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1. Introduction. In §2 of this paper we study the invariant measures on a compact

transformation group, (X, T). We assume that if F is a closed invariant non-

empty subset of Jfthen (Y, T) possesses an invariant measure (complete measura-

bility assumption). Our principal result then is that, under this assumption, C(X)

decomposes into a direct sum of invariant functions and functions which have

integral 0 for all invariant measures (we then call (X, T) simple) if and only if

there exists an upper semicontinuous decomposition O' of Y into closed invariant

sets such that (i) each M'eO' contains a unique minimal set M and (ii) (M', T)

has a unique invariant measure, m. Moreover, in this case m is ergodic and

m(M) = 1. Some of the theorems of this section generalize results of Oxtoby

[12] and of Auslander [1].

In §3 we study weakly almost periodic (w.a.p.) transformation groups. They are

defined to be those transformation groups (X, T) such that if fe C(X) then the set

of F-translates off have a compact closure in the weak topology of C(X). In

studying w.a.p. transformation groups, we make extensive use of the enveloping

semigroups, E(X, T), of Ellis [8]. Our principal result here is that if (X, T) is

w.a.p. and if E(X, T) possesses an invariant mean then (X, T) is simple and

completely measurable.

The author gratefully acknowledges the invaluable assistance and advice of

Dr. Robert Ellis in the preparation of this work.

2. Simple transformation groups. Throughout this section (X, T) will denote

a transformation group with X compact Hausdorff. By that we mean that T is

a group, and for every xeX and t e Tthere is defined an element xteX such that

(i)    the map x -» xt is continuous for every teT;

(ii)   (xi> = x(is) for all x g X, t,seT;

(hi) xe = x for all x g X (e = identity of T).

In the terminology of [10], (X, T) is a discrete transformation group. If/is a

function on X, we define the i-translate of/ denoted ft, by /i(x) =f(xt).
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We denote by C(X) the space of all bounded continuous real valued functions

defined on X and by C*(X) the topological dual of C(X). We denote by A(X, T),

or simply by A, the set of all normed regular T-invariant measures. By a T-in-

variant measure m, we mean a measure defined on the Borel sets of X satisfying

m(At) = m(A).

We will often make use of the Riesz representation theorem to identify regular

countably additive set functions on X with elements of C*(X) and regular measures

with positive elements of C*(X). For a statement and proof of the Riesz theorem

see [4, p. 265]. With this identification we have A <= C*(X).

2.1. Definition. (X, T) is said to be measurable if A is not empty. Otherwise,

(X, T) is called nonmeasurable. If A contains exactly one element then (X, T) is

called uniquely measurable. (X, T) is called completely measurable if for every

closed invariant nonempty subset Y of X, (Y, T) is measurable.

2.2. Lemma. // T is amenable (see 3.6 for definition) then (X, T) is completely

measurable.

Proof. Since T is amenable there exists a positive normed linear T-invariant

functional J on B(T) (the space of bounded real valued functions on T). Let x

be any point of X and define for every/e C(X) an element fe B(T) by f(t) =f(xt).

Then it is easily seen that the measure m defined by \fdm = J(f) is a normed

regular T-invariant measure on X. This argument applies to closed invariant

nonempty subsets also and so the lemma follows.

2.3. Definition. Let N(X) be the set of feC(X) such that J/am=0 for all

m e A. The elements of N(X) are called the null functions of (X, T). Let N'(X)

be the subspace (not necessarily closed) of C(X) generated by all functions of the

form ft -f for all fe C(X) and t e T. Let N"(X) denote the closure of N'(X) in

C(X). Here C(X) is provided with topology of uniform convergence.

2.4. Definition. For J e C*(X), we let J+(/)=sup[J(g) | g e C(X), g = /] and

let J~ = J+ — J. We remark that both J+,J~eC*(X) and both are positive in

the sense that if/^0 then J+(f), J~(f) = 0.

2.5. Lemma. Ler J eC*(X). Then J is T-invariant if and only if J* and

J~ are T-invariant.

Proof. By J being T-invariant is meant J(ft) = J(f) for all fe C(X) and

teT. The proof is obvious.

2.6. Lemma. Let fe C(X) - N"(X). Then there exists JeC*(X) such that J

is positive, J(f) # 0, and J is invariant.

