
MULTIPLIERS ON DaÇ)

BY

GERALD D. TAYLOR

In this paper we study multiplication operators on certain Hubert spaces of

vector-valued functions.

Let H he a given Hubert space with inner product < >. Fix a a real number,

and set

ÍOO OO \
f(z)= E anz"|anGZiforn=0,l,2,-,and E (ft + 1)"Io, fB< oo|.

n=0 n=0 )

Dx is a Hubert space with inner product (f,g)= E(n 4- i)"<[an,bny where

f(z) = ¿L¡anz", g(z) = Tdbnz" both belong to Dx and the absence of indices on the

summation signs will henceforth indicate the sum is from 0 to oo. The functions

of Dx are analytic vector-valued functions mapping the open unit disc into H.

Further note that for a e H the constant function/, = a is in Dx.

Let A" denote the transformation which maps Dx into H by X"(f) =/(z) for

each/e Dx and z a complex number of modulus less than 1. In §1, we show that

A" is a bounded linear transformation with norm ( E(n + l)-" | z |2")1/2.

For a ;£ 0 the norm of Dx may also be given by an integral. Lemma 2 shows

that the norm of Dx is equivalent to

±; ÇoÇ*\\f(re»)\\2H(\-r2Y*~'rdrdO,

when a < 0. For a = 0 we have the well-known Hardy space of square-summable

functions [3] and the norm is equivalent to

lim^-  ¡2)\f(rew)\\2Hd9.
r->l-   zn    JO

The symbols L(H, H) and L(DX, Dß) shall denote the algebras of all bounded

linear transformations of H into H and Dx into Dß, respectively.

Definition 1. Let h(z) be an operator-valued function mapping the open unit

disc into L(H,H). Then h(z) is a multiplier from Dx to Dß if h-feDß for each

fe Dx, where n •/ denotes pointwise multiplication of the two functions.
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230 G. D. TAYLOR [May

Let M(Dx,Dß) denote the set of all multipliers from Dx to Dp. The closed graph

theorem implies that Th mapping Dx into Dß by Th(f) = h ■/ for h a multiplier

and/eDa is a bounded linear transformation.

I. Characterizations. We begin by proving a few elementary facts about Da.

Lemma   1. Xz is a bounded linear transformation with norm

(L(n + l)-a|z|2n)1/2.

Proof. Let f(z) = £a„z" e Dx, then

/  °° \2

\\K(f)\\2H~¡ñz)¡U   [Ljañ¡B\z\'j

= (J^n-t-DiaJa)   (f (»-+irÍ*r)

by the Cauchy-Schwartz inequality. Thus || Xz\\ £( £(n + l)~"\z |2")1/2. To

show that this is equality, fix z ( | z | < 1), let a e H be of norm 1 and set

fa,z(w) = L(n + l)-«a(fw)". Note/a>2 e Dx since

00

|/a>zfl2« = S(n + irlzl2n<oo.
n = 0

Thus

00

|W..,)||h= I S  (n+ir|z|2"fl||

= Ê (n + l)-a|z|2''
n = 0

/    oo sl/2

= (jEfr+ir'M2")   I/... II-

Lemma 2. For a < 0, rbe norm o/Da is equivalent to

± j' f)\f(rew)\\2H(l - r*rl~'rdrdd.

Proof. We begin by noting that

OO 00

|/(z)|||=L   L zk2m<ahamy
fc=Om=0

for/(z) = £a„z" e Da and z of modulus less than 1.
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Thus

iiT
« Jo   Jo

"  ñre^WUí-ñ-'-rdrde

= 2E ¡ak\\2H  fr2k + 1(l-r2Y1-*dr
t=o Jo

I «.IS
=2-r-«> (*r)

where we have integrated by parts k times. From [1, Chapter 5, §4] one obtains that

the above series is asymptotic to a constant times E(n + 1)" | a„ |g and the lemma

follows.

Lemma 3. Thfor heM(Dx,Dß) is a bounded linear transformation mapping

Dx into Dß.

