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Introduction. Let S be a linear space. A function q on S is called a quasi-

norm if it satisfies:

(1) 0^q(x)S + oo for all xeS,

(2) q(0) = 0,
(3) |a | s; | b\ implies that q(ax) ig q(bx) for a,b real and xeS,

(4) q(x + v) S q(x) + q(y) for all x and y in S.

A quasi-norm q is proper if \ima^0q(ax) = 0 for all xeS. We say that a

quasi-norm ^ dominates another quasi-norm q2 {qx >-<¡f2) if» f°r every £>0

there is a S > 0, such that qL(x) < <5 implies q2(x) < e. A system / of quasi-norms

is called an ideal if:

(1) / aq, >g2 implies / sq2,

(2) for any sequence q„el (n = 1,2,•••) there is a quasi-norm (¡e/ such that

q >~q„ for all n = 1,2, •■•.

A system ß of quasi-norms is a basis for an ideal / if, for each qx el there is

q2eB ci such that q\<q2-

Given any linear space we show that there is a one-to-one correspondence

between topologies on the linear space compatible with the linear operations

and ideals of proper quasi-norms. Thus, study of ideals of proper quasi-norms

will give us knowledge of linear topologies.

Given a set A such that dA c= A for | d | ^ 1 we say that A is of finite character c

if bA + (1 — b)A c cA for all b such that 0 < b < 1. A set B is bounded by a

quasi-norm q (B^q) if lima_<0[sup.I.eBg(a:>c)] = 0. We show that if a set A is

of finite character, then a quasi-norm q2 can be constructed such that A yq2

and qi<q2 for any quasi-norm q, such that A >qt. The quasi-norm constructed

from A also has the following property: there are two numbers c, d > 0 such

that q(x) < d implies that q((l¡2c)x) ^ \q{x). Quasi-norms that have this prop-

erty are said to be of finite character c.

We investigate completeness and quasi-completeness of a linear topological

space in terms of quasi-norms. We also show that a manifold is bounded by

every quasi-norm in an ideal composed of proper quasi-norms if and only if

it is bounded by the corresponding linear topology.
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A system F of quasi-norms is & filter if F3ql -<q2 implies F 3q2- We con-

sider relations between ideals and filters. Given a subspace R of the linear space S

we define the relative ideal on R of a given ideal on S. Given a directed system

of subspaces and ideals (filters) on these subspaces, we define an inductive limit

ideal (filter) on S. We examine what properties of the individual ideals the in-

ductive limit inherits and look at the relation between inductive limits of filters

and ideals. Next, we show that, on a finite-dimensional space, every ideal com-

posed of proper quasi-norms is contained in an ideal which has a one-element

basis.

In the latter part of the paper, quasi-norms on linear lattices are investigated.

We consider various properties of quasi-norms which connect them with the

lattice structure. A main result shows that a universally continuous linear lattice

is super-universally continuous if there is a quasi-norm q defined on S which has

the following properties:

(1) |x|á|j>|  implies q(x) ^ q(y) for all x,yeS (i.e. q is monotone).

(2) order-limv-,^ av = 0 implies lim,,.,^ q(av) = 0.

(3) q(x) = 0 implies x = 0.

The next object of study is ideals of quasi-norms having special properties.

We prove that the following two properties are equivalent:

(1) / is a proper ideal which has a basis of monotone quasi-norms;

(2) the linear topology corresponding to / has a basis 35 of neighborhoods

of 0 which satisfy |x| ^ \y\ and yeVety implies xeV. The final important

result says that if S is a universally continuous space and / is an ideal on S which

has a basis of quasi-norms q such that a^x €Aa implies q(a) = supA eAq(ax) then

{x : I x I ^ | a I} is complete for all ae S.

1. Quasi-norms. Let S be a linear space. A function q defined on S is called

a quasi-norm if:

(1) Og«(x)g + oo for all xeS,

(2) | a | ^ | b | implies q{ax) g q{bx),

(3) q(x + y)^q(x) + q(y),

(4) «(0) = 0.

Note that it is possible for a quasi-norm to assume infinite values. If q(x) < + oo

for all x £ S we say that q is a finite quasi-norm.

Example 1.   Define q* on S by

q*(x)  =   (    «     if* = 0,
qK)        i+oo   if x#0.

Then q* is easily seen to be a quasi-norm.

Example 2. If/ is a linear functional on the linear space S then |/| defined

by |/|(x) = |/(x)| is a finite quasi-norm.
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Several properties of quasi-norms follow easily from the definition. Condition

(2) shows that q(ax) = q(\a¡x) for all real a and xeS.

By induction from condition (3) we conclude :

Theorem 1.1.   q(nx) ^ nq{x) for all n = 1,2, ••■.

A quasi-norm q is said to be proper if lima^0q(ax) = 0 for all xeS. The

quasi-norm defined in Example 1 is not proper while the one in Example 2 is

proper.

Theorem 1.2.   // q is a proper quasi-norm, then q is finite.

Proof. Since, for arbitrary xeS, \ima^0q(ax) = 0 there is <5 > 0 such that

q(ax) ^1 for ¡ a | ^ ó. Choose a positive integer n such that 1 < nô. Then

q(x) S q((nè)x) ^ nq(ôx) ^ n < + co.

Theorem 1.3. For any quasi-norm q, if we set q\x) = min {q(x),a} for

a> 0, we obtain a finite quasi-norm q". if q is proper, then q" is also proper.

Proof.   Clearly 0 ^ q"(x) ^ a for all x e S. If ¡ a \ g | b |  then

q"(ax) = min{q(ax),ot} ^ mm{q(bx),a} = q\bx),

q"(x +y) = min{q(x + y)a.} ^ min{q(x) + q{y),a)

^ min{(/(x) + q{y),q{x) + a, g(y) + a, a + a}

=  min{q(x),a} + mm{q(y),a} = q "(x) + q\y),

q\Q)  = min{q(0),a}  = 0.

If q is proper, then we have:

0 ^ lim q*{ax) ^ lim q(ax) = 0.
fl-»0 a-»0

Theorem 1.2 shows that every proper quasi-norm is finite but the converse

is false. If q* is defined as in Example 1, then (q*)1 is a finite quasi-norm which

is not proper.

Theorem 1.4.   For any system q>L{keA) of quasi-norms and for any system

AA(/leA)    of   positive   real   numbers   the  function   T,x<¡Aaxqx given    by:

( Z¿ eaûjîJW = suPfin¡teí/<=A ^;en(<>Mi{x) ,s also a quasi-norm. Furthermore,

if q¿ !S proper for all 2.eA and   ^le^a^^x) is finite for all xeS then

T.xe\a>.qx  !S a proper quasi-norm.

Proof. Clearly 0^ 2A ^\akq?{x) ^ + co. |a[g|i>[ implies Hx eMaxqx{ax)

ú ^>.eaaÁqADX) f°r every finite He A. Thus
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2 axqx(ax) ^   2 axqx(bx),
XeA i€A

2 axqx(x + y) =       sup       I aÄ^(x + y)
A 6A finiteH=A   X eH

Ú     sup
finiteH<=A     UeB

^       sup      2 öx«aW +     sup       2 axqx{y)
finiltHcA  iEH finite H<=A   AeH

=   2 axqx(x) + 2 a^ty).
A eA X eA

Clearly   2,eA«^(0) = 0.

Now suppose that qx is proper for all XeA and that 2¿ e\axqx is finite. Given

any x e S and any e > 0 there is a finite set H0 <= A such that

2 íIíía(x) >   2 a^(x)-e.
X eHn A eA

But if we note that:

2 axqx(x) =       sup      2 axqx(x)
IfA finite H^A   X eH

sup 2    axqx(x)
—   finite H= A   A eHuHo

=     2 a^fl^x) +       2     axqx{x),
Xella JeA-Ho

we see   T,X£Hoaxqx(x)> ^x eH0axqx(x) + T,XeA-Hoax<lx(x)-e and this implies

2,t e/\-H0ax1x(x) < e- Therefore we have:

lim ( 2 axq,,(ax) ) = lim  (   2 ^¿(ax) +       2     axqx(ax) )
a->0   \JeA / a-»0     UeH0 A eA-Ho /

i£   lim      2   flAqA(íJX) + E   =   e.
a-»0   X eHo

Since e was arbitrary lima-,0 T,x e\axqx{ax) = 0.

For two quasi-norms qx and q2 we write at -< q2 if, for any e > 0 there is <5 > 0

such that q2(x) < 6 implies <h(x) < e.

The next three theorems follow easily from this definition.

Theorem 1.5.   // qt, q2 and q3 are quasi-norms such that qt^q2 and

q2<q3, then ql<q3.

Theorem 1.6.   If qt   and q2  are  quasi-norms such   that  qx^q2,  then

aqx<,bq2 for any a,b>0.

Theorem 1.7.   If qt and q2 are quasi-norms such that <7i(x) ;£ q2(x) for all

xeS then qi<q2.
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If we denote by 0 the quasi-norm defined by 0(x) = 0 for all xeS and let q*

be defined as in Example 1 then, for every quasi-norm q, 0(x) S <z(x) ̂  q*(x)

for all x e S. Thus, 0 -< q -< q* for every quasi-norm q.

Theorem 1.8. // qx and q2 are quasi-norms such that qt-<q2 and q2 is

proper, then qt is also proper.

Proof. Given xeS and e>0 there is ôt > 0 such that q2(y) < öi implies

'li(y) < e- Since q2 is proper there is ö2 > 0 such that \a\ < ô2 implies q2(ax) < d\.

Thus | a j < ô2 implies qi(ax) < e. Therefore qt is proper.

Theorem 1.9. // qlt q2 and q3 are quasi-norms such that q¡ >>#2 fl,,i'

a, >q3, then qx >q2 + q3.

Proof. For any e > 0 we can find öt and S2, both positive, such that q j(x) < öt

implies q2(x) < e/2 and q,(x) < <52 implies a3(x) < e/2. Then for qt(x) < min{t5j,á2)

we have q2(x) + q3(x) < e.

By induction we can extend this theorem to any finite sum but a slight modi-

fication is necessary in order to extend the theorem to an infinite sum.