Proof. Since N"(X) is a closed subspace of C(X), we have B=C(X)IN"(X)

is a Banach space. Denote the coset of B containing/ by/. Then there exists Le B*

such that L(f) j= 0. By composing L with the projection of C(X) onto B we can

obtain a functional J e C*(X). Since J(N'(X)) = 0, it follows that J is invariant.
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Now consider J+ and J~. They are T-invariant and positive. Moreover, they

cannot both be 0 at /for then L(f) would be 0.

2.7. Corollary.   N(X) = N"(X).

2.8. Theorem. (X, T) is uniquely measurable if and only if B = C(X)/N(X) is

one dimensional.

Proof. Assume (X, T) is uniquely measurable and suppose B is not one dimen-

sional. Since (X, T) is measurable, it follows that the dimension of B is not 0.

Therefore, we can ñndfeC(X) such that the cosets/and /of/ and / in B are

linearly independent. We can then find LeB* such that L(al + bf) = b for all real

numbers a and b. Let J be the element of C*(X) obtained by composing L with

the natural projection of C(X) onto B. Then J is invariant since J(N(X)) = 0.

Now since J = J+ - J~, it follows that J+(l) = J~(l) > 0 also J+(/) # J~(f)

since J(f) t4 0. Now if we normalize J+ and J~ we can obtain two distinct in-

variant measures on X. This proves half the theorem. The other half is trivial.

2.9. Definition. Let I(X) denote the invariant functions of C(X). If C(X) is

the direct sum ofl(X) and N(X) then (X, T) is said to be simple. That is, iffe C(X)

then there is a unique representation/=/* +/' where f*eI(X) and/'gN(X).

We call/* and/' the invariant and null parts of/respectively.

2.10. Lemma.   If (X,T) is completely measurable   then   I(X)nN(X) = 0.

Proof. Let fel(X) and suppose f^ 0. Then there exists a^0 such that

A=f_1(a) is not empty. Now A is closed and invariant, and so we can find

me A such that m(A) = 1. Therefore,   \fdm = a and so /<£ N(X).

In view of the above lemma if (X, T) is completely measurable then to show

that (X, T) is simple it is sufficient to show that for every fe C(X) there exists

g g I(X) such that  If dm = §gdm for every m g A.

Before studying simple transformation groups in general, we obtain a characteri-

zation of simplicity when the group T— the group of integers Z. In this case we

denote the translate of/GC(Y) by/, rather than fn.

2.11. Lemma.   Let T= Z then N'(X) = [/t -/|/e C(X)].

Proof. Let B = [/t — f\feC(X)~\. It is easily verified that B is a subspace

(not necessarily closed) of C(X) and that B <= N'(X). Since

fk ~f=ifk-x +Á-2 + ••• +/)i - CÂ-i + - +/).

it follows that B =>N'(X) and so the lemma is proved.

2.12. Theorem. Let T= Z. Then (X,T) is simple if and only if 1/n E"=i/(

is uniformly convergent for every feC(X).

Proof. Assume (X, T) is simple and let feN'(X). By the previous lemma we

have f=gi~g for some g e C(X). Then
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1 ¡n E?/, = 1 ¡n YKgy -g\=\ln(gn+ y - gl)

which clearly converges to 0 uniformly. It is easily seen that the same applies to

N(X) since N'(X) is a dense subset. Now for feC(X) we have/=/* +f with

f*eI(X) and f'eN(X). Therefore, 1/h E"/=/* + l/n Ulf! which clearly

converges uniformly to /*.

To prove the converse, observe that Tis amenable (since it is abelian [3]), and

so by 2.2 it follows that (X, T) is completely measurable. The conclusion now

follows from the remarks following 2.10.

Compare this with 5.3 of Oxtoby [12].

We now proceed to generalize the preceding theorem to arbitrary transformation

groups (X, T) with T abelian. To do this we need the following.

2.13. Definition. For/eC(A) we define H(f) to be the convex closure (in

C(X)) of the set [/r|reT].

2.14. Theorem. // T is abelian then (X,T) is simple if and only if H(f)

n I(X) ¿ 0 for all fe C(X).