Proof. That Th is linear is obvious. We show that Th is bounded by applying

the closed graph theorem. Let {/„}"= i eDx and/„->/in Dx. Also let n-/„ = gn

for all n and g„ -*g in Dß. We must show h-f— g since feDx by completeness

andTi has all of Dx as its domain. Fix z such that | z | < 1, then

giz) = A&) = lim Af(A •/„) = A(z) lim JR/J = n(z)/(z),
n-* oo n -» oo

using the fact that Xß. is continuous (Lemma 1).

We now give a necessary condition for an operator-valued function to belong

to M(Dx,Dß). In order to obtain this condition we need the following lemma.

Lemma 4. Let heM(Dx,Dß), let k be a nonnegative integer and let z0 be a

complex number (|z0|<l). Then there exists an operator Uk(z0)eL(H,H)

such that

d\h(z)-fa)

dz*       ' z=20
= Uk(z0)-a,

where aeH andfaeDx with fa = a. Note that U0(z0) = h(z0).

Proof. Let aeH and set/a(z) = a. Then/, is a constant function in Dx and will

be denoted by a throughout the paper. The proof will be by induction on k.

Assume the theorem is true for k <n. Fix z0 of modulus less than 1 and observe

that

dn(h(z)-a)

dzn

= _d_ idn-l(h(z)-a)\

:=Z0       dz  \      dz»-i       j

= lim    P-i('o + '>-g-i('o). . fl,
(-»0
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where the limit is evaluated in the norm of H. Let

Un-y(z0 + t)-U(z0)
U„-y(z0,t)

Note that Un-y(z0,t)eL(H,H) for t sufficiently small by hypothesis. Also the

analyticity of the functions of Dß implies

d"(h(z)-a)
dzn

= liml7,,_1(z0,t)-a

is a fixed vector in H. Thus the family {Un-y(z0,t)},eS, where S is a disc about

z0 in the complex plane with radius smaller than 1 — | z0 |, is uniformly bounded

by the uniform boundedness principle. Thus by the uniform boundedness

principle stated in a different manner [2, Theorem 2. 12. 1, p. 50] if follows that

that Un(z0) defined by Un(z0)-a = lim,_0L/B(z0,r)-a for each aeH belongs to

L(H,H).

Theorem 1. Let heM(Dx,Dß). Then h is analytic (given by a Taylor series

with coefficients in L(H,H)) and

II;" II
¡Kz) La I ïî"11 Ki

for each z of modulus less than 1. By || A \\L we mean the norm of A in L(H,H).

Proof. Fix aeDa. Then h(z)-a = ^bnz"eDß, where b„eH for n = 0,1,2,—,

1     d"(h(z)-a)
b„ =

n! dzn 2=0

By Lemma 4, b„ = (1/n !) Un(0) ■ a where Un(0) e L(H,H). Thus fixing z0 such that

]z01 < 1, we have that h(z0)■ a = ( L(l/n!)Un(0)zô)• a for each aeH. Since both

h(z0) and L(l/n!)L7B(0)zS belong to L(H,H) it follows that they are equal.

Finally, it is clear that L(l/n !) Un(0)zn has a radius of convergence of at least 1

as |(l/n!)L/B(0)-aL^(n + l)~p/2||rB| | a L for aeH implies

TU„(0) = M(n + F)-"12
L

by the uniform boundedness principle.

To obtain the second part of the theorem we shall need the following special

function. Let a e H be of norm 1 and w be a complex number of modulus less

than 1. Define/a>w(z)eDa by/a>w(z) = L(n + lr'a^z)". Note that

|/...|í- S(n+l)-|iv|2"and ||/0,w(w)|H = 2> + 1)-"|w|2".

Fix w of modulus less than 1 and let s > 0 be given. Choose aeH such that

II a \\H = 1 and || h(w) L < || h(w) • a IL + s. Thus
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|| h(w)\\L |/fl.w(w)ffl <( [| h(w)-a ||H + e)(E(n+l)-a| w|2")

¿K| H r* ||  llAwll^ + eEtn + ir-lMf".
Since |[/«,w(w)|H is nonzero, we may divide both sides by it obtaining

II h(vS\ II     <? Il T II    "    w "    4- pn\w) \\l <    1h   TTT1T + e-
II     w  II

Letting £-+0, the theorem follows.