Theorem 1.10. // q<qxfor all AeA and if 2¿ eA(supx 6SaA(x)) < + oo

then q > I,XeAqx.

Proof. Given e > 0 since 2¿ 6a(suP* eslxi*)) < + oo there is a finite H0cA

such that:

2     (sup qx(x)\ >   2     sup ^(x)) - e/2
XeH0    \xeS I XeA      xeS

=   2 sup qx(x)l+      2       sup qx(x)-s/2.
XeHoxeS XeA-Ha     xeS

Therefore, %x,a-Bo«*(*)< 2A ^-„„sup^ eSaA(x) < e/2 for all xeS. Since

H0 is finite there is <5 > 0 such that q(x) < ô implies 2¿ eH09x(.x) < Eß. Thus,

if q(x) < 8 we have :

2 qx(x) -    2 qx(x) +      2     qx(x) < e/2 + e/2 = e.
AeA AeHo A eA— Ho

Therefore q>I,XeAqx.

2. Bounded manifolds. If A is a manifold of the linear space S and if q is

a quasi-norm on S we define q(A) = sup* £Aq(x). The following relations follow

easily.

(1) q(aA)¿q(bA) for \a\i\b\,

(2) q(-A) = q(A),

(3) q(A + B)^q(A) + q(B).
A manifold A is said to be bounded by a quasi-norm q (written A\>q)if
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lima_0 £/(«/!) = 0. With this definition we see easily that if A >-q, then a A >-</

for any real a. Also it is clear that A >-#, and qy ~>-q2 implies that A >q2.

Theorem 2.1. // A is a manifold of S and q is a quasi-norm, then A >»</

implies that  {J\a\¿iaA >-g.

Proof.    g(U|„|gia<4) :£ sup|a|glq(a,4) ^ q(A).   Therefore,   for   any real   b:

q(b[ \JfA}) èq(bA)

and the last term goes to zero as b does.

Theorem 2.2. // A and B are manifolds which are bounded by a quasi-

norm q, then A + B and A Uß are also bounded by q.

Proof,    lim^o q(a(A + B)) ^ lim„_*0 {q(aA) + q(uB)} <= 0.

lim q(a(A U B)) = lim q(aA U aB)
o->0 a-*0

= lim max {q{aA), q{aB)}= maxi lim q(aA),\\m q(aB) = 0.
a-»0 L->0 o->0 I

A manifold A is said to be symmetric if A = —A. A manifold A is said to

be star if A => aA for 0 ;£ a <j 1.

It is easily seen that, for any manifold A, the manifold LJ l«l s ia^ is the smallest

symmetric star manifold containing A.

A manifold A is said to be a character manifold (or A is said to be of finite

character) if it is symmetric and star and satisfies the following: there is a posi-

tive real number c such that a A + bA e cA for a + b ^ 1; a,b^0. Such a c

is called a character of A and ^4 is said to be of finite character c.

Theorem 2.3. // Ak (AeA) is a system of manifolds such that each one is

of character c, then A0 = PL ea^a is also of character c.

Proof. Let x, yeA0. Then, for a + b^l; a,i> 2: 0 we have ax + byecAx

for all AeA which implies ax + byeC\XsScAx = cA0. Therefore, aA0+ bA0czcA0.

Since a character manifold is star by definition, we see that 0 < a < b implies

that a A c bA for any character manifold A . Thus, if c is a character of A, then

any larger number is also a character of A.

Theorem 2.4. A manifold A has a character less than one if and only if A

is a linear manifold.

Proof. If A is a linear manifold a A + bA c A = %A for a, b^O, a + b ^l.

If A has character c < 1, we first show that, for a > 0, a A = A. Let x e A. Then

x = \x + ix = czx îoxz^eA. Byinductionwedefineasequencezv€/l(v = l,2,---)

such that zv = %zv + %z}/ = cz}/+1. Thus x = cvzv (for v = l,2,•••)• Choose v0
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such that cv"a < 1. Then ax = (acv°)zvo e A since A is star. Thus a A = A for

a>0. If a<0, aA — { — a){ — A) = { — a)A = A since /I is symmetric. Given

x, y e A we have x + y = 2(^x + £y) e 2(cX) = (2c)A = A.

This result shows that the linear space S itself is a character manifold and

that any positive number is a character of S.

Given a manifold A and a positive real number c, the character c hull of /I

is defined as the intersection of all manifolds of character c containing A. (This

system is nonempty since S itself is of character c.) We denote the character c

hull of A by A"._

Clearly Äc = (IL| ¿ i aA)c since a manifold of character c is star and symmetric.

If A is of character c, then ¿M is of character c for every real d since, for

a + b á 1 ; a, & ̂  0, a(íL4) + í>(íM) = d(a4 + M) c ¿M) = c(íL4). For any

manifold A consider aAc where a is any real number #0. B is a manifold of

character c containing A if and only if aB is a manifold of character c containing

a/1. Therefore (aA)c = f]aAc:Dofch!l[,cD=f]aA^aboUhar,caB = aÂc.

A quasi-norm g is said to be of finite character if there are positive real numbers

a and c such that q(x) _ a implies that \q{x) ^ q((\¡2c)x). If q satisfies this re-

quirement, we say that q is of character c. Clearly if q is of character c, then q

is of character c' for any c' > c.

Theorem 2.5. Ifqy and q2 are quasi-norms of finite character, then uq¡ + bq2

is also of finite character for a, b > 0.

Proof. Let d¡,c¡ (¿ = 1,2) be such that q¡(x) = d¡ implies ¿</¡(x) ̂  qt((ll2c¡)x).

(i'=l,2). Setting d0 = min{i/, ,d2] and c0 = max{c,,c2} we find that

aqt(x) + bq2(x) ^ min{ad0,bd0} implies that qx(x) = d0 and <72(x) 5= d0. There-

fore, l-aq^x) ^ a<j1((l/2c1)x) and i/3<?2(x) = bq2((í¡2c2)x). Hence,

H««i(*) + &42OO) ^ a<?i((l/2c0)x) + bq2(fXßc0)x).

Theorem 2.6. 4 quasi-norm q is of finite character if and only if q" is

affinité character for all a > 0.

Proof. If q is of finite character, then there are a0, c0 such that t/(x) = a0 implies

2q(x) Sï gX(l/2c0)x). Putting a¡ = min{a0,a/2} andcj = c0, we have that ^(x) _ a¡

implies q(x) = q\x)^al-^aQ.Therefore,\q\x) = iq(x) ^q((l/2c1)x) = gar((l/2c])x)

since g((l/2c,)x) = i«(x) = \q\x) = *«.

If q" is of finite character for some a > 0, then there are positive real numbers

a and c such that q"(x) _ a implies ig*(x)èi"((l/2c)x). If we let a0 = min{c/,a/2},

we have that q(x) = a0 implies q(x) = g (x) ^ a which gives \q(x) = iqx(x)

^í7a((l/2c)x) = í7((l/2c)x).

Theorem 2.7.   If Ay q and q is a quasi-norm of finite character c then À2c>~q.

Proof.   Since q is of character c, we can find a0 > 0 such that q(x) = a0 implies
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^q(x)^q((í¡2c)x). Hence, if  q(x) ^ a0   and   q(y)^a0,   then for a + b&l;

a,b^.O we have:

q({\¡2c)(ax + by)) ^ q((al2c)x) + q((bßc)y)

^ a((l/2c)x) + q((l/2c)y) ^ \-q{x) + My) á a0.

Therefore, if we let Vao = {x:q(x) ^ a0}, we have: aVao + bVao <= (2c)Vao for

a + b f^l; a,b^0. Thus, 2c is a character of Vao. Now since A >-q, there is

d > 0 such that q(d^) ^ a0 or, equivalently dA a Vao. The fact that Vao is of

character 2c shows us that dÄ2c= dA2c c F„0. Thus, we need only show that

Vao is bounded by q in order to have dÄ2c(and therefore Ä2c=((l/d)dÄ2c) also

bounded by q.

Given e > 0 choose v0 such that a0/2v° < e and let x e Vao. Then

a((l/(2c)V0)x) ̂  M(l/(2cr_1)x) ^ - ^ (l/2Vü)ö(x) < e.

Hence «((l/(2c)*«»)7„0) < e and Fao>a.

A manifold F of the linear space S is called a vicinity if, for x e S we can find

b > 0 such that ax e F for 0 ^ a ;£ b.

The following theorem is proved in [3].

Theorem 2.8 ([3], p. 129). If a symmetric star vicinity V is of finite charac-

ter c (i.e. aV+ bVcz cV for a + b ^i; a,b~^0) then there is a proper quasi-

norm q on S such that

{x:q(x) < 1/2V} c (l/2c)vFc {x:«(x) ^ 1/2V}

and
(a(l/2c)x)=i<¡f(x) for q(x)£i.

(Note that the definition of quasi-norm in [3] corresponds to a proper quasi-

norm in our terminology.)

In the proof of the preceding theorem the fact that the set Fis a vicinity is used

only to establish that the quasi-norm is proper. Since every character manifold

is star and symmetric, the rest of the proof gives the following result:

Theorem 2.9. Let A be a manifold of finite character c. Then there exists

a not necessarily proper quasi-norm q of finite character c such that:

{*:a(x)<l} c (¿)^C{x:«(x)^l}

and
q((ll2c)x) = Mx)forq(x)^l[.

This quasi-norm is called the quasi-norm associated with A and denoted by qA.

Theorem 2.10. If A is a manifold of finite character, then A ~>-qA. Further-

more, if q is any quasi-norm such that A >-<j then we have q<qA-
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Proof. If A is of character c, then (l/2c)vA<= {x:qA(x) ;£ 1/2V} which shows

that A>qA.

If q is a quasi-norm such that A^-q then, for any e > 0 there is a ô > 0 such

that q(ÔA) < e. Choose v0 such that (l/2c)vo< ô. Then ^(x) < 1/2V° implies that

xe(l/2c)vM<= ÖA which implies q(x)<s. Therefore q<qA.

3. Ideals.   A system / of quasi-norms is called an ideal if:

(1) I 3q¡ ~>q2 implies I sq2.