Proof. Suppose g e H(f) O I(X). Since we can uniformly approximate g by

convex combinations of elements of [ft 11 e T], it follows that fgdm = ¡fdm

for all me A. Since (X, T) is completely measurable, it follows that (X,T) is

simple.

Conversely, suppose that (X, T) is simple. Let us assume that there exists

fe C(X) such that/* <fc H(f). Then we can find J e C*(X) and real numbers a and b

such that

(1) J{f*) = « < b = J(H(f))

(see, for example, [4, p. 417]).

We may assume the norm of J is 1. Let IF be the set of elements of norm 1 in

C*(X) which satisfy (1) and provide IF with the weak topology for C*(X). Since

unit sphere of C*(X) is compact in the weak topology and since IFis easily seen to

be closed we have that IF is compact. Also it is clear that IF is convex. Now for

r e T and Le C*(X) define L,(h) = L(ht) for b e C(X). It follows that the maps

L-» L, of C*(X) into C*(X) are continuous with respect to the weak topology.

Moreover, these maps commute, are linear, and carry IF into IF. Therefore, by

the Markov-Kakutani fixed point theorem [4, p. 456], there exists Le IF such

that L(ht) = L(h) for all h e C(X) and all t e T. This implies that Lis constant on

H(f). Now by 2.5, we have that L+ and L" are both invariant and hence constant

on //(/). Now by (1) we have either L+(f*) < L+(H(f)) or £"(/*) < LT (H(f)).

Suppose L+(/*) < L+(H(f)). Now by normalizing L+ and passing to the induced

measure on X, we obtain me A such that jfdm i= \f*dm. This contradiction

completes the proof.

We have as an immediate consequence of this theorem the following
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2.15. Corollary. If (X,T) is simple with T abelian then for every feC(X),

/* is the unique invariant function in H(f).

2.16. Lemma. Let (X,T) be simple and completely measurable and let Y

be a closed invariant subset of X. Then (Y, T) is simple and completely measur-

able.

Proof. Clearly, (Y, T) is completely measurable. Let/e C(Y) and let ge C(X)

be any extension off. Now g = g* + g'. Let /* and /' be the restrictions of g*

and g' to Y. Clearly, f*eI(Y) and f'eN(Y) and/=/*+/'. Since

Z(F)nJV(Y) = 0,

we have that (Y,T) is simple.

2.17. Definition. A closed nonempty subset A of X is said to be minimal if

xeA implies that xT is dense in A.

2.18. Definition. The kernel of X, denoted by kX, is defined to be the in-

tersection of all closed sets E^X which satisfy m(E) = 1 for all me A.

The following lemma is easily proved using the regularity of measures in A.

2.19. Lemma. kX is closed, invariant and m(kX) — l for all me A.

2.20. Theorem. Let (X, T) be completely measurable. Then the following

are equivalent.

(1) (X, T) is uniquely measurable;

(2) C(X) = R® N(X) (R = reals);

(3) (X,T) is simple and contains exactly one minimal set;

(4) (X, T) is simple and kX is minimal.

Proof. In the statement of (1) we have identified R, in the natural way, with

the constant functions.

Clearly, (1) is equivalent to (2). We show (1) is equivalent to (3). Assume (1).

It is well known [10, p. 15] that X contains a minimal set. If X contained more

than one, then by complete measurability X would not be uniquely measurable.

Moreover, the only invariant functions on X are constants for otherwise by

taking inverse images of distinct values we could produce two disjoint invariant

closed sets. Each of these sets would contain a minimal set. Since C(X) ¡N(X) is

one dimensional and I(X) n N(X) = 0, we have (X, T) is simple.

Now assume (3). Then the only invariant functions are again constants. There-

fore, C(X) = R © N(X) and so (X, T) is uniquely measurable.

We now show (1) is equivalent to (4). Assume (1). Then by (3) we have a unique

minimal set A in X. Since (X, T) is completely measurable, we have a T-invariant

measure m on X such that m(A) = 1 and so A = kX.

Assume (4). We know then that (kX, T) is simple and completely measurable.

Since kX is minimal, I(kX) consists of only constant functions. Hence, kX is
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uniquely measurable. Now by the definition of kX, it follows that X is uniquely

measurable. This completes the proof.

We now proceed to study the structure of simple, completely measurable

transformation groups in detail.