We now turn to the task of obtaining sufficient conditions that an analytic

operator-valued function be a multiplier for different choices of a and ß. The

first case we shall consider is 0 > a ^ ß.

Theorem 2. h eM(Dx,Dß) for 0 > a ^ ß if and only if h(z) is an analytic

operator-valued function  mapping the unit disc into L(H,H) and  || h(z) ||L

= o((i-|z|T"a)/2)-

Proof. For heM(Dx,Dß), Theorem 1 implies h is analytic and

\\h(z)\\L^\\Th\\^èK(i-\z\2r^2 ,

since E(n 4- l)~p|z|2n is asymptotic to (1 - |z|2/-1 for 1 > ß [1, Chapter 5,

p. 96 and p. 108].

Conversely, if h is an analytic operator-valued function mapping the unit disc

into L(H,H) and || h(z) \\L g C(l - \z I2)'"-"0'2, then by the integral representation

of the norm of Dx for a < 0 it follows that h e M(DX, Dß).

For 0 > a = ß, M(DX, Dx) consists of bounded analytic operator-valued functions.

It is well known that M(D0,D0) is also precisely the bounded analytic operator-

valued functions.

Next we consider the case where ß > a. In this case a convexity theorem, similar

to the Riesz-Thorin Convexity Theorem [4, Chapter 12, p. 93], is needed. We

shall simply state this theorem since the proof is similar to that of the Riesz-Thorin

Convexity Theorem.

Theorem 3. If heM(DXi,Dßi) and heM(DXz,Dßl) and a - (1 - X)al + Xa2,

ß = il-X)ß1 + kß2,0£ Ag 1, thenheM(Dx,Dß) and\\ Th\x,ßu \ Th\\l;j\\ T„\ '«j.Pj-

Corollary 1. M(DX,DX) c M(Dß,Dß)for a> ß.

Proof. If ß < 0 and ne M(DX,DX) then Theorem 2 implies n e M(Dß,Dß). For

ß ^ 0 and n e M(DX,DX), Theorems 1 and 2 imply that n e M(D0,D0). Thus the

corollary follows immediately from Theorem 3.

Theorem 4. M(DX,D„) = {h(z) \ h(z) s 0}for ß>a.



234 G. D. TAYLOR [May

Proof. The proof will be given in three parts, namely : (i) ß > 1 = a, (ii) 1 — ß > a

and (iii) ß > a > 1. Theorem 1 gives the inequality

E (n + l)-"|z|2»

Kz)\lÚ 11 Th\

E (» + l)-*|z|2"
M=0

For (i) we note that as | z |->1 the series in the numerator approaches a constant

by Abel's Theorem and the series in the denominator tends to infinity. This implies

that || Ä(z)|i, approaches zero as | z | -> 1, so by the maximum modulus theorem

for analytic vector-valued functions [2, Chapter 3, p. 59] it follows that h(z) = 0.

In case (ii) we may assume that 1 > ß (for ß = 1 we replace it by (ß + a)ß

strengthening the inequality). Here as in Theorem 2, we note that

b(z)||L^C(l-|z|2) I2W/J-0O/2

0C a fixed constant independent of z. Letting |z| -> 1, we see that | h(z)

since ß > a.

Finally in case (iii) we note that both series converge as |z|-*l. Thus b(z) is a

bounded analytic operator-valued function. By Theorem2, h e M(D_2,D_2).Hence

Theorem 3 implies he M(Da.,Dß) where a' =(1 — X)(— 2) + Xa and

ß' =(l-X)(-2) + Xß. Let /I = 2/(2 +a), then a'= 0 and ß' > 0. Therefore

h(z) = 0 by either (i) or (ii), depending upon ß'.

