect to the cr-ring SP^ x 6f2.

We turn now to the problem of iterated integration in the product of two

locally compact spaces. What is the problem? Suppose p and v are Borel measures,

not necessarily regular, on the locally compact spaces A* and Y. The measures

p and v are obviously c-finite [4, Exercise 52.1]. The classical Fubini-Tonelli
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theorems arc concerned with the product measure pxv. Since the domain of

definition of p x v is the ring ââ(X) x 3S(Y), we see that the classical theory

deals with functions h which are measurable with respect to ¡M(X) x !13(Y);

such functions are of course Borel functions on X x Y, in view of the inclusion

i(i)xi(y)c«(Xx v).

But when this inclusion is proper, X x Y admits Borel functions which are not

measurable with respect to the c-ring S&(X) x âS(Y). We may now state our

problem very simply, as follows. How are the Fubini-Tonelli theorems to be

formulated, let alone proved, for Borel functions on X x y? At the same time,

how can we define a Borel measure on X x Y which will play the role of a "prod-

uct measure"? We have answers to these questions in the case that either p

or v is regular; a fully satisfying answer is obtained in the case that p and v are

both regular. We will not, however, assume regularity until Theorem 5.7. It

will be convenient to adopt the following convention:

Convention. When we make a statement concerning p¡ (i = 1,2), we are

taking for granted that Axiom (M¡) is verified. That is, we are taking for granted

the existence of p¡.

We now turn to the problem of defining iterated integrals for Borel functions

onlx F. A function is said to have compact support if it vanishes outside some

compact set.

Lemma. If h is a simple Borel function with compact support, then each

hx is v-integrable. Iff(x)= }hxdv, then f is p-integrable and §fdp= ¡hdpi.

Proof. The case that n is the characteristic function of a bounded Borel set

is essentially Theorem 4.4. The lemma then follows by the linearity of integration.

Theorem 5.1. If h is a p-integrable Borel function on X x Y, then the

iterated integral  J jhdvdp exists and is equal to  jhdplt

Proof [cf. 2, 40.2]. Writing n= n+ -h" , where n+ = h U0 and h~ = -(nnO),

we are clearly reduced, by linearity, to the case that n 2: 0.

Suppose h is a nonnegative p,-integrable function. Choose a sequence of simple

Borel functions with compact support such that 0 fï hn f h. By the Lemma, we

may define /„ by f„(x) = $(h„)xdv. Then each /„ is p-integrable, and

(*) jfndß = jhdp^ jhdPl.

For each xeX, we have (h„)x f, so that /„(x) f. Moreover, it is clear from (*)

that the sequence ¡fndp is bounded (by ¡hdp{). Then by the Monotone Con-

vergence Theorem applied to p, it follows that there exists a p-integrable Borel

function / such that /„ f/ a.e.
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Choose a Borel set E in X of measure zero, such that f„(x) \f(x) whenever

xeX — E. Then if xeX — E, we have

j(hn)xdv =/„(x) î/(x);

since (h„)x^hx, we conclude from the Monotone Convergence Theorem for v

that hx is v-inlegrable, and   §hxdv «= lim j(hn)xdv =/(x).

Checking the properties of E and /, we see that the iterated integral J ¡j hdvdp

exists, and is equal to jfdp. Finally, ^hdvdp = \fdp = lim ¡fndp = lim J/i„c/p,

= J'/zi/p!.
We may regard Theorem 5.1 as the analogue, for locally compact spaces, of

Fubini's theorem. It is a lopsided analogue, in that it refers to only one of the

iterated integrals of h, but this is unavoidable. Indeed, there exists an example

of a pj-integrable Borel function on X x Y for which the other iterated integral

fails to exist. We now prove the corresponding analogue of the Tonelli theorem:

Theorem 5.2. // h is a nonnegative Borel function on X x Y such that

the iterated integral J"J" hdvdp exists, then h is printegrable, and consequently

\hdpi= |J hdvdp by Theorem 5.1.

Proof. By assumption, there exists a ¿¿-integrable function /, and a p-null

Borel set E, with the property that xeX — E implies hx is v-integrable and

JMv=/(x).
Choose a sequence of simple Borel functions h„ with compact support and

such that 0 = hn\h. By the Lemma to Theorem 5.1, we may define

f„(x)= §(h„)xdv. Then each/, is p-integrable and   §fndp = §h„dp1.

Suppose xeX — E. Then hx is v-integrable, and §hxdv =f(x). Since (h„)x = hx,

we have j(h„)xdv ^ ¡hxdv, and so /„(x) ^ f(x). Thus, /„ á/ a.e. [p], so that

jfndp — $fdp. Since jhndpi = ¡¡fndp iS jfdp, we see that the sequence §hndpl

is bounded. Since h„ f/z, we conclude from the Monotone Convergence Theorem

for p¡ that h is px-integrable.