2.21. Definition.   If A cz X we define A', the attraction of A, to be

[x|cl(xT)O/4#0].

(Here cl = closure.)

2.22. Definition.   We denote by <S> the class of all minimal subsets of X and

by <£' the class [M'|Me3>].

2.23. Lemma.   Let (X, T) be simple and completely measurable, A a closed

invariant subset of X, and fe C(X). Then

(1) if f
(2) if f

A = c thenf*

A — C thenf*

A = c;

A>c.

Proof. We prove (1). Let x e A and let B be the closure of xT. Then /| B = c.

There exists me A such that m(B) = 1. We know that \f*dm = Jfdm = c and

that /* | B =/*(x). Therefore, /*(x) = c. The proof of (2) is similar.

2.23. Lemma. Let (X,T) be simple and completely measurable and let M

be a minimal subset of X. Then M' = Ç\if-1(j(M))\feI(X)~\;and therefore, M'

is closed.

Proof. Let £ = [/_1(/(M))|/e/(A")]. Since an invariant continuous function

must be constant on the closure of the set xTfor any x, we have M' c £. Now

suppose x$M'. The closure of xT contains a minimal set, say A. We must have

A r\M = 0 since minimal sets are either disjoint or identical. By applying the

previous lemma we can find feI(X) such that /= 0 on M and /= 1 on A.

Then x^/_1(0) and therefore, x^£. This implies £ c M' and completes

the proof.

2.25. Theorem. Let (X, T) be simple and completely measurable. Then O'

is an upper semicontinuous partition of X into compact sets.

Proof. Let M and N be distinct minimal sets. Clearly, M and N are disjoint

and closed and so by 2.23 we can ñndfeI(X) such that/(M) = 0 and/(iV) = 1.

Since/is invariant it follows that/is constant on the set xTand so M' and N'

are disjoint. Since the closure of xTcontains a minimal set, it follows that 3>' is a

partition of A". Now it is easily seen that the sets F=/_1(— oo,£), F=/_1(|,co)

are disjoint neighborhoods of M' and N' in the quotient topology of O'. Therefore,

the quotient space is Hausdorff, and this implies the theorem.

We now examine the ergodic measures and find their relation to the invariant

measures.
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2.26. Definition. If m g A is such that the only measurable invariant sets of X

have measure either 0 or 1, then m is said to be ergodic.

2.27. Definition. Let m g A. The support of m, denoted by k(m), is defined to

be the intersection of all closed sets which have m-measure 1. It follows that k(m)

is closed, invariant, and m(k(m)) = 1.

2.28. Lemma. Let (X,T) be simple and completely measurable and let m

be an ergodic measure. Then k(m) is minimal.

Proof. Let K = k(m), let xeK and let A be the closure of xT. We consider

the transformation group (K,T). We know by 2.16 that (K,T) is simple and

completely measurable. Since m is a regular measure, we have that

m(A) = inf[ ¡fdm |/e C(K) and/ =>A] = inf[ ¡f*dm\fe C(K) and/ =>/i].

Here the notation f=> A means that f(x) 2:1 for x e A and f(x) 3; 0 for x $ A.

Since m is an ergodic measure, the functions in I(K) are just constants. Therefore,

for fe C(K), we have ¡fdm = ¡f*dm =/*(x). Since /|A fc 1 implies f*\A^l,
we have $f*dm 2: 1 if f=> A. Therefore, m(A) = 1 and so K = A completing the

proof.

In what follows we shall consider A to be a subset of C*(X).

2.29. Lemma.   Let m eA.

(1) If m is an extreme point of A then m is ergodic.

(2) If (X, T) is simple then m is an extreme point of A if and only if m is

ergodic.

Proof. We prove (1). Suppose m is not ergodic. Then we can choose a measur-

able invariant subset A of X such that 0 < m(A) < 1. Let B he the complement

of A (in X) and define m^C) = m(CnA)/m(A) and m2(C) = m(C r\B)¡m(B).

It is easily seen that m is a proper convex combination of mt and m2 with m, # m2

and so m is not extreme. This proves (1).

We now prove (2). If m is not an extreme point then there exists nij and m2

and positive real numbers a and b such that m^ + m2 and a 4- b = 1 and

amt + bm2 = m. Since mt ^ m2 there exists/e C(X) such that jfdmi j= ¡fdm2.