(2) for any sequence qvel (v=l,2,••■) there is qel such that qv~<q for

all v = l,2,-.

Since 0 -< q for all quasi-norms q we see that every ideal / s 0.

Theorem 3.1.   qvel for all v = 1,2, ••■  implies that  2"=1gv1/2 el.

Proof. By property (2) there is q el such that qv -< q for all v = 1,2, •••. But

since T,?=lsupxeSql/2\x)^ 2v°°=1(i)v < + oo, Theorem 1.10 shows that

T.?=iql/2y<q. Hence   2?=1ai/2Ve/ by (1) above.

A subsystem B cZ is called a basis if, for any q^ el there is q2eB such that

a2>-i/1. Clearly every basis satisfies the basis condition: for any sequence

qveB (v = 1,2,■••) there is qeB such that qv<q for all v = 1,2,•••. Conversely

we have:

Theorem 3.2. If a system B of quasi-norms satisfies the basis condition,

then there exists uniquely an ideal I such that B is a basis of I.

Proof. Let I = {q:q <q¡ for some qteB}. Then if 13qiyq2 it is clear

that Isq2. If / sqv (v = 1,2,•••) then qv<q'veB (v = 1,2,—). But then there

is q e B such that q'v^.q (v = 1,2, ■■■). qe B implies qel and q >- q'v -^qv shows

that q^qv (v = 1,2,—). Thus, I is an ideal. If any other ideal Z¡ contains B it

must contain I. But if B is a basis for lu then qy ei^ implies qt -<q2 for some

q2eB and hence g¡ eZ. Therefore, I\=I and Z is unique.

Theorem 3.3. // B is a basis for an ideal I, then, for any a > 0, {q":qeB}

is also a basis for I.

Proof, q^q* implies q>~q" and this shows that q"el for all qeB. We

need only show that q<q* to conclude {q":qeB} is a basis. For any e>0

if we choose «5 = min{e,a/2} we have q\x) < ô implies q(x) = q"(x) < 5 :g e.

We say that an ideal I{ is stronger than another ideal Z2 orZ2 is weaker than

Zt if 1^I2.

Theorem 3.4 // Ix (leA) is a system of ideals, then Io= (~]xeAh IS an

ideal which is the strongest ideal among all those weaker than all Ix (XeA).

Proof. We need only show Z0 is an ideal and the rest is clear. If Z0 ao^ >fl2,

then we see that Ix3q1)^q2 for all AeA which means that q2elx for all Xe A.
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Therefore q2el0. If qvel0 (v = 1,2, •••), then qvelx for all Xe A, v = 1,2, •••.

Henee, Sí°=i?í/2 eh f°r ail XeA which implies Evœ=1qv1/2 e/0 and clearly

2Z:=1ql/2V>qv1/2V>qAv=h2,-).

Theorem 3.5. If h (le A) is a system of ideals, then there is a weakest ideal

among all those stronger than all h {Xe A). We denote this ideal by Vassa^a-

It has a basis given by

(00 CO \

I qv:   S sup t/v(x)< + co, qve \J /,., v = 1,2 — }.
v=l i>lieS A e A J

Another basis is given by

ß.  = [Ê «'/2": í,6 U 'a for v = 1,2, •-■).
U = l AeA 1

Proof. If / is an ideal containing {J; sA/A and if IJ°=1iveß, then there

is qel such that q>-qv (v=l,2,•••)■ But then we have, by Theorem 1.10,

q >- L™=1qv which implies ~L™=lqveI. Thus, I^B. If we can show that B

satisfies the basis condition, it will be clear that the ideal generated by B is the

weakest stronger ideal. Suppose pveB (v = l,2,•••)• Then pv = E™=i</V,u

where   H^°=1 supr eSqViit(x) :£ <xv < + co    for    v = 1,2, •••.    Now    consider

2v.m(1/«v20 «»,,«• Then

I « i 00
S    SUP   —-^qv,„(x) =    S     —r7     I    SUP  </v,u(x)  ^   1.

v.ji     jeS     av¿ v = l    av¿     /l ^ 1   itS

Therefore   2ZV4í(1lcf.v2v)qVil¡eB   and   clearly    Zv^(l/av2v)flVj/( >pv   (v = l,2, •••)

since

^      1
a 2

■qv.f¡>qv.» G« = 1.2,—) (v = 1,2,—).

Now, as for ß(, if we can show that for any qeB there is q¡ eB, such that

fl -<<7i, we will have shown that B, is also a basis since it is clear that Bt c: B.

Suppose g = Sv°°=, qveB. Let q, = E?=l9,1/2VeB1; Since S,00.1?,1/2 Vfl»1/aV«»

for all v = l,2, ••• we have that qt = E^=i <?v1/2 >- T,™=lqv = q by Theorem

1.10.
An ideal / is said to be proper if every qel is proper. Since q<.qx proper

implies q is proper, we need only know that a basis of/ consists entirely of proper

quasi-norms to conclude / is proper.

4. Induced linear topologies. Linear topologies were defined first by Kol-

mogoroff [2]. After that, von Neumann gave another definition in [7]. In [3]

it is proved that these two definitions are equivalent. We will use the definition

of von Neumann.
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A system 93 of vicinities in the linear space S is called a lineur topology on S if:

(1) Fe93, VcU implies l/eS3,

(2) U, Fe93 implies i/nFe93,

(3) Fe« implies a Fe S3 for all a # 0,

(4) for any Fe 93 we can find U e 93 such that all c F for 0 ^ a ^ 1,

(5) for any Fe 93 we can find U e 93 such that U + U c V.

As on p. 139 of [3] we can consider, for every vicinity FonS, the corresponding

connector (connector is defined on p. 62 of [3]) Vc defined by Vc(x) = V+ x. Then, if 93

is a linear topology, it follows easily that {Vc: Fe93} is a basis for a uniformity

on S which is called the induced uniformity by 93 and denoted by IIs. IIs, in

turn, induces a topology on S which is called the induced topology by 93 and

denoted X%. If X is a topology on S induced by a linear topology 93 we refer

to S with the topology X as the linear topological space (S,X).

Theorem 4.1. A quasi-norm q on S is uniformly continuous by the induced

uniformity U" if and only if, for any e > 0 there is Fe93 such that q(V) < e.

If q is uniformly continuous it is proper.

Proof. We first prove the "if" part. Given e > 0 by hypothesis we can choose

Ke93 such that q(V) < e. Then if xe Vc(y) = V+ y, we have x — yeV. Then

j q(x) — q(y)\ ^ q(x — y) < e and we see that q is uniformly continuous. The

fact that | q(x) — q(y) | ^ q(x — y) shows that a quasi-norm is uniformly con-

tinuous by IIs if it is just continuous at zero by X's.

If q is uniformly continuous then, for any e>0, there is Fe93 such that

x e Vc(0) = 0 + F implies | q(x) - q(0) | = q(x) < e.

To show that a uniformly continuous quasi-norm is proper, suppose we are

given e > 0. Then there is Fe93 such that q(V) < e. Since Fis a vicinity, given

any xeS there is b > 0 such that axe V for 0 ^ a ^ b. Therefore q(ax) < e

for 0 ^ a :£ b and hence lim„^0g(ax) = 0. Since x was arbitrary q is proper.

Theorem 4.2. If (S,X) is a linear topological space, the system of all quasi-

norms on S which are continuous byX is a proper ideal which we denote l(S,X).

Furthermore, if I(S,X\) =I(S,X2) then Xr=X2.

Proof. By Theorem 4.1 the system is composed of proper quasi-norms, and

we must show that it is an ideal. If q^ is continuous and q2 -<ql then, for any

e > 0 there is ô > 0 such that ¿h(x) < ô implies q2(x) < e. But for such a o we can

find Fe93 such that q¡(V)<5. Then, q2(V) < e and hence q2 is continuous

by Theorem 4.1. If qltq2,--- is a sequence of continuous quasi-norms, let

p= 2Z™=1qlf2 . Then p>^v1/2 >o. for all v = 1,2,— and we need only show

that p is continuous. Given e>0 choose v0 so that 2"=Vo+i 1/2V < e/2. For each

qv, v = l,2,—,v0 we can find Fve93 such that gv(Fv) < (e/2v0). Let

V0 = f|vV°= i K e 93. Then p(V0) = suPxsVop(x) Ï 2VV°= lflv(F0) + e/2 g 2,v¿ 1(e/2v0)

+ e/2 = e. Thus p is continuous.
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Now suppose /(S,^) = I(S,X2) and let X¡ be induced by 93, (t = 1,2). Given

Ke93i we can choose a sequence Vve^8l (v = 1,2,—) of star symmetric neigh-

borhoods of zero such that F,cF and Vv+l + Vv+l c F, (v = 1,2, •••)■ Then

using the construction given in Theorem 3 on p. 129 of [3], we can construct

a quasi-norm q such that

\x:q(x) <—\cVvc:  lx:q(x) = — j .

Since each Kve3Si we see that q 6/(5,3^). By assumption then, qeI(S,X2)

which implies that {x:q(x) <i} e252. Since this set is contained in V we see

that Ve932. Therefore %t <= %2 and symmetry shows that %1 =%2.

Theorem 4.3. /// is any proper ideal on S, then I = I(S,X) for some to-

pology X.

Proof. For any q el let V<1= {x:q(x) _ a} for a > 0. In §63 of [3] it is shown

that 93 „ = {V: V=> Vx for some a > 0} is a linear topology. Let 33* be the topology

induced by 930 and consider Z0 = S/9,t%*. It is not difficult to show that (S,X0)

is a linear topological space.

If qel then, by the definition of Xq, q is continuous by Xq. Since ï'cï0

we see that q is continuous by X0. Therefore, / <z I(S,X0).

Now let p e I(S,X0) ■ Since p is continuous, for each v = 1,2, • • • we can find

VveX0 such that p(Vv) < 1/v. By the construction of X0 = \/ qetXq we see that

for each Vv there is a set qVilleI {p. = 1,2, •••,mv) and <5V > 0 such that

Vv => {x:qV(1(x) < ôv; p = 1, 2, •••, wv} (v = 1, 2, ■••). Since / is an ideal

£¡T= 11 v.« ™ Pv6 ' and clearly Vv => {x : pv(x) < Sv}. Now let q = L"= i pll2y e I.