Dually, we have:

Theorem 5.3. // h is a p2-integrable Borel function on X x Y, then the

iterated integral  j ¡hdpdv exists and is equal to  §hdp2.

Theorem 5.4. If h is a nonnegative Borel function on X x Y such that the

iterated integral j ¡hdpdv exists, then h is p2-integrable, and consequently

¡hdp2 = l^hdpdv by Theorem 5.3.

Combining Theorems 5.1-5.4, we have:

Theorem 5.5. Assume that p1 and p2 are equal. Let us write p = px = p2.

Let h be a Borel function on X x Y.
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(i)   If h is p-integrable, then both iterated integrals of h exist, and

thdvdp = hdpdv =     hdp.

(ii) Conversely, if h is nonnegative, and if one of the iterated integrals of

h exists, then h is p-integrable.

In the "reverse" direction, we have the following:

Theorem 5.6. Suppose that for any nonnegative Bor el function h on X x Y,

jjjhdvdp and   (¡hdpdv are equal whenever they both exist. Then pi=p2.

Proof. It suffices to show that p, and p2 agree on compact sets. Suppose C

is a compact set in X x Y, and let n = %c- If follows from Theorems 5.1 and

5.3 that the iterated integrals J¡hdvdp and (¡hdpdv exist and are equal to

Pi(C) and p2(C), respectively. By hypothesis, the iterated integrals are equal,

so that pi(C) = p2(C).

We may summarize Theorems 5.5 and 5.6 as follows:

Summary. In order that the Fubini-Tonelli theorems hold for Borel func-

tions on X x Y, it is necessary and sufficient that P\= p2-

Finally, we consider the case that both p and v are regular. In our key theorem,

Theorem 5.7, we show that the simultaneous regularity of p and v implies that

p, and p2 are themselves regular Borel measures. Since both p, and p2 extend

p x v (Theorems 4.5 and 4.12), it will then follow from Theorem 2.1 that

Pi = P2 = P-®v-

Theorem 5.7.   If p and v are both regular, then so are p, and p2, and indeed

Pi  = Pi  = P0v.

Proof.   We show for instance, that p, is regular. If U is any bounded open

set in X x Y, it will suffice to show that U is inner regular with respect to p,

[4, 52.F]. That is, given e > 0, it will suffice to find a compact set F in X x Y

such that F czU and p^U — F) < 2e. Since U is bounded, we have

UczGxH

for suitable compact sets G and H. If v(ZZ) = 0, then p,(l/) ^ p,(G x H)

= (p x v)(G x H) = p(G)v(H) = 0, where we have used the fact that p, extends

p x v (Theorem 4.5); thus p,(U) = 0 in this case, and we may simply take F

to be the empty set.

From now on we assume v(ZZ) > 0. Since fv is a Borel function (Theorem 4.4,

Lemma 3), by Lusin's theorem [4, Exercise 55.3] we may choose a compact set

C in X so that

(1) C^G, p(G-C)<s/v(ZZ),

and such that the restriction offv to C is continuous.
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Let U' = U r\(C x Y). It is easily seen that U - V c (G - C) x H, so that

px(U — L7') < £ by (1). We shall find a compact set F such that

(2) F<=U, and p,(l/'- F) g e.

Then the relation

p1(U-F)i=pl(U-U') + pl(U'-F)

will show that p,(C7 — F) < 2e, and the proof will be complete.

Now, if p(C) = 0, it is clear from the definition of V that pt(U') = 0, so

in this case we could simply take F to be the empty set. From now on we assume

that p(C)>0.

We shall find, for each point p in C, a pair of compact sets D and E such that

(i) D is a neighborhood of p, relative to C, (ii) DxEcU, and (hi)

fv-(D*E)(x) < s/p(C) whenever xeD. We describe the process for finding such

pairs.

Suppose peC. Then the section Up of U is a Borel set in Y by Theorem 3.1.

(Indeed, Up is a bounded open set.) Since Upcz H, v(Up) < co. Since v is regular,

there exists a compact set EcUp such that v(Up) < v(E) + e/p(C). That is,

fv(p) < v(E) + fi/p(C). Since fv is continuous on C, there exists an open neigh-

borhood F of p, relative to the subspace C, such that

(3) fv(x) < v(E) + £/p(C)       for all x e V.