Therefore, we can find geI(X) such that Jgámj ^ ¡gdm2. It can be seen that

there exists an interval \x,y] such that m1(g~l[_x,y~\) ^ m2(g~1[x,y]). Now

g~l\x,y\ is an invariant measurable (in fact closed) subset whose m-measure is

different from both 0 and 1 hence m is not ergodic. This completes the proof of (2).

2.30. Theorem Let (X,T) be simple and completely measurable and let

M = \J<S>. Then kX = the closure of M.

Proof. Let N he the closure of M. By complete measurability we have M <=kX

and since kX is closed we have N a kX. It is sufficient then to show that if m e A

then m(N) == 1. Consider C*(X) to be provided with the weak topology and
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observe that A, as a subset of C*(X), is compact and convex. Therefore, A is the

convex closure of the extreme points of A [4, p. 440]. Therefore, by the previous

lemma we can find a net m¡ of convex combinations of ergodic measures such

that ¡fdm¡-► ¡fdm for all/e C(X). Now let/e C(X) be such that/=> N. Clearly

then by 2.23 we have ¡fdm¡ — 1 and so If dm — 1 and since m(N) = inf

[ ¡fdm |/e C(X), f=>N]  the theorem follows.

2.31. Theorem. Ler (X, T) be completely measurable. If there exists an

upper semicontinuous decomposition *F of X such that each element of ¥ is

invariant and uniquely measurable then (X,T) is simple.

Proof. Let 4* = f_A¡ | i e Q] where Q is an index set. Let m¡ be the unique

element of A(A¡, T) and provide A(A, T) with the weak topology of C*(X). Through-

out this proof we use m¡ to denote both the measure on A¡ and its natural ex-

tension to X.

Let fe C(X) and define g(A¡) = ¡fdm¡. We now prove that g is a continuous

function of 4\ We are assuming that 4* is provided with its quotient topology.

Let Ax be a net in 4* converging to A¡. Consider the net mx in A. Since A is compact

we may assume mx-+n for some ne A. Let heC(A¡) and define J(h)= ¡h¡dn

where b, is any continuous extension of h to all of X. J is well defined for if b = 0

and e > 0, then there exists a0 such that if a > a0 then sup[| h¡(x)\ : xeA^ < e.

This is a consequence of the fact that 4* is upper semicontinuous. Therefore, if

a > a0 then | ¡hydmx\<s and this implies ¡h{dmx^>0 and so ¡hydn=0.

Now, in general, if k and / are extensions of b then /c — /is an extension of 0,

and it follows that ¡kdn = ¡Idn and so J is well defined. Since the measures are

positive and invariant we may conclude that J is also and moreover J(\) = 1.

Therefore, by unique measurability we see that J(h) = ¡hdm¡ and so n = m¡.

This implies mx -» m¡ from which we conclude ¡fdmx -* ¡fdm¡ and so g is

continuous.

Now let p denote the natural projection of X onto 4* and let /* = gp. Let m

be an ergodic measure on A". Then the measure mp~l is atomic on 4*. Therefore,

¡ygdmp~l = g(A¡) for some ^4ie4/. Therefore, k(m) = Ai and m = m¡. Now

¡xf*dm¡ = ¡xgpdm¡ = ¡vgdm¡p~t = g(A¡) = ¡xfdm¡. Since this holds for

ergodic measure we can use the facts that the extreme points of A(A", T) are ergodic

measures and that every element of A(A", T) is the limit of convex combinations

of extreme points.

2.32. Corollary. Let (X,T) be uniformly equicontinuous. Then (X,T) is

simple and completely measurable.

Proof. In [10, p. 18] it is proved that $ is an upper semicontinuous decom-

position of X. Clearly, the elements of O are invariant. In [13] it is proved that

each (M,T) for MsO is uniquely measurable.

We can now combine some of the previous results and form the following
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2.33. Theorem. Let (X,T) be completely measurable. Then (X,T) is simple

if and only if there exists an upper semicontinuous decomposition of X into

closed invariant uniquely measurable sets. In this case the decomposition is

unique and is in fact 4>'. The unique measure on any element M' of<S>' is ergodic

and its support is M. Moreover, kX is the closure of [jQ>.