Given s > 0 there is v0 such that l/v0 < s. Let ö = min {1/2Wo, ¿Vo}. Then q(x) < ö

implies pVo(x) < <5„0 and thus, p(x) < l/v0 < e. Hence, p «< q which implies pel.

Therefore I(S,X0) c /.

Theorems 4.2 and 4.3 together show that there is a one-to-one correspondence

between linear topologies and proper ideals. The next theorem shows that this

correspondence is order-preserving.

Theorem 4.4. IfXx andX2 are topologies on S such that (S.IJ and (S,X2)

are linear topological spaces, then Xi aX2 if and only if /(S,!,) c I(S,X2).

Proof. If Xt <=X2, then we see that q continuous by X¡ implies q continuous

by X2 and therefore /(S,^) c I(S,X2).

Conversely, if I(S,Xi) <=I(S,X2), then qeliS^x) cI(S,X2) implies that

Xq <=■ VqeKs.xi)1^9 which means that

„V     Xq=X1czX2=       V      24 •
?6l(S,Ii) ?eI(S,l!)
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Given a proper ideal Z we denote the topology associated with I by X1.

This topology is induced by a linear topology which we denote by 93/.

5. Completeness. Let 93 be a linear topology. A manifold A of S is said to

be bounded by 93 if, for any Ve 93 there is a > 0 such that aA <z V.

Theorem 5.1. Z/93/ is the linear topology associated with a proper ideal I

and A isa manifold of S then A is bounded byS8¡ if and only ifA^qforallq el.

Proof. If A is bounded by 33, then for any qel and e > 0 there is Ve93/

such that q(V) < e. Then there is a > 0 such that a A c: Fand hence q(aA) < e.

If A >g for all qel, let FeS3/. Then there is qel such that {x:q(x) < 1} <= V.

But then there is ô > 0 such that q(óA) < 1. Therefore ÖA <= V.

Theorem 5.2. If A is bounded by 93, then the closure of A in the topology

Is is also bounded by 33.

Proof. For any q eZ(S,iïs) and any e > 0 there is a > 0 such that q(aA) < e.

Since q is continuous q(aA~) = q((aA)~) ^ e. Thus A~ ~p-q for all qel(S,X®)

and consequently A~ is bounded by 93 by Theorem 5.1.

Theorem 5.3. S bx0 ->Ä e Ax by 93/ (that is, for any Ve 93/ there is ô0 belong-

ing to the directed system A such that ô g ô0 implies xdex + V) if and only if

q(xs — x)->ieA0/or all qeB where B is a basis of I.

Proof. If x¿->oeAx by 93/, then given any qeB and any c>0 there is

Ve 93/ such that q(V) < e. But xs -* 6 e Ax means there is <50 e A such that xs — xe¿\

for all ô ^ ô0. Hence, q(x6 — x) < e for all ô Sj <50.

As for the converse, if we are given any Ve 93/, there is a quasi-norm qv e I

such that {x:qv(x) < 1} c F. Since B is a basis of Z, there is qeB such that

qv<q- Hence, there is a > 0 such that q(x) < a implies qy(x) < 1. Since

q(xs — x)-vAeA0, there is ô0eA such that q(xs — x) < a for <5^<50. Hence,

S ^ <50 implies q(x¡ — x) < a which means qY(xs — x) < 1 and hence xs — x e V.

Therefore x¿->aeAx by 93/.

A system S 3 x¡ (ô e A) is a Cauchy system by 93 if, for any Ve 93 there is 8QeA

such that x¿1 — x¿2 e V for o¡, ö2 ^ ô0.

Theorem 5.4. A directed system S3xs (SeA) is a Cauchy system by 93/

i/ and only if q(xSi — xÓ2) -* iuöl e A0/or all qeB where B is a basis of I.

Proof.   Follows the same pattern as the proof of Theorem 5.3.

We say that a linear space S with linear topology 93 is complete if, for every

Cauchy system xt (SeA) there is xeS such that x,¡-»íeAx.

Theorem 5.5. 5 is complete by 93/ if and only if q(xs¡ — x¡2)-+ilS:l 6A0/or

all qeB (a basis of I) implies that q(xô — x)-*s €àOforsomexeSandallqeB.
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Proof.   This is an immediate consequence of the two preceding theorems.

On p. 155 of [3] it is shown that, with every linear space S with linear topology

93, we can associate another linear space 5 with linear topology 93 having the

following properties:

(1) S is complete by 93,

(2) S is a linear manifold of S,

(3) 93 is the relative linear topology of 93,

(4) S is dense in S by 2s»,

(5) {0}»-c:S.

S is called the completion of S and is unique up to isomorphism. Using Theorem

6 on p. 90 of [3], we see that every continuous quasi-norm q on S can be extended

to a function q on S which is continuous by 93. Since the real numbers form

a Hausdorff space q is uniquely determined. It can be easily shown that q is ac-

tually a quasi-norm on S. Thus, if / is an ideal of quasi-norms on S, we can

correspond the ideal 7= {q:qel} on S. (I can easily be shown to be an ideal

if we note that qt <q2 implies qv <q2. This follows from the relation:

{xeS:c]2(x) < ô} a {xeS:q2(x) < ö}~ <= {xeS:qt(x) < e}~ e{xeS:q,(x)^e}.)

If q is a quasi-norm on S, we can consider the quasi-norm qs on S defined

by qs(x) = q(x) for xeS. Then, if /' is an ideal on S, we correspond the ideal

I = {qS-q el'} ■ Then we see that 1 = 1' and we have a one-to-one correspondence

between ideals on S and ideals on S.

A linear space S with linear topology 93 is said to be conditionally complete

if the closure of every set which is bounded by 93 is complete by Um.

Theorem 5.6. A linear space S with linear topology 93/ is conditionally

complete if and only if q(x0¡ — x¿2)->¿i¿2 eA0 and {xö:SeA}>qfor all qeB,

a basis of I implies there is xeS such that q(x¡ — x) -> s eA0for all qeB.

Proof. If S is conditionally complete the result is clear. Conversely, if A is

bounded by 93/ and A bxs (ß e A) then {xá : <5 e A} c A implies {xô : 8 e A} >_ q

for all qeB. Theorems 5.3 and 5.4 then show that there is xeA~ such that

xi~* ô eA.X"

6. Filters. A system F of quasi-norms is called a filter if Faq-<qx implies

Fsq,.

Given any system B of quasi-norms if we set F = {q:q>-q, for all a, eB}

then F is a filter. We denote this filter by Bs and call it the associated filter of B.

If we set / = {q:q -<,ql for all qteB} then we obtain an ideal /. We denote

this ideal B3 and call it the associated ideal of B. (The fact that B3 is an ideal

is   a  consequence   of  the  fact that qv -< q for all v=l,2, •••  implies that
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A   filter   F   (¡deal   I)   is   called   reflexive   if   F** = F (Z53 = I.)

Theorem 6.1.   For any system B, B3 and B5 are reflexive.

Proof. Note first that, for any system C, C c C33 and C c C33. Thus,

B3 c (B3)33. But on the other hand, B c B33 implies that B3 => B333 . Thus

B3 = B3<53 and a similar argument shows that B3=Bs:s%.

A manifold A is said to be bounded by an ideal I (we write A^I) if A>-q

for all qel.

Theorem 6.2. // A is a character manifold and A>-I then there is q{ eZ3

such that A>- q{.

Proof. If we Mql=qA, the quasi-norm defined in Theorem 2.9, then Theorem

2.10 shows that i^eZ3 and A>qt.

Note that the converse holds even when A is not a character manifold. In

fact, since A >- qt >- q2 implies A >- a2 we have A >- q e I 3 implies A >I.\

An ideal Z is said to be of finite character if A >- Z implies there exists a character

m anifold B such that Acz B>-I.

An ideal Z is said to be of bounded character if there is a basis B of I and c> 0

such that every a. eB is of character c.

Theorem 6.3.   If I is of bounded character, then I is of finite character.

Proof. If A >Z and Z is of bounded character, then there is a basis B of Z

and c> 0 such that every qeB is of character c. Consider the character (2c)

hull of A, Ä2c. Then, by Theorem 2.7, A>-q and q of character c implies that

^i2c>q. But for any qx eZ there is q2eB suchthat qx<q2. Then Ä2c y~ q2> q^

implies Ä2c>-ql. Therefore, since qt was arbitrary Ä2c >-Z.

If Zt and Z2 are ideals, we say that Zj ¿s equivalent to I2 and write Z, ~Z2 if,

for every character manifold A, A >Z¡ if and only if A >-Z2.

Theorem 6.4. If lx and l2 are ideals, then It ~Z2 if and only if ; for every

finite character quasi-norm q, qel^ if and only if qel2.

Proof. If Il~I2 and q is of finite character and such that <¡reZ3 then

there is a > 0 such that A = {x : q(x) < a} is of finite character and furthermore

A>q. Now since geZ3 we see that A>It and since Zt ~Z2 we have A>I2'

Given any a^ eZ2 and e > 0 there is a positive integer «such that q¡ ((\¡n)A) < e.

Let ô = ajn. Then a(x) < o implies g(nx) g nq(x) fino = a. Thus, g(x) < <5

implies nxeA which means xe(l/n)/l and therefore g1(x)<e. Thus, qL-<q

and since a^ was arbitrary geZf.

For the converse, let A be of finite character and let qA be the quasi-norm as-

sociated with A. We see that qAelf and a^ is of finite character. Therefore, by

assumption qAel"%. But then A>-qA gives v4>Z2.
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Given any ideal /0 consider 70 = \/ ¡~i0I. î0 is called the equivalent hull ofI0.

Theorem 6.5.   If M = {q:q is of finite character and qel%} then /0 = M3.

Proof. Clearly M is never empty since q* defined in Example 1.1 is of finite

character. Theorem 6.4 shows that if / ~ J0, then M c /3. Therefore,

M3 _, Z55 _, ¡   Hence, 1~10 implies I c M3.