Since C x E- V is compact, so is Prx(C x E- 17). Thus, V = F-Prx(C x E - 17)

is open, relative to C. If x e V, then xe V if and only if E <=. Ux. Hence, V is

an open neighborhood of p, relative to C, such that V x EcU. Let D be a

compact neighborhood of p, relative to C, such that D <= V. Then D x EcU,

and D c V. In view of (3), we have

(4) /„(x) < v(£) + £/p(C)       for all x e D.

It follows that

(5) /i/-(Dx£)(x) < 6/XÇ)       for all x e D.

For each peC, we choose, by the foregoing construction, compact sets D(p)

and £(p) such that:

(i)    D(p) is a neighborhood of p, relative to C;

(ii)   D(p) x E(p) cz 17;

(iii) /d_d(,)x«,)(x) < «MO for all xeD(p).

Varying p, the interiors of the D(p)'s cover C; we pick out a finite subcover, say

ccoyu.-uflw,
and we define

F = Û D(pf) x £(pf).
i
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Clearly F is compact. Moreover, F c U by (ii). We now assert that

(6) fv-r Ú blp(C)~\xc-

Since fV'-F úfv and fv- vanishes on X — C, the inequality (6) is trivially veri-

fied at the points of X — C. On the other hand, if x e C, then x e D(pj) for some

index j, and so

fu-D(pj)xE(pj)(x) < eMQ

by (¡ii); since U' - F <=.U — D(p¡) x E(pj), we have/„._f(x) < e///(C), and thus

the inequality (6) is verified at the point xgC.

From (6), and the definition of p,, we see that

Pl(U'-F) = jfv..Fdp á IeI(i(C)-]p(C)^e;

this is the promised relation (2), and the proof grinds to a halt.

Combining Theorem 5.7 with the Summary preceding it, we obtain a theorem

of Fubini-Tonelli type for regular Borel measures:

Theorem 5.8. Assume that p and v are regular Borel measures on the locally

compact spaces X and Y, respectively, and let p®v be the unique regular

Borel measure on X x Y which extends p x v, as given by Theorem 2.1. Let

h be a Borel function on X x Y.

(1)   If h is (p®v)-integrable, then both iterated integrals of h exist, and

hdvdp =        hdpdv =    hd(p ® v).

(2) Conversely, if h is nonnegative, and if one of the iterated integrals of

h exists, then h is (p.®v)-integrable.

6. An example for which p, # p2. We now show that the measures p, and

p2 of §4 need not be equal. Let Q' be the set of ordinals less than or equal to the

first uncountable ordinal Q. Let Q0 = £2' — {Q}. Let p be Dieudonné's non-

regular measure on 38(0.'), namely the measure p such that for each EeâJ(Cl'),

p(E) = 1 if E contains a closed unbounded subset of fî0, and /<(£) = 0 otherwise

[4, Exercise 52.10].

Suppose C is a compact set in Q' x fi'. If a is a positive number, we wish

to show that the set

A = {xeQ':/c(x)^a}

is a Borel set in Q'. It suffices to show that A n Q0 is closed in iî0. Suppose x

is an accumulation point in fi0 of A. Since fi0 is first countable, there exists a

sequence x„e>l such that x„ converges to x [5, 2.8]. By Theorem 4.2,/c(x) Sï a,

so that x Gi.4. Thus, A n fi0 is closed in fi0 •
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Accordingly, the Axiom (MJ of §4 is verified, and by symmetry so is Axiom (M2).

Thus the measures p¡ and p2 are defined.

To show that pv # p2, consider, for example, the set Z defined by

Z = {(x,y): x < y < Q, or x = fi}.

We have /zslandgz = 0. Then, px(Z)= jfzdp = 1, and p2(Z) = ¡gzdv = 0.

Thus pi(Z) # p2(Z).

7. Examples for which the Borel sets do not multiply.

Example 1. Let £V be the set of ordinals less than or equal to the first un-

countable ordinal. With the order topology, Í2' is a compact Hausdorfi' space.

§6 shows that the Borel sets do not multiply.

Example 2. It is possible for Borel sets and Baire sets (the o--ring generated

by compact G/s) to coincide in X but for this phenomenon to fail in A" x X.

For example, let X be a compact nonmetrizable space such that every closed

(and hence compact) subset is a Gô. (The space Z of Example 3 is such a space.)

The diagonal D of X x X is compact and is thus a Borel set. We show that D

is not a Baire set. If it were, it would be a Gs [4, 51.D]. Now, the neighborhoods

of D define a uniform structure which yields the given topology of A"; if D were

a Gâ, it would have a fundamental sequence of neighborhoods, so that A" would

be metrizable [5, 6.13 and 6.30], contrary to our assumption on A*.

Since Baire sets and Borel sets coincide in X but not in X x X, the Borel sets

cannot multiply in this case.