For H infinite dimensional and the remaining choices of a and ß a necessary

and sufficient condition for an analytic operator-valued function to belong to

M(Da,Dß) is not known. In the special case of H finite dimensional, a > 1 and

cc>/? a necessary and sufficient condition will be given. We shall consider the rema-

ining values of a and ß in three parts. Namely, (i) lS:a^/?2ïO, (ii) l^a^0^)9, and

(iii) a > 1, a — ß. Note that two of these sufficient conditions contain the case

a = ß = 0 which has already been characterized and each will say that the function

must have absolutely convergent Taylor coefficients which is not as good as the

known sufficient condition on M(D0,D0). Due to the similarity of the proofs of

each case we shall prove only one case and state the others.

Theorem 5. Let {nk}¡°=0 be a strictly increasing sequence of nonnegative

integers. Let 4>(nk) — 1,

00 .

k = o (nk+ !)'(¡>(nk)

and

= Cy < oo,       1 = a = ß = 0,

ÚC2< oo
p = o("*-"p + l)"0(nP)

where C2 is independent ofk. If
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n(z) = E A„kz"k and  E (nk + l)fy(nt) || 4.JÍ < <»
it = o fc = o

then heM(Dx,Dß).

Proof. Let/(z)= T£bnzneDx and form

oo   n/c + i - 1

/r/2=E    E    (in-1)'
k = 0  n = rtk

E A„b._.
p = 0 //

IOO    Bfc+1-1 /        It

Û E     E     (n + 1)'      E r-rr«^
i = o ■»««, \ P = o(nP+fy <P(np)(n - np+ V)

( íinP

\  P=0
+ i)ß<pinp)\\A.\\lin-np+l)'\\b, \\2\n — np || H   I *

Now for nk^n < nt+1,

(n 4- 1)" E
1

<

,= o (« p 4" ly^K)(«-",+ !)•

1

C-ÎHEp -o   (nk-np+ l)*-t><p(np)    \  np + 1        nt - np + 1

1 I

k

^  E +  E_-_
p=o (nk - np 4- l)»-'(np + 1)" <K»P)       p = 0 (nk - n, + 1)" <j>(np)

k i \ ß/a        r      k < \(ct-fl)/«(K \PICL,K U«-|l)/«

pÇ o (np + l)° 4>(np) ) \ p?0  (nk-np+\)*<f>(Vp) ) + C'

g  Cl1* C(2~ß)l* + C2 = C < co .

Thus

oo   n(,+ i -1     fc

n-/|2^CE     E     E (np+l)V(np)|^,J|2(n-np+ir|b„_„p||2
fc = 0  i—nk   p — o

¿c(  E^-M^MKJl) |/||
\ ft = o /

- A II f\\2— A ||7 || a •

Theorem 6. Lei {«*}*! 0  be a strictly  increasing sequence of nonnegative

integers. Let 4>(nk) ¡2; 1,1 2ï a è£ 0 _/?, ana"

it
E ^ ct

p = o ("s-npF l)"<t>(np)

where Ci is a positive constant independent of k. If
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CO CO

h(z) = E A„kz"* and  E (nk + l/tpOt) || A„k \\2L < oo
k=0 k=0

then heM(Dx,Dß).

Theorem 7. Leía > l,a = ßandh(z) = E^/L.z".//EB°°= 0(n + i)'\\AHfL<ao

thenheM(Dx,Dß).

We now consider the case where H is finite dimensional and show that in this

case the converse of Theorem 7 is valid. We shall also give an example of a multiplier

when H is infinite dimensional for which the converse of Theorem 7 is not true.

Let H be an m-dimensional Hubert space with basis {eJ^L y and inner product

< >. Here L(H, H) consists of all m x m matrices over the complex numbers.

Note that for A = (a¡X = i 6 L(H>H),

m /    m \  1/2

MjLáZ (SKI2)   •

Theorem 8.    Let H be an m-dimensional Hilbert space and

h(z)= ZAnz"eM(Dx,Dß) where A„ = (a¡,J)^=¡ then   I(n + l)ß\\A„\\2L < oo.