Now suppose h is such that J~/0 implies that Itzli. For any qeM3

consider ({g} U/0)33. Then, if qx is of finite character and ¿he/3, we see that

qi>q since qeM*. Therefore, g, e({q}u/0)3 = ({q} U/0)333. Conversely, if

q2 is of finite character and g2e({g}u/0)333, then ({g}Ul0)333 = ({g}u/0)3c:/03

and we have q2ei5. Thus, weseethat({q}u/0)53~/0.Therefore,/i=.({g}u/0)353q.

Hence, qeM3 implies qeh and we have Ai3c/,. Therefore M3 = Vi~j0J«

Corollary.   /0 is reflexive.

Proof.   /¡P = M333 = M3 = 70.

An ideal / is simple if l3q0^-q for all qel.

Theorem 6.6.   An ideal I is simple if and only if I n/3 ¥=0.

Proof.   If/ is simple l3q0 >-q for all q el implies that <70e/n/3.

If g0e/n/3 then 7 3q0 >q for all qel and / is simple.

7. Relative ideals. Let R be a linear manifold contained in S. Given a quasi-

norm q on S we define a function qR on R by setting qR(x) = q(x) for x e R. It

can easily be shown that qR is a quasi-norm on the linear space R. It is called

the relative quasi-norm of q on R. For any system B of quasi-norms on S, we let

BR = {qR:qeB}. The following properties are immediate consequences of the

definition.

(1) If q is proper, then qR is proper.

(2) If q is of finite character / then qR h of character /.

(3) qx<q2 implies qR <qR .

Let p be a quasi-norm on the linear space R. If we set

r p(x)    for x e R,
p™(x) = 4

(. + co   for x e R,

we obtain a quasi-norm p°° on S which will be called the maximum extension

of p over S. For any system B of quasi-norms on R we let B°°= {p°°:peB}.

Theorem 7.1. Lei q be a quasi-norm on S and let p be a quasi-norm on R.

Then qR-<p implies q<pcc.

Proof. For any e > 0 there is <5 > 0 such that p(x) < ö implies qR(x) < e

for xeR. But p°°(x) < 5 implies x e R and hence p(x) = p°°(x) < S gives us

q(x) = qR(x)<e.
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Theorem 7.2. If I is an ideal on S, then ZR = {qR:qeI} is the basis of an

ideal Z(R) on R. This ideal is called the relative ideal of I on R. If F is a filter

on S, then FR is a filter on R called the relative filter of F on R.

Proof. For a sequence qReIR (v = l,2, •••) we see that Isqv (v = l,2, •••)

and therefore there is q0el such that qo>qy (v = l,2,--). Thus,

lRsqR>- qR (v= 1,2, •••). This shows that IR is a basis for an ideal on R.

If F is a filter on S and p is a quasi-norm on R such that p >qR for some

qeF, then p™ >q which implies pœeF. But then p = (pa>)R e FR.

Given a system B of quasi-norms remember that B^B^) is the ideal (filter)

associated with this system.

Theorem 7.3. For a system B of quasi-norms on S we have (BR)3 = (B3)R

ana"(B3)(R,cr(BR)3.

Proof. Tf p e (B3)R, then there is q e B3 such that p = qR. But q e B3 implies

that q>qx for all qt e B and hence p = q R>- qR for all a^ e B which is the same

as saying pe(BR)^.

Conversely, if pe(BR)3 then p> qR for all qeB and consequently pœ>q

for all qeB. Thus, pOTeB3 implies p = (p°°)Re(B3)R.

If p e (B3)(R), then there is g e B3 such that p<qR. Since a. -< g, for all q, e B

we have p<qR <qR for all <?! eB which implies pe(BR)3.

Theorem 7.4. // a filter F is reflexive, then the relative filter FR is also

reflexive.

Proof. If F = F33 then we have /"R = (F33)R = [(F3)R]3. Since [(F3)R]3 is

reflexive by Theorem 6.1, we see that FR is reflexive.

We now consider a generalization of the inductive limit defined in [1].

If Rx(XeA) is a system of linear manifolds contained in S such that

S=U<ieA^A and sucn that, for any XltX2eA there is A3eA such that

&x, vRx,<=Ri3, then we write Rx'\XeAS and say that the system Rx(XeA)

increases to S.

Theorem 7.5. // Rx fA eA S and Ix is a reflexive ideal on Rx for all Xe A then

{q:qR>elxfor all Xe A) = (IJ, .aC?)*)3-

Proof. Let Z0 = {q:qR*eIx for all AeA}. Then, qel0 implies qR*eI for all

X e A. Hence qR*<p for all p e Z3 and therefore q<p°° for all pelf. Since this is

true for all AeA we have qe(\Jx eA(Z3)°°)3. Conversely, if qeiUx^f)"0?,

then aR'-<pR*for all pe(ZA3)°°and all AeA. But peZA3if and only if p = (p00)^

where p00 e (Z3)00. Therefore If = ((Z3)°°)R' for all A eA and hence qRie Z33 = ZA.

Thus, qel0 and we have Z0 = (U. eA(/?D3.



18 RICHARD METZLER AND HIDEGORO NAKANO [May

Now suppose Rx^x eAS and /; is an ideal on Rx for all AeA . The upper limit

oîlx(X eA) (written limsupA sAIx) is defined by: limsupA eA/A = V{/: va0 sa ^ Ae A

such that RXo a Rx and IR*-czIx}. The lower limit of lx (AeA) is defined by

liminfleA/A= V{': there is A0eA such that Rx^RXo implies I^cJLj. Since

Rx(XeA) is an increasing system it is clear that liminfA eA/A <= limsupAsA/A. If

liminfA eAlx = limsupA eA/A then we say that the system /¿(AeA) is convergent to

limA eAIx = limsup;. eAlx = liming eAlx.

Theorem 7.6. // Rx => Rp implies that lRp c Ip (which implies l[Rr,) c lp) then

/¿(AeA) is convergent and hmx eAIx—{q:qRxeIx for all AeA}. Furthermore,

if for any X0eA there is AeA such that RXo<=Rx and lx is reflexive, then

\\raXc¡AIx is also reflexive.

Proof. Let / be an ideal such that for any A0 e A there is A e A such that RXo c Rx

and 1R'<=1X. Then, if qel for any A0eA there is AeA such that qRxeIx and

Rx => RXo. By hypothesis qR'° = (qRa)Ra° eIx'° c IXo. Therefore, qe{q:qR'eIx for

all X e A}. (Call this last set /0.) Then / c /0 and this shows that lim supA e AIK c J0.

Now suppose qel0. Then, for any A0 eA we have IR* c Ix for Rx z> RXn. There-

fore/0 c liming sAIx. Thus, we see that/¿(AeA) is convergent and limA eAIx = /o-

The second part of the theorem corresponds to the assumption that there is

a system Xp (peP) such that, for any AeA, there is peP such that Rx c Rx and

h is reflexive. Since Rx c RXp implies qR' = (qR:>")R'- and since lRx c /; we see that

^mXeAlx = {q:qR'eIx for all AeA}■= {q:qRp"ehp for all p'eP}. Then, by

Theorem 7.5 we have that lim^ eAIx = (\Jp ^(/^f which is reflexive.

Now suppose Rx\x eAS and Fx is a filter on Rx for all AeA. The upper limit

of Fx(XeA) is limsupA eAFx = {p: for all A0 eA there is AeA such that RXo c Rx

and pR*eFx}. The lower limit is defined to be: liming eAFx = {p: there is

A0eA such that pR'eFx for all AeA such that Rx r> RXn]. It xs clear that both

the upper limit and lower limit are filters such that liming eAFx c limsupA eAF"x.

If limsupA eAFx = liminfA eAFx, then Fx(XeA) is said to be convergent to

lim^/V

Theorem 7.7. // Rx ra Rp implies Fxnc A,,, i/ien FA (Ae A) is convergent and

YimXeAFx = {p:pR'-eFxfor all AeA}.

Proof.   In any case it is clear that

{p:pR*eFx for all AeA} c liminfAeAJFA c limsup,, ,AFX.

Suppose pelimsupA £AFX. Then, for any A0e A there is AeA such that RXo<=Rx

and pRxeFx. By assumption FR^cFXn. Therefore pR'« = (pR>-)Rio e Ffx° e FXo.

This gives us limsupA eAFx <= {p:pR'eFx for all AeA}.

Theorem 7.8. // FXR" = Fp for Rpc:Rx, then, setting limA eAFx = F0,wehave

FR' = Fxfor AeA.
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Proof. From the preceding theorem we know that limA a A Fx = {p : pRA e Fx for

all AeA}. From this it is clear that FR* <= Fx for all AeA. If p e Fx, then

P = (P°°)R* and we need only show that pxeF0. For any Ax e A there is A2e A

such that Rx U RXl c RXi. Then by assumption, there is q eFXl such that qR' = p.

Then (px)R^>q implies that (p^^eF^. But then we see that

(p")*«-((p-)**)*«a#3£»-*A,.

Thus, pweF0 and we have FRa=Zv

An ideal I on S is said to be compatible to ^AfAeAS if limAeAZ(R;l) = /.

Note that the required limit always exists by Theorem 7.6 since (I**)*" = ZR"for

Rp c KA (which gives (Z(^))<R") = /<*">). Also we havelimA, A Z(R* = {a :a R e ZR'} =>Z

in any case.

Theorem 7.9. If if" a 11, for R0<=RX, then limAeAZA is an ideal which is

compatible to Rx[XeAS.

Proof. Let Z0 = lhnA eAZA = {q:qR'elx for all AeA}. Then clearly IRXczIx

for all AeA. Then limÀeAI(0R^ = {quf'el^ior all AeA} c {a:gRAeZA for all

AeA} =Z0. Therefore limA sAZ¿Ra)cZ0 and the reverse inclusion is always true.

Given an ideal I on S and a system RAfA eAS suppose there is an ideal Z on S

such that: (1) I => I ; (2) Z is compatible to RX1X eAS; and (3) lt zd I and Zj com-

patible to Rx^XeAS implies I <=!,. Such an ideal is called the compatible hull

of Z.

Theorem 7.10. For any ideal I the compatible hull I exists and is given

by í=limXeAFR^.