The spaces listed in Examples 1 and 2 cannot be homeomorphic with any

topological group. The space of Example 1 lacks homogeneity in that every

point but one is a G6. In the space of Example 2 every point is a Gs. It follows

that the space is first countable ; that is, every point has a fundamental sequence

of neighborhoods. Thus, if a topological group structure could be assigned to

the space, the space would be metrizable [3]. One may ask then if

SH(G x G) = Sñ(G) x SS(G) whenever G is a locally compact topological group?

Example 3 will show that the answer is in general no. We first notice the fol-

lowing fact:

Theorem 7.1. Suppose X' and Y' are locally compact subspaces of the

locally compact spaces X and Y, respectively. If 0ê(X x Y) = @(X) x âS(Y),

then ®(X' x Y') = ®(X') x @(Y').

Proof. Suppose C is a compact set in A*' x Y'. It suffices to show that

CeâS(X')x âS(Y'). Now C is also compact in XxY, and we have

CeâS(X) x âS(Y) by assumption. Since C is compact in X' x Y', there exist

compact sets D and E such that CaDxE<=X'x Y'. Then,

C e@(X) x@(Y)n(DxE) = @(D) x ®(E) <=. @(X') x 8(Y').
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Example 3. Let G be the set of functions from the closed unit interval into

the discrete topological group with two elements. Let G have the product group

structure and the product topology. Then G is a compact Hausdorff topological

group.

Let Z be the class of nonconstant increasing functions in G. It can be shown

that Z is a compact nonmetrizable space such that every closed subset is a Gô.

By the reasoning of Example 2, ®(Z x Z) # <M(Z) x @(Z). Citing Theorem 7.1.

we see that âS(G x G) ^ â$(G) x ®(G).

Example 4.   Let X be the 1-point compactification of a discrete space havin

cardinality greater than that of the continuum. The Borel sets in X are the class

0>(X) of all subsets of X. Indeed, it can be seen that every subset of the compact

space X is either open or closed. It is almost as easy to see that

@(X xX) = 0>(X x X).

For, every subset of X x X is the difference of two compact subsets.

Now by the reasoning of [4, Exercise 59.2] we see that 0>(X xX)i= 0>(X) x 0>(X)

since the diagonal, D, of X x X is not a member of 0>(X) x 3?(X). Therefore

@(X xX) + @(X)x 0t(X).

Note. If X is the 1-point compactification of a discrete space having the

cardinality of the continuum, then it is still true that @(X x X) = SS(X) x @(X)

if and only if 0>(X xX) = 0>(X) x 0>(X). Does 0>(X x X) = 3P(X) x &>(X) in

this case? ¡We do not know.

8. A case in which Borel sets multiply.

Theorem 8.1. Suppose that each bounded subspace of Y is second countable

(equivalently, in view of the Urysohn theorem, each bounded subspace of Y

is metrizable). Then the Borel sets in X and Y multiply.

Proof. Since, in a locally compact space, every bounded open set is the dif-

ference of two compact sets, and since every compact set is the difference of

two bounded open sets, the Borel sets are precisely the cr-ring generated by the

bounded open sets. Hence it is sufficient to show that if W is a bounded open

set in X x Y, then

We@(X)x®(Y).

Let F = YrYW. Evidently F is a bounded open set in Y. By hypothesis, the

subspace F of y has a countable base for open sets, say ir. Since F is a bounded

open set in Y, we notice that the members of "t~ are also bounded open sets in Y.

Since W is an open subset of X x F, it follows that

W= \J{U xV:U open in X, VeV, Ux V<= W}. For each VeV, define

Uv = \J{U:U open in X, U x V c W}.
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For each Ve'f, Uv is open in A"; Uv is bounded since it is a subset of PrxIF.

Obviously Ur x Veëê(X) x®(Y). Since

W = \J{U x V:U open in X, VeT, Ux Fez IF}

= \Jveir\J{Ux V: UopenmX,Ux Fez IF}

= \JVefi\J{U: U open in X, U x Fc IF}] x V

= Uks-t Vy x V,

and since the index family rT for the last union is countable, we see that IF is

the union of a sequence of sets Uv x V, each of which belongs to the c-ring

@(X) x @(Y); consequently, we conclude that WeâS(X) x &(Y), as we wished

to show.

Corollary. Let X and Y be locally compact spaces, and assume that Y

is metrizable. Then

â§(Xx Y) = @(X)x@(Y).

Paraphrasing Theorem 8.1, a sufficient condition for Borel sets to multiply

is that the bounded subspaces of one of the factor spaces be second countable.

Is this condition necessary? We do not know.
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