If we let 4>' be provided with the quotient topology, we can show that if (X, T)

is simple and completely measurable then C(<1>') is naturally isomorphic to I(X);

this isomorphism induces a natural isomorphism between regular measures on <5'

and regular T-invariant measures on X. The correspondence is such that atomic

measures on 4>' correspond to ergodic measures on X.

3. Weakly almost periodic transformation groups. In this section weakly almost

periodic transformation groups are studied and a connection between them and

simple transformation groups is obtained. Using this, some of the theorems of

§2 are sharpened. Throughout this section (X, T) denotes a transformation group

with X compact Hausdorff.

3.1. Definition. Let/e C(X) and let C(X) be provided with the weak topology.

If [ft 11 e T] has a compact closure in C(X) then / is said to be weakly almost

periodic (w.a.p.). If every fe C(X) is w.a.p. then (X, T) is called w.a.p.

This notion was defined and studied for topological groups in [5].

3.2. Definition. Let F(X) denote the space of all (not just continuous)

functions of X into X and let F(X) be provided with the topology of pointwise

convergence. Now, every element of T defines a homeomorphism of X into X,

and so we may consider the closure, E(X, T), in F(X) of this set of homeomor-

phisms. E(X, T) is called the enveloping semigroup of (X, T) and, as it implies,

is a semigroup under composition. It was originally defined and studied in [8].

When no confusion is likely, E(X, T) will be denoted by E. The image of x under

peE will be denoted by xp and the composition of a function fe C(X) and a

map peE will be denoted by/p, i.e., fp(x) =f(xp).

At times we will identify elements of T with the homeomorphisms they define

and so will write expressions like T cz E. With this understanding we say that T

is a dense subset of E.

The following result, proved in [7], will be used extensively in this section.

3.3. Theorem. Every element of E(X,T) is continuous if and only if(X,T)

is w.a.p.

3.4. Definition. By a topological semigroup we mean a topological space, S,

endowed with a semigroup structure such that the maps x -> ax and x -* xa of S

into S are continuous for all aeS.A left (right) ideal of S is a nonempty subset A

of S such that SA c A(AS c A). A minimal left (right) ideal is a left (right) ideal

which contains no proper subset which is a left (right) ideal.
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3.5. Remark. If £ consists of only continuous maps then it is easily seen

that £ is a compact topological semigroup. Moreover, in this case, if Tis abelian

then so is £.

We will use the following notions of invariant mean and amenable semigroup

extensively in what follows.

3.6. Definition. Let S be a topological semigroup. For fe C(S) and s e S we

define/' and/, by/s(x) =f(sx) and /s(x) =f(xs) for xeS. Clearly, /, and /* are

in C(S). By a left (right) invariant mean on S we mean an element J e C*(S) such

that J is positive, J(l) = 1, and J(fs) = J(f) (J(f) = J(f)) for all fe C(S) and
seS. An invariant mean is an element of C*(S) which is both a left and right

invariant mean. If an invariant mean exists, we say that S is amenable.

3.7. Remark. If S is an abelian topological semigroup then S is amenable [3].

In view of this, 3.3 and 3.5 we have that if (A", T) is w.a.p. and Tis abelian then £

is amenable.

3.8. Lemma. // (X, T) is w.a.p. and if Y is a closed invariant nonempty

subset ofX, then (Y,T) is w.a.p. Moreover, ifE(X,T) possesses a right invariant

mean then so does E(Y,T).

Proof. The first part of the lemma is an application of 3.3. To prove the

second part, let b be the map of £(A, T) onto E(Y, T) obtained by restricting the

maps of £(A, T) to Y. It is easily verified that h is a continuous semigroup homo-

morphism. Now given a mean on £(A, T) we use b in the obvious way to define

one for E(Y,T).

3.9. Lemma. Let (X,T) be w.a.p., let feC(X), and let g:E-*C(X) be

defined by g(p) =fp. Then g is weakly continuous.

Proof. We can easily see that if C(A) is given the topology of pointwise con-

vergence then g is continuous. Therefore, g(E) is compact in this topology.