Proof. The remark before Theorem 7.9 shows that Z c limA eAZ(R;,) and

Theorem 7.9 shows that limA eAZ(R-11 is compatible. If I <=It is compatible, then

we have ZRj c ZfA and therefore:

lim Z,Ra) = {q:qR*elR^Xe A} e {g:aRAeZfA for all AeA}
X eA

=    lim Z(Rí) -fj.
X eA

A filter F is said to be compatible to R;.fAlEAS 'f Ihn* eaÍ8í = ^- As in the

case of ideals, this limit always exists and we have limA eAFR' = {p: pR'LeFR

for all XeA}=>F.

Theorem 7.11.   If FR" c Fp for RpczRA,  then \imXeAFx  is compatible to

R-X\X eA$ •

Proof. Let F0 = limA 6 A Fx = {p : p Ra e Fx for all AeA}. Then FRa c Fx for all

AeA and we have: limA eAF^= {p:pRAeF0RAfor all AeA} c {p:pR'-eFx for all

A e A} = F0. Therefore lim; cAFR = F0.
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Given a filter F on S and a system Rx |A e A S suppose there is a filter F such that

(1) F Z3 F; (2) F is compatible to Rx *[x eAS; and (3) F c Ft compatible implies

F c Ft. Such a filter F is called the compatible hull of F.

Theorem 7.12. For any filter F the compatible hull F exists and is given

by F = \imXeAFR>.

Proof. Previous results show that (1) and (2) are satisfied and we need only

prove (3).  If F <= F,   compatible, then we have FRa<=FRa- for all AeA.

lim   FR*={q:qR*eF Ra for all Ae A} =j {a:aRacFRafor all AeA}
X eA

=  lim FfA = F i.
X eA

Theorem 7.13.   If RP<=RX implies Fx" = Fp, then

(UkY = {p:pR'eFxfor all AeA}  = lim  Fx.
UeA        / XeA

Proof. We first show that (\JX e aFa°°)Ra = Fx for all Ae A. If p e \Jx eA*7>

then there is A0 e A such that p = qœ for some q e FXo. For any other Aj e A there

is A2 e A such that RXo u RXi c RXz. Then, since FaRa° = FXo, pR'i eFXï and therefore

p*-». =(pR^)R^eFXl^ = FXt. Thus, we see that (\JXeAFx')R'cFx- The opposite

inclusion follows from the fact that Fx - (FX)R*. By the previous theorem we have

(Ua eA*?r = limA eA(UA eA^00)^ = um, e A FA = {p: pRAeFx for all AeA}.

Theorem 7.14. For any ideal I on S and any system RAj"AeAS we have

j»c(f»)~.

Proof, q e 13 implies q e Z3 since I =>I. Consequently q Rxe Z3Ra for all AeA.

Then q e {p : pRA e Z3Ra for all A e A} = (Z3)" . Thus Z3 c (Z3)~.

Theorem 7.15.   For any system J?AfA eAS we have F3 c HmA eA FRa3 .

Proof. qeF3 implies q^eF^'c FRa3 = FRa3 for all AeA. (The last re-

lation follows from the fact that : FR' c FRa = {p : pRAe FRa for all A e A} Ra c FRa) .

FRa3 (A e A) is a convergent system of ideals since Rx c R^ implies

(p**»f* c (/-«m)Ra3= j- Ra3 for aii ^ e a .

qRAeFRA3 for all AeA gives  q e {p : pRi e FRxS for all Xe A} = limAeAFRA3.

Therefore F3climAeAFRA3.

8. Finite-dimensional spaces.

Theorem 8.1. If S is a finite -dimensional space and q and p are quasi-norms

such that q is pure and proper and p is proper, then q >~p.

Proof. Choose a basis a 1,a2, —.a,, for S and let m( 2v"=1avav)=maxv = li2 ...,„|av|-

If we can show that q proper implies m >q and that q proper and pure implies

q >-m, we will have proved the desired result.
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Let q be proper. Then, given e > 0, for each a, (v = 1,2, —,n) there is <5V > 0

such    that   q(Çav) <s¡n   for   |<^|^¿v.   Let   ¿ = minv = 12.„ov.   Then,   when

m( L"=1oc„av) <ô, we have q( Z" = iavav) = Z"v = ig(avav) = E" = 1£/n = fi. Thus

m >q.

Now we want to show that if q is proper and q does not dominate m, then q

is not pure. If q is proper and q does not dominate m, then there is e > 0 such

that, for each ô > 0 there is xe {x:q(x) < 8} satisfying m(x) = e. For v = 1,2, •••

we can find xve {x:q(x) < 1/v} such that m(xv) = s. By multiplying xv by a scalar

of absolute value less than or equal to one, we can assume that s = m(xv) = 2e

for v = l,2, —. If xv = S^=1aVi/1a^ this implies |av</11 ̂ 2e for all v = l,2, —

and all /t = 1,2,•••,«. We then have n bounded sequences of real numbers and

we can choose a subsequence vp (p = l,2,■••) such that they all converge:

lim^œavv„ = /?i,   (p = l,2,—,n).   Let   x0 = £„"=,p>„.   Then   we   see   that

m(xV(, — x0) -> 0 since m(xv> — x0) = max,, «, t 2.„ | aVn — /?,, | -* 0. The fact that

m(x0) ¿: m(xv ) — w(xv — x0) = e — m(xv — x0) for all p = 1,2, • • • shows that

m(x0) = s > 0.

Since q is proper we know from the first part of the proof that m >^. There-

fore /n(xv — x0) -+ 0 implies that q(xVn — x0) -» 0. But then g(x0) g í(x»r)

+ q(x0 — xVo) for all p = 1,2, •••. Since both of the last terms tend to zero, we

see that g(x0) = 0 which shows that q is not pure.

Theorem 8.2. If S is a linear space such that every pure and proper quasi-

norm on S dominates every proper quasi-norm on S, then S is finite-dimensional.

Proof. In light of Theorem 8.1 we need only show that if S is infinite-

dimensional there is a pure proper quasi-norm on S which does not dominate

every proper quasi-norm. Let aa(ae.4) be a Hamel basis for S. Define quasi-

norms q and p by q{ E^vO = maxae^|jSa| and p( Zae>4p>«) = £««4|ft«|-

Then q is proper and pure but q does not dominate p. To see this choose e = 1

and for any ô > 0 choose n such that n(<5/2) > 1. Then, let Sae/,vaaa be such

that vx = Ô/2 for n different values of a and such that vx = 0 for all other a e A.

Then we have q( T.xeA\>xa^ = 8/2 < ô bu p( l,xeA vxaa) = n(<5/2) > 1. Hence, q

does not dominate p.

An ideal/is said to be pure if x # 0 implies that there is qe/such that #(x) ¥ 0.

Theorem 8.3. // S is finite-dimensional and I is pure, then I contains a

quasi-norm q0 which is pure.

Proof. If S is one-dimensional and / is pure, then x # 0 implies there is

q0el such that q0(x) #0. But then (1/v)q0(x) = q0{{i¡v)x) shows that q0{<xx) ̂ 0

for all a *t 0.

To complete the induction argument we assume the result holds when S is

of dimension less than or equal to n. If S is (n + l)-dimensional, choose 0 ^ qx el

and let R = {x:ql(x) = 0}. Since ql ^ 0 (dimensionR) = n and the fact that Z(R)
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is pure on R shows that there is peZ(R)such that p is pure on R by the induction

hypothesis. By definition of Z<R) there is q2el such that q2>~p which implies

q2 is pure on R. Now let q0 = (ql + q2)el. For any O^zeS we have either

zeR which implies

îo(z) = fl2(-) = 9?(z) # 0

or zei? which gives

9o(z)è«i(z)5é0.

Therefore </0 is pure.

Theorem 8.4. /I linear space S is finite-dimensional if and only if there is

exactly one pure, proper ideal on the space.

Proof. If S is finite-dimensional and I is a pure, proper ideal on S then, by

the previous theorem I contains a pure, proper quasi-norm a. By Theorem 8.1,

if p is any proper quasi-norm on S we have a >-p. Thus {a} is a basis for I and

I is uniquely defined as the strongest proper ideal on S.

If S is not finite-dimensional, then by Theorem 8.2 there is a pure, proper

quasi-norm a and a proper quasi-norm p such that p i {g}3. But then pe{p + q}3

and we see that {g}3 ^ {p + q}3 even though both are pure, proper ideals.

Theorem 8.5. On a finite-dimensional space the unique pure, proper ideal

has a basis {q} where q is a quasi-norm of character 1.

Proof.    Let av (v == 1,2,—,») be a basis for the space S and define q by:

q(x) = q I 2 avav ) =   max     | av |.
\V = 1 / V = l.•!

Then q is clearly a pure, proper quasi-norm and therefore {a}3 is the unique,

pure, proper ideal on S. Since q(\x) = maxv=1)2i...(,|iûtv| = 2<?(x) we see that q

is of character 1.

Now let S be a linear space and let SA (A e A) be a system of finite-dimensional

submanifolds of S such that S'A|AeAS.

Theorem 8.6. If 11 and 12 are pure, proper ideals on S then I\ ** = Z(2Sa) for all

AeA.

Proof. This follows from the previous theorem since 1^ and I2Sl are

pure, proper ideals.

Theorem 8.7. There is a unique, pure, proper ideal which is compatible

to SA|A eAS. We denote this ideal by Z0.

Proof. If Zt and Z2 are pure, proper and compatible to SAf'AeAS then

Zi = limA eAlf* — limA eAZfA = Z2. This shows that any such ideal will be unique.
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But there does exist such an ideal since, if Ix is the unique, pure, proper ideal

on Sx, it is clear that limA eA/A is pure and proper and compatible with SX1X eAS.

Theorem 8.8. For any pure, proper ideal I on S the compatible hull I of I

equals I0.

Proof. We know / = limAeA/s> = limA eA/A = /0. (/a being the unique, pure,

proper ideal on Sx.)

Thus, we see that /0 is the strongest pure, proper ideal. Since we can always

find a system of finite-dimensional submanifolds Sx (AeA) such that SA^AeAS

we see that every linear space S has a strongest pure, proper ideal /0. Let lx be

the ideal of all proper quasi-norms on S. Then, since h =>/0 we see that h is

pure and therefore I, = /0.