Proof. We assume a>ß for in the light of Theorem 4, the other case is vacuous.

First note that

oo oo i     m       r     m \  1/2 \ .

E(n + l)"||^||2    ^   E(n + F/     E       E|<|2
n = 0 n = 0 I  l"l    \i-i / )

oo /mm \

^ 2"'-1 E (n + l)M  E E K|2).
»=0 \   i=lj = l /

Let b = Ey¡e¡ e H be of norm 1, then

oo mm 2

||Tft|2^||T„b|2= E(n + F/E     Laljyj    .
n=o ¡=i   j»l

By choosing y¿ = 0 for y ̂  p and yp = 1, it follows that

00 m

||rA|2^ E(n + 1)" E|a;"p|2
n=0 i=l

for p = 1,2, ••-,/«. Thus

00 00 m        m

E (n 4-1)'I 4,12, ú 2"-1 E (n+l/E    E|a^-|2
7t = 0 n = 0 i'=lj' = l

m     00 m

= 2"-1 E   E (n + l)"E laTyl2
J = 1 II = 0 i = 1

^ m-2"'"1 ||rj2.
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Let H be an infinite dimensional Hubert space with basis {ey}yeÄ and let

S = {e,}"o   De   some   subset   of   this   basis   such  that   <[e¡,e¡) — 8tJ.   For

00

g(z)= Ea„z"eL\, ||g||2= E   E (n + l)"|<fl„,ey> |2.
n = 0 y e A

Let h(z) = E(n + i)~ßl2P„z'' where P„ denotes the orthogonal projection of H

into the subspace spanned by en of S.For g(z) = 2Zbnz"eDx (a > 1, a 2: /?),

oo n ..2

|n-g||2   =   E(n4-F/    Eife+ir^PA-J
n = 0 k = 0 " H

00       00

12E  2: (n + fe + l)"(/c + 1) -^ | <fo„, efc> |
n=Ok=0

CO CO

è   E   X(n + l)«\(bn,eky\2
n=Ok=0

CO

^   E   E(n-r-ir|<bn,e7>|2
n =0 y e A

-Mí-
This implies that h(z) is a multiplier from Dx to Z)^. Finally, note that

E(n + l)"||(n + l)-^PB|2=E   l = co.
n=0 n=0

II. Examples. We now give two examples in the case where H is a one-dimen-

sional Hubert space (i.e. the complex numbers). The first example will be a function,

n, such that heDY and n §É M^j,!»!) and the second will be of a multiplier that

will imply M(DX, Dx) c M^, Z>^) properly for a > ß ^ 0.

Theorem 9. Tnere exists a function h(z) = E^°=0a„z" such that E*=0fl„ < co»

a„>0/or a// n, a„j0 ana* h^M(D1,D1).

Remark. Ea„<co and a„|0 imply (n+l)a„-»0. Thus E(n4-l)|a„|2

^ M Ea„ < oo and one sees that heDt. For H one-dimensional Theorem 7

becomes M(DX,DX) = Da for a>l. This example shows that M(D1,D1) # Dx.

A second way to observe this fact is to note that Dt contains unbounded functions

(i.e. E™(z"/nlnn)) which by Theorem 1 can not belong to M(D1,D1). This

reasoning may also be used to show that M(DX,DX) # Dx for a < 1.

Proof. Let n2 = 2, y > 1 and nt = [exp(fe2hFfc)] 4- nk-.t 4- 1 for k = 3,4,5,—,

where the brackets denote the greatest integer. Let £ > 0 be given and set

k + e/2"

(n* 4-l)ln(ns-«*_!-!)
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for nk~y + 1 = n = nk and also set a0> at> a2> a3 where a3 will be given by

the above formula. We shall first note four facts.

OO CO Ilk

(i) E an = 3a0 + E E       an
n=0 fc = 3     n=nfc-i+l

= 3a0 + e+X fc(»*-»*-i)
k=3 (n* + l)ln(njt-n*-i-l)

CO f\

g 3a0 + b + E   77-77 <  00

as y > 1.