Moreover, g(E) is bounded in norm. Now we can apply a theorem of Grothendieck

[11] which shows that the topology of pointwise convergence and the weak

topology agree on g(E).

3.10. Lemma.   Let (X,T) be w.a.p., let me A, and let peE. Then

(1) iffeC(X),then ¡fdm= ¡fpdm;
(2) if A is a measurable subset of X, then m(Ap~l) = m(A);

(3) if A is a closed subset of X, then m(Ap) = m(A).

Proof. We prove (1). Let t¡ be a net in Tconverging to p. Then by the previous

lemma, we have ¡fttdm -* ¡fpdm. Since m is T-invariant, we have ¡fpdm

= ¡fdm. To prove (2) consider the measure n = mp~\ By (1) we have n(A)

= m(A). To prove (3) we have by (2) that m(Ap) = m(App~' ) ; and since

App~* => A, (3) follows. Note that here Ap is closed and hence measurable.
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3.11. Lemma.   Let I be a minimal right ideal of E(X,T). Then

(1) xZ is a minimal subset of X for every xeX;

(2) if u is an idempotent (i.e., u2 = u) of I and pel, then up = p.

Proof.    See [8].

3.12. Lemma.   Let (X, T) be w.a.p. and completely measurable. Then

(1) if M is a minimal subset of X and u is an idempotent of E, xu = x for

all xeM;

(2) if I is a minimal right ideal ofE, then I contains exactly one idempotent.

Proof. We prove (1). Consider A = C~\ \_Mp | p e £]. Since (X, T) is completely

measurable, we can find me A such that m(M) = 1. Therefore, by (3.10 we have

m(Mp) = 1 for all p g E and so m(A) = 1. Therefore, A is not empty. Since A is

closed and invariant, it follows that A = M. Therefore, Mu = M and so u is the

identity on M.

We now prove (2). It is known (see [8]) that I contains at least one idempotent.

Suppose it contained two, say u and v. Then by 3.11, we have uv — v and xZ is

minimal for every xeX. Now by (1), xv = xuv = xu for every xeX. Therefore,

u = v.

3.13. Lemma. Let S be a compact topological semigroup with a left identity

e. Then if the only idempotent of S is e, S is a group.

Proof. The proof is a trivial modification of Lemma 3 of [9] and is left to

the reader.

3.14. Theorem. Let (X,T) be w.a.p. Then (X,T) is completely measurable

if and only if E possesses a right invariant mean.

Proof. Let I be a minimal right ideal of E. The existence of I is easily proved

using Zorn's lemma. Now by 3.12 we have that I contains a unique idempotent,

and this fact together with 3.11 and 3.13 proves that I is a group. It then follows

from Theorem 2 of [6] that I is a topological group; so we have a Haar measure n

on I. The natural extension of this measure to E yields a right invariant mean for E.

Conversely, let n be the measure corresponding to the right mean of E. Let Y

be a closed invariant nonempty subset of X and let yeY. For any Borel set

A cz X define m(A) = n[p | yp e A]. It is easily seen that m is a T-invariant measure

on X such that m(Y) = 1.

3.15. Theorem. Let (X, T) be w.a.p. If E has an invariant mean then (X, T)

is simple and completely measurable.

Proof. By the previous theorem we have that (X, T) is completely measurable.

Let m be the invariant mean on E which we will treat as a measure on E. For

fe C(X) and for p e E define l(p) =fp. By 3.9 we have that / is a weakly continuous
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function from £ to C(X). Let g = ¡EKp)dm(p). Here the weak integral of Bour-

baki [2] is being used. By definition

(*) f   g(x)dn(x)=  f   f   /(p)(x)i/n(x)«-m(p)
./X J E J X

for all measures n on A. Let x e A, let t e T, and let n be the atomic measure

concentrated at x. Then (*) becomes g(x) = ¡Ef(xp)dm(p). Since this holds for

all x e A" and since m is left invariant, we have

g(xt) =     f(xtp)dm(p) =      f(xp)dm(p) = g(x).
Je Je

Therefore, g is T-invariant.

Now let n be a T-invariant measure on A. Then by (*) ¡xg(x)dn(x)

= ¡e ¡xf(xp)dn(x)dm(p) = ¡E ¡xj(x)dn(x)dm(p) = ¡xf(x)dn(x). Now by the

remarks following 2.10, we see that (X, T) is simple.