9. Monotone quasi-norms. In the rest of the paper we will always assume

that S is a linear lattice. We will make use of the notation Bx = {y e S : | y | 5¡ | x |}

for x e S.

A quasi-norm q on S is said to be semimonotone if Bx >>g for all xeS.

Theorem 9.1.   If q is semimonotone, then q is proper.

Proof,    x e Bx implies 0 — lima_0 q(ax) = lirno_0 q(aBx) = 0.

A quasi-norm q on S is said to be monotone if |x| rg |y| implies q(x) ;£ q(y).

Theorem 9.2. Let q be a quasi-norm on S. If we define a quasi-norm q

by q(x) = q(Bx), we obtain a monotone quasi-norm. q is proper if and only if

q is semimonotone.

Proof.   Clearly q(0) = 0 and 0 = q(x) for all x e S. If | a | ^ | b \, then

q(ax) = q{B0X) ̂  q{Bbx) = q(bx).

To prove the triangle inequality, we need the following lemma:

Lemma. |z| ^ |x| + |y| if and only if we can find zx and z2 such that

z = Zj + z2 while | Zj | — | x |  and | z21 = | y |.

Proof. |z|:g|x| + |y| implies 0^|z|=z++z~^|x| + |y| and hence

0^z+^|x| + |y|. We can then write z+ = a + b where 0 = a ;£ | x | and

0 = b = | y |. Similarly z~ = c + d where 0^c^|x| and 0 ^ d ^ | y |. Then

z = z+ — z" = (a + b) — (c + d) = (a — c) + (b — d) where — lx = a — c = |x|

and —\y\ Ú b — d^|y|. Thus, \a — c|^|x| and \b — d| ^ y\ and the

lemma is established.

q(x + y) = q(B(x+y)) =     sup    q(z) ^       sup       q(z)
\z\é\x + y\ \z\S\x\ + M

sup g(zj+z2)^ sup        {q(Zi) + q(z2)} = q{x)+q(y)
\zx\û\x];\*i\û\y\ \zúé\*\;\z2\í\y\
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Thus, we see that q is a quasi-norm. It is clear that q is monotone since if

| x | i£ | y | then Bx <= By implies q(x) = q(Bx) _ q(By) = q(y). It also follows

easily that q is proper if and only if q is semimonotone.

Theorem 9.3. If qltq are quasi-norms such that qt is monotone and

q<qi, then q<ql.

Proof. For any e>0 there is <5 > 0 such that g,(x)<<5 implies a(x)<e.

If qi(x) < ô and \y\ ^ |x| then qt(y) = <h(x) < t5 implies q(y) < e. Therefore

q(x) = q(Bx) = sup^^^OO ^ e.

Theorem 9.4. For a quasi-norm a on S we have q<.q if and only if for

any e > 0 there is 3 > 0 such that q(x) < ô implies q(Bx) < e.

Proof.    This is clear by definition of q.

A quasi-norm q is called sequentially continuous if order-lim^^x, = 0 implies

limv^oog(xv) = 0.

Theorem 9.5. // q,qx are quasi-norms such that q¡ is sequentially con-

tinuous and q-<.qi, then q is sequentially continuous.

Proof. Suppose order-lim^^x,, = 0. For e>0 there is ö > 0 such that

qt(x) < ô implies q(x) < e. For this ö there is v0 such that q¡(x) <ô for v ^ v0.

But then q(xv) < e for v ^ v0 and therefore limv_00aXxv) = 0.

Theorem 9.6. If q is a sequentially continuous quasi-norm and S is Archi-

medean, then q is semimonotone.

Proof. Suppose q is not semimonotonc. Then there is x e S and e > 0 such

that q((l/v)Bx) ^e for all v=l,2,■••. Therefore, there is a sequence xyeBx

(v=l,2,—) such that q((l/v)xv) > e/2 for all v = l,2, —. But x„eBx implies

that |xv| ^ |x|. Hence |(l/v)xv| :£ |(l/v)x|. This means order-limv_00(l/v)xv = 0

since S is Archimedean. Therefore, we have limv_00g((l/v)xv) = 0 which contra-

dicts aX(l/v)xv) > e/2 for all v = 1,2, •••.

Since semimonotone implies proper, we see that every sequentially continuous

quasi-norm on an Archimedean space is proper.

A quasi-norm a is semicontinuous if |xA|j"A6A|x| implies that

q(x) = supXeAq(xx). If we let A = {1,2} and consider |x1|^|x2|, then

q(x2) = supAe{1>2} q(xx) = q(xt). Therefore, if a quasi-norm is semicontinuous, it

is monotone.

A quasi-norm q is monotone continuous if it is monotone and |xA| J,leA0

implies infAeAaXxA) = 0.

Theorem 9.7.   If q is monotone continuous, then it is semicontinuous.

Proof.   Suppose |xA| fAeA|x|. Then

1*1-1**1 =  11*1-1**11    i   °-
X eA
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Since q is monotone continuous infA eA#(|x| — |xA|) = 0. But

0áq(\x\)-q(\xx\) = q(x)-q(xx)

since q is monotone. Also, for any quasi-norm it is true that

\q(y)-q(z)\ = q(y-z)-

Therefore    0 = infAeA{g(x) - q(xx)} = infAeAg(| x | - | xA |) = 0.     Hence

0 = infA 6A {q(x) - q(xx)} = q(x) - supA eA q(xx).

Theorem 9.8. // a quasi-norm q is monotone continuous, then it is sequen-

tially continuous.

Proof. If order-lim^^x, = 0, then, by definition, there is a sequence

/„ (v = l,2,—) such that |xv| = lv ¿(V = i,2,...)0. But then we have 0 = q(xy)

^(l)|(. = i,2,...)0. Hence, lim.^gOO = 0.
We obtain a generalization of a theorem proved in [4].

Theorem 9.9. If S is a sequentially continuous linear lattice and if there

exists a monotone, sequentially continuous pure quasi-norm defined on S,

then S is super-universally continuous. (A linear lattice S is super-universally

continuous if, for every family xxeS (AeA) satisfying

(1) xA^0/or all AeA,

(2) AlsA2eA then there is X3eA such that xAl A xXl = xx¡, there exists a

sequence xXveS (v=l,2, —) such that  /\XeAxx exists and equals  A"v=ixa„-)

Proof.   Let xA (A e A) be such a family of positive elements. Let

A = inf        sup      q(xx-Xp)\.
A eA   l  lß;x*ixß) I

To prove 4 = 0we suppose there is s > 0 such that A > c and derive a contra-

diction. If A > s there is a sequence bi = b2 = ---^bv — --- with 6ve{xA:AeA}

for v= 1,2, ••• such that q(bv — bv+1) > e for v = 1,2, — .

Now let b0 = A%i °v which exists since S is sequentially continuous. Since qis

monotone bv — tv+1^ bv - b0 implies q(bv-bv+l) ^q(bv~ b0). Therefore

q(bv - b0) > e for v = 1,2,— .

But this contradicts the fact that q is sequentially continuous since

£>v-¿>o¿(v = i,2,...)° but q(bv - b0) > e for v = 1,2,••■.

Thus, we must have A = 0. This allows us to select a sequence of elements

x[ ,x2 ,— with x've {xA: AeA}  for  »■1,2,-   such that

sup q(x'v-xt) <-1r(v = \,2,-).

Since {xA: AeA} is a decreasing system, there exists a sequence

Xj ^x2 = ••• 2ïxv — •••   with   xve{xA:AeA}   for   all   v = l,2, —    such   that
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x'v = xv (v=l,2,•■•)• (To get such a sequence we need only let x4 = x', and

choose xv+I = xt Ax2 A ••• A xv Ax^+1.Then since q  is monotone  we have:

(1) sup      i/(xv-xp)=      sup      q(x'v - xß) < —
{ß-.xyixß) {ß:xvixß} L

Now let x0 = Ar=i*v Since q is sequentially continuous q(xv — x0) _ (1/2T)

(v=i,2,-).

Given any AeA we have:

(2) q((x, A xA) - (x0 A xA)) = q(xv - x0) = —.

Since {xA:AeA} is a decreasing system, there is ßeA such that xv AxA^Xp.

Then, according to (1)

<7(X. - Ov A xA)) ̂  q(xv - X,) < ^.

Hence (2) gives us

«(*, - (xo A xv)) ^ a(xv - (xv A xA)) + q ((xv A xA) - (x0 A xA)) ú^rrv •

Therefore, since q is sequentially continuous q(x0 — (x0 A xA)) = 0. But then

the fact that a is pure implies that x0 = x0 A xA or x0 ^ xA. Since A was arbitrary

we have x0 = xA for all A e A which gives, us since

CO

*o =  A xv(xve{xA:AeA} for all v = 1,2, •••), x0=  A xx-
v=l AeA

10.   Monotone ideals.    An ideal Z is said to be semimonotone if Ba y I for all

aeS. The following result follows easily from this definition.

Theorem 10.1. I is semimonotone if and only if every quasi-norm in I is

semimonotone.

An ideal Z is said to be monotone if I has a basis consisting of monotone quasi-

norms.

Theorem 10.2.   If I is monotone and proper, then it is semimonotone.

Proof. Let qel. Then there exists qt el such that q¡ is monotone and q<qx.

Then, for aeS, Ba is bounded by at since q^B,,) = q¡(a) and qv is proper.

Ba >~€i ">-q shows that Ba >q.

For any manifold  A <= S we let BA = [JaeA^a — {x:|x| _ |a| for  some

aeA}.
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Theorem 10.3. An ideal I on a linear lattice S is monotone if and

only if for each qYe! and 31>0 there is q2e I and <52 > 0 such that

B{x:q2(,x)<ö2} c {x:1Áx) < <M • (In the case when I is proper this is equivalent

to the requirement that, in the corresponding linear topology, there is a basis 93

of neighborhoods of zero such that Fe33 implies Bv = V.)