CO

(») s t:5/4^ . „.    _ n = E
l r3  ln^(nk- nt_,-l)  - k73 ln^{exp(/c2 ln^/c)}

" * = 3  fc1'2ln«'/+fc   *    °° '

(iii) nk-¡¡nk-*0 as /c -* 00, this is easily seen since nD = 0{exp(p2lnyp)}-

(iv) «„J.O. We must check only at the jumps since it is clear that aBJ,0 for

nk-y + 1 = n = nk. Now

a„k (nk-y + i)M»k-t ~nk-2- l)(k + eßn)

«„,.,        (nk+ l)ln(nk- nk_y - l)(k - 1 + eß»-t)

< (nk-i + l)(k-l)2lny(k-l)-2k

(nk + l)$k2lnrk-(k-l)

4(nt., + l)(fc-l)ln'(fc-l)

(nk + l)klnyk ^

as k -* 00.

Let h(z) = Efl„z", f(z) = Eb„z" where bB = l/(n + e)ln5/8 (n + e): Note that

feDy. Set h(z)f(z) = EcBz". Let r = 0,1,2,-, [_(nk - ■,_, - l)/2], then

nii — Bk-i-r- 1

cBt_P è E aB>t-r-A

"fc — «Je- I-r— 1

E      ¿.

>

(nt + lílnín^-n^!-1)        B=0

j/dn^-n^-r-l)

(Bt ■¥ l)ta(«t - »»-i -l)
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h fV  > 1 £ [("*-"y-1)/2] ("* - '• + Dfc2ln3/4("* - nt_t - r - 1)
/"1  =   4   ~3 ,-8 (n^F/Mn^-n^-l)

> 1  £   i("* + n>-i)i("t - »*-i - 3)/c2ln3/4j(nt - Ht_1 - 1)

=   4 »fi («4 + l)2ln2(«4-«»_,-!)

^ c E =   00,
».3 lns>*(nt - !!*_!- 1)

where C is a positive constant. Thus h $M(Dl,Dl).

Theorem 10. Fix a and ß such that 0 < a < ß ^ 1. Then there exists a function,

h, such that heM(Dx,Dx) and h$M(Dß,Dß).

Remark. For H a one-dimensional Hubert space, Theorem 7 implies

M(DX,DX) = Dx for a > 1. Combining this with observation that Dx c Dß properly

for a > ß, it is clear that M(DX,DX) c M(D^, D^) properly for a > /? > 1. Theorem 10

extends this to a > /? ̂  0.

Proof. Let nt = (fc + 1)" where p > 4/(/S - a), (¡>(nk) = (k+ I)2 and

-"

Note that

and

h(z)

1

~0 (nk + l)i/2

1
^  E

= o K+1N>("*) -  * = o (fc+1)
<    00 ,

E
1

^ E
l

o (nk -n„ + l)^(np)   :~ t.0 (k + 1)
<  co,

for all k. Also

CO

E (n44-iy<Kn*)
(«* + 1)"/2

12 < £ Ä>     £

"¿to  «f-«    " ,to(fe + l)2
<    00 .

By Theorem 5, heM(Dx,Dx). Finally,

E (nk + iy
t = o

1
(«* + D"/2

=   E   1 = 00.
* = o

This   shows   that   h$M(Dß,Dß)   since   g(z) = E™=04iZ",eAi(Z)p.,D/,)   implies

E„œ=0(n + 1)"|| An-a I¿ < co for each vector a eH.

Note that these are also examples regardless of the dimension of H, since any

function of the scalar case can make a function of the vector case simply

by taking it to be the coefficient of a vector of II or the identity of L(H, H).
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III. Summary. We have given necessary and sufficient conditions for 0 = a = ß

and ß > a. When H is finite dimensional a complete characterization is also given

for a > 1 and a Sï /?. Aside from the obvious desire to complete the description

of M(DX, Dß) is the general case, the most interesting question left open is probably

the lack of a complete characterization of M(DX, DJ for 0 < a 5¡ 1 and H one-

dimensional.
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