3.16. Lemma. Ler 4' be a decomposition of X into closed T-invariant sets.

Suppose that for each ieT, E(A,T) is a group. Then E(X,T) is a group.

Proof. Let u be an idempotent of £(A, T) and let x e A. Now the image v of u

in E(A, T) under the obvious homomorphism is obtained by restricting zz to A.

Since E(A, T) is a group, we have xv = x hence xu = x and, therefore, zz is the

identity and the conclusion follows from 3.13.

3.17. Lemma. Let (A, T) be w.a.p., minimal and measurable. Then E(X, T)

is a group.

Proof. Let meA(X,T) and let y = P|[Ap|pe£]. Since m is invariant, we

have by 3.10 that m(Xp) = 1 for all p e £ and, therefore, Fis not empty. Moreover,

it is easily verified that Y is an invariant closed subset of A" and so Y= X. Clearly,

now if u is an idempotent of £ it must be the identity map and the fact that £ is a

group follows from Lemma 3 of [9] which implies that a compact topological

semigroup with identity is a group if the only idempotent is the identity.

3.18. Lemma. (A, T) is uniformly equicontinuous if and only if (X,T) is

w.a.p. and E is a group.

Proof. Let G(X), the group of all homeomorphisms of A, be provided with

the topology of uniform convergence. Assume (A, T) is uniformly equicontinuous

and let H be the closure of Tin G(X). It is known [10, Chapter 11] that H is a

compact topological group. Let peE and let r, be a net in £ converging to p such

that r;e Tfor all i. Consider t¡ as a net in H. Since H is compact, we can assume

that r; converges to q in H. It follows that p = q and therefore (A, T) is w.a.p.

Now consider the net tj1 in both £ and H. Since £ and H are compact, we may

assume t,~í converges to some r in £ and s in H. Again r= s and since H is a
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topological group, gs is the identity in H and so pr is the identity of E and so E

is a group.

Conversely, suppose (X, T) is w.a.p. and £ is a group. Consider the map g of

X x E into X defined by g(x,p) = xp. Since E contains only continuous maps,

it follows that g is continuous in each variable separately. Now by a result of

Ellis [6], we have that g is continuous in both variables simultaneously. This

implies that the topology on E is that of uniform convergence and since E is

compact the result follows.

3.19. Lemma. (X, T) is uniformly equicontinuous if and only if (X,T) is

w.a.p., completely measurable and <P- is a partition of X.

Proof. Assume (X, T) is uniformly equicontinuous. Then by the previous

lemma, (X, T) is w.a.p. It is proved in [10, p. 18] that <P is a partition of X. Com-

plete measurability follows from that fact that the closure of Tin the space of all

homeomorphisms (with the uniform convergence topology) is a compact topo-

logical group, say G. Now G has a Haar measure p. Let F be a closed invariant

subset of X and let y e Y. For fe C(X) define J(f) = ¡f(xg)dp(g). It is easily

seen that J induces an invariant measure m with m(Y) = 1.

3.20. Theorem. Let (X, T) be w.a.p. and let E possess an invariant mean.

Let A = U^ and B = pj [Xp | p e £]. Then A = B = kX. Moreover, (kX, T) is

uniformly equicontinuous.

Proof. Let x$A. Then the closure, D, of xTis not minimal. Since D is compact

and invariant, it follows that D contains a minimal set M. Let J — \p\peE and

xpeM~\. It is easily seen that J is not empty. Moreover, J is a right ideal for if

peJ and qeE, we let t¡ he a net in Tconverging, in £, to a. Then xpt¡ converges

to xpq. However, xpt¡ e M and so xpq e M. Now there exists an idempotent

ueJ and x£Xu for if x = yu then x = xu but xueM and x$M. Therefore,

Bcz A. We also know by 3.15 that (X, T) is simple and completely measurable.

Now if m is an invariant measure on X, m(Xp) = 1 for all p e £ and so m(B) = 1.

Therefore, B z> kX. We also have by 2.30 that kX z> A and so A = B = kX.

To prove the last statement notice that by 3.17 E(M, T) is a group for all minimal

sets M and that by 3A6E(kX, T) is a group. Now apply 3.18.
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