Proof. If I is monotone, consider any qxel. Then, by assumption, there

is a monotone q2el such that q¡ <.q2. For any b± > 0 there is a ô2 > 0 such

that q2(x) < <52 implies qx(x) < 5¡. Let A = {x:q2(x) < <52}. Then BA = A since,

if x e A and | y | ^ | x |, then q2(y) ^ q2(x) ^ ô2. Hence

*{««<»><#»} = {*:iaG0 < ¿2} < {x:4i(X> < <5j}■

For the converse we assume the condition is satisfied and show that I is mono-

tone. For qel let q be defined as before by q(x) = q(Bx). In Theorem 8.2 it

was shown that q is a monotone quasi-norm. It is clear that q(x) _ q(x) for all

xe|S. If we can show that qel for all qel, then {q:qel} will be a basis of

monotone quasi-norms.

For qel and e„ = 1/n there is a qnelt and ô„ > 0 such that qn(x) < ôn and

f_VI á |x|  imply q(y)< 1/n.
Therefore qn(x) < <5„ implies q(x) = q(Bx) _ 1/n. Since Z is an ideal, there is

pel such that p >q„ for all n = 1,2,— . Then, for any e > 0, there is a positive

integer n0 such that l/n0<e. We know a„0(x) < ôno implies q(x)f^l/n0. For

this <5„0 there is ¿ > 0 such that p(x) < ô implies a„0(x) < <5„0. Therefore p(x) < ö

implies q(x)<£. Hence q-<.pel and this implies qel.

If q{ and #2 are quasi-norms such that qx <q2, then q~\<q2. This follows

by Theorem 8.3 since q2 >-a2 >-^i and ç2 ¡s monotone. Given an ideal Z con-

sider {q:qel}. This system of quasi-norms satisfies the basis condition since,

if qv (v = 1,2,—) is a sequence from {q:qel}, then there is a qel such that

q >q, (v = l,2,---) which implies f/>çv (v = l,2,—). The ideal Z~ which has

{q:qel} for a basis is called the monotone hull of I.

Theorem 10.4. If I is an ideal contained in a monotone ideal 1¡, then

ïelj. (It follows from this that Î = Aíe/imo„0(<Meíi •)

Proof. If qel, then there exists a monotone a^ el such that q <q¡. Thus,

we have q~<.qt which implies qel¡. Therefore fc/,,

For any a e S, B„ is of character 1. Obviously B„ is star and symmetric and,

for x,yeBa, A + /1 _ 1, A, ¿¿ _ 0, we have

I Ax + py I ̂  I Ax I + I ¿¿y |  £¡ | A + p | | a | ^ | a |.

If Z is any semimonotone ideal, we know that Ba >Z for all aeS. In other

words, Ba>q for all aeS and qel. But if Ojjo is the quasi-norm associated

with the finite character set Ba, Theorem 2.10 shows that qB >q for all qel
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and all aeS. In other words, qBaefî for all aeS. Now let F = {q:q >qBa

for some aeS}. Then we see that F cZ3 implies /r33/33o/ for any semi-

monotone ideal /. If qeF3, then q<.qBa for all aeS which implies Ba >-</

for all aeS and this means q is semimonotone. Therefore F3 is semimonotone

itself and it is clearly the strongest semimonotone ideal. Since Ba is of finite char-

acter for every a e S we see that /¡ ~ I2 and h semimonotone implies I2 is semi-

monotone. Then we conclude that / ~ F3 implies that / is semimonotone which

means / cf3, Thus, F3 is equivalently strongest (i.e. F3 = V/~f3')- Also

F3 is clearly reflexive.

Theorem 10.5. /// is a semimonotone ideal, then the equivalent hull of I

and the reflexive extension of I are also semimonotone.

Proof. If h ~l, then h is semimonotone which implies /, <= F3. Therefore

V/i~/'i c F3 which shows that the equivalent hull is semimonotone. Similarly

/ <= F3 gives Z33 c F333 = F3 and this shows that Z33 is semimonotone.

An ideal / is said to be sequentially continuous if/ contains a basis consisting

of sequentially continuous quasi-norms. Theorem 9.5 then shows that in a se-

quentially continuous ideal every quasi-norm is sequentially continuous.

Theorem 10.6. // / is sequentially continuous and S is Archimedean, then

I is semimonotone.

Proof.   This follows easily from Theorem 9.6.

We say that an ideal is semicontinuous if it contains a basis consisting of semi-

continuous quasi-norms.

Using the terminology in [5] we have:

Theorem 10.7. // q is a semicontinuous quasi-norm on a universally con-

tinuous linear lattice S, there is a unique normal manifold N a S such that q

is pure in N and q(x) = Ofor all xeN\

Proof. Let M = {x : q(x) = 0}. Then it is easily seen that M is a linear mani-

fold. Since q is monotone, |x|^|y| and ye M implies xeM. Therefore M

is a seminormal manifold. If xA^AeAx and xxeM for all AeA, then

q(x) = supA eAq(xx) = 0 by assumption and xeM. Hence, by a theorem in

linear lattices M is normal. Clearly q(x) = 0 for all x e M. Also q(x) = 0 implies

that xeM which means [Mx]x = 0. Therefore q is pure in Mx. To show that

M is unique, we suppose q is pure in a normal manifold P and q(x) = 0 for all

xeP1-. Then clearly PX = M.

Theorem 10.8. Given any system of semicontinuous quasi-norms qx(XeA)

on a universally continuous linear lattice S there is a unique normal manifold

N <= S such that qx (X e A) satisfies qx(x) = 0/or all X e A if and only if xeN.
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Proof. Let JVA = {x:qx(x) = 0} and let N = QA eANx. Then N is the inter-

section of normal manifolds and is therefore normal itself. If x^O and xeNx,

then by definition of N there is A e A such that qx(x) # 0.

Theorem 10.9. Let S be a sequentially continuous linear lattice. Suppose

there is a pure, proper, semicontinuous quasi-norm q defined on S. Then, for

all aeS, Ba is complete by the uniformity induced by {q}5.

Proof. Let Ba axô(8e A) be a Cauchy system. Then, by Theorem 5.3, for every

positive integer v there is (5v'e A such that q(xit — xiz) — 1/2V for all 8¡ ,82 :£ t>¿.

Since A is a directed system we can define by induction a sequence <5V e A (v = 1,2,- • •)

such that 8V = 8v,8^+l. For ease of notation, we write av = xSv (v = l,2,—).

Now consider

2 \av+i -av\ ) =   E q(av+l - av) = Z   —,
V=ft / V = ft V~fl¿

ff ff ff

0=    V   «„-«„  -    V   («v-«„) =    ̂    K+l -flv|-
V ~ fl v~n V~ll

This last follows since, for p-—\ = o, we have

ay-a„£ |av-a„| = \av-av-t + a,_j -av_2 + ••• + afl+1 - a„|

IT

Ú   I \ay+1-av\.

Then, since q is monotone,

q(\/ af-a\=q(í\av+l-av\)=   Í   ^S^.

Therefore, since S is sequentially continuous, I xt | :£ I a I («5 e A) and q is semi-

continuous;

«(V  «»-«,.)=       SUP   «( V «v-«„ ) á 5—T-

Similarly we find q(aß - A,%«») á 1/2"-1.

Thus i(V,%«,- A?m,a)Sipr-*.
Now let /„= Vv%fl,~ Av%«v and set /= Ai-iV

Then Q=l<,lp implies <?(/) ̂ g(/„) = Iß"'2. Since this is true for all p = 1,2, •••

we see that q(l) = 0 which means, since q is pure, that 1 = 0. Therefore there is

a0eS such that order-limv^00 a, = a0.

Given any s > 0 since  \J™=liav = a0= A™=Mflv we have:
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\a0-alt\S I V   a,-aA  \J  (a„ - f\ aA^lp
\v=/i / \ 1-n I

which implies q(a0 — ap) ^ l/2"~2. Now choose /i0 such that 5/2''° < e. Then, for

S 5Í 3po, we have

fl("o-^) = <?Oo-*<*„„) + 3(^„0 -*«)

= fl(«o-«j + «(*0„0-*.0á 1/2"0"2 + 1/2"°= 5/2"° <e.

Therefore xâ-+ôeAa0.

As a generalization of Theorem 3.4 in [6], we have:

Theorem 10.10. Let S be a universally continuous linear lattice. Let I be

a proper semicontinuous ideal defined on S. Then, for any aeS, Ba is complete

by II3.

Proof. Suppose xs (ô e A) is a Cauchy system in Ba. Let L be a basis for Z

composed of semicontinuous quasi-norms and choose qeL. Then, by Theorem

9.6, there is a unique normal manifold Nq of S such that qNqis pure in JV„ and

a(x) = 0 for all xeN^. Then qN" is a semicontinuous, pure quasi-norm on N,r

<7([/V„](**, - x»J) - 9(| [N.] (**, - *,,) ¡ ) = a(| x4l - x„21)

= «(x4l-xAÎ)-»il(ii,A0.

This shows that [iVjx,, (¿eA) is a Cauchy system  in JV,( by the uniformity

induced by qNq. Thus, by the previous theorem there is an xqeNq such  that

[•Njx,-» áeAx0.

Now let q¡,q2e L.

[*U [*«]*„   = [rV„][JV,J lim [/V(/I]x,,
.> eA

= [JVjlim [tfj[tffl]*
6 eA

a eA

Since S   is universally continuous and since I x01 _ a for  all q e L we see

that   Xj = \J „eLXq    and   X2 =   VqeLXq    bota  exist.

[AT,]*, = [ATp]  V    *J- [AT,]      V TJVjxJ = V M[N.K
gel- qeL* <7 e'L

=    V M[N,]xp+= [Np]xp+=x; .

Similarly   [*Vp]x2 = x~   and   therefore,  if x0 = x1 — x2 we have   [Np]x0

Xp Xp Xp.
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Then xè -* ieA x0 since, for any £>0, and for any q e L there is 80 e A such that

q([Nq]xs - x„) = q([Nq-] (xg - x0)) < ?. for ,5 ̂  ô0.

But xt - x0 = [A/,] (x - x0) + [Nx] (jfj - x0) and therefore

9(xa - x0) ^ 9([/V,] (x, - x0)) + </([NxJ (x, - x0)) ^ a + 0 = e

for all ¿£¿0.
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