MULTIPLIERS ON $D_{a}\left({ }^{1}\right)$

BY
GERALD D. TAYLOR

In this paper we study multiplication operators on certain Hilbert spaces of vector-valued functions.

Let H be a given Hilbert space with inner product \rangle. Fix α a real number, and set

$$
D_{\alpha}=\left\{f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \mid a_{n} \in H \text { for } n=0,1,2, \cdots, \text { and } \sum_{n=0}^{\infty}(n+1)^{\alpha}\left\|a_{n}\right\|_{H}^{2}<\infty\right\}
$$

D_{α} is a Hilbert space with inner product $(f, g)=\Sigma(n+1)^{\alpha}\left\langle a_{n}, b_{n}\right\rangle$ where $f(z)=\Sigma a_{n} z^{n}, g(z)=\Sigma b_{n} z^{n}$ both belong to D_{α} and the absence of indices on the summation signs will henceforth indicate the sum is from 0 to ∞. The functions of D_{α} are analytic vector-valued functions mapping the open unit disc into H. Further note that for $a \in H$ the constant function $f_{a} \equiv a$ is in D_{α}.

Let λ_{z}^{α} denote the transformation which maps D_{α} into H by $\lambda_{z}^{\alpha}(f)=f(z)$ for each $f \in D_{\alpha}$ and z a complex number of modulus less than 1 . In §I, we show that λ_{z}^{α} is a bounded linear transformation with norm $\left(\Sigma(n+1)^{-\alpha}|z|^{2 n}\right)^{1 / 2}$.

For $\alpha \leqq 0$ the norm of D_{α} may also be given by an integral. Lemma 2 shows that the norm of D_{α} is equivalent to

$$
\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{H}^{2}\left(1-r^{2}\right)^{-\alpha-1} r d r d \theta
$$

when $\alpha<0$. For $\alpha=0$ we have the well-known Hardy space of square-summable functions [3] and the norm is equivalent to

$$
\lim _{r \rightarrow 1^{-}} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{H}^{2} d \theta
$$

The symbols $L(H, H)$ and $L\left(D_{\alpha}, D_{\beta}\right)$ shall denote the algebras of all bounded linear transformations of H into H and D_{α} into D_{β}, respectively.

Definition 1. Let $h(z)$ be an operator-valued function mapping the open unit disc into $L(H, H)$. Then $h(z)$ is a multiplier from D_{α} to D_{β} if $h \cdot f \in D_{\beta}$ for each $f \in D_{\alpha}$, where $h \cdot f$ denotes pointwise multiplication of the two functions.

[^0]Let $M\left(D_{\alpha}, D_{\beta}\right)$ denote the set of all multipliers from D_{α} to D_{β}. The closed graph theorem implies that T_{h} mapping D_{α} into D_{β} by $T_{h}(f)=h \cdot f$ for h a multiplier and $f \in D_{\alpha}$ is a bounded linear transformation.
I. Characterizations. We begin by proving a few elementary facts about D_{α}.

Lemma 1. λ_{z}^{α} is a bounded linear transformation with norm

$$
\left(\Sigma(n+1)^{-\alpha}|z|^{2 n}\right)^{1 / 2}
$$

Proof. Let $f(z)=\boldsymbol{\Sigma} a_{n} z^{n} \in D_{\alpha}$, then

$$
\begin{aligned}
\left\|\lambda_{z}^{\alpha}(f)\right\|_{H}^{2} & =\|f(z)\|_{H}^{2} \leqq\left(\sum_{n=0}^{\infty}\left\|a_{n}\right\|_{H}|z|^{n}\right)^{2} \\
& \leqq\left(\sum_{n=0}^{\infty}(n+1)^{\alpha}\left\|a_{n}\right\|_{H}^{2}\right)\left(\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n}\right)
\end{aligned}
$$

by the Cauchy-Schwartz inequality. Thus $\left\|\lambda_{z}^{\alpha}\right\| \leqq\left(\boldsymbol{\Sigma}(n+1)^{-\alpha}|z|^{2 n}\right)^{1 / 2}$. To show that this is equality, fix $z(|z|<1)$, let $a \in H$ be of norm 1 and set $f_{a, z}(w)=\Sigma(n+1)^{-\alpha} a(\bar{z} w)^{n}$. Note $f_{a, z} \in D_{\alpha}$ since

$$
\left\|f_{a, z}\right\|_{\alpha}^{2}=\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n}<\infty
$$

Thus

$$
\begin{aligned}
\left\|\lambda_{z}^{\alpha}\left(f_{a, z}\right)\right\|_{H} & =\left\|\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n} a\right\|_{H} \\
& =\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n} \\
& =\left(\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n}\right)^{1 / 2}\left\|f_{a, z}\right\|_{\alpha} .
\end{aligned}
$$

Lemma 2. For $\alpha<0$, the norm of D_{α} is equivalent to

$$
\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{H}^{2}\left(1-r^{2}\right)^{-1-\alpha} r d r d \theta
$$

Proof. We begin by noting that

$$
\|f(z)\|_{H}^{2}=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} z^{k} \bar{z}^{m}\left\langle a_{k}, a_{m}\right\rangle
$$

for $f(z)=\Sigma a_{n} z^{n} \in D_{\alpha}$ and z of modulus less than 1.

Thus

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{H}^{2}\left(1-r^{2}\right)^{-1-\alpha} r d r d \theta \\
& \quad=2 \sum_{k=0}^{\infty}\left\|a_{k}\right\|_{H}^{2} \int_{0}^{1} r^{2 k+1}\left(1-r^{2}\right)^{-1-\alpha} d r \\
& =2 \sum_{k=0}^{\infty} \frac{\left\|a_{k}\right\|_{H}^{2}}{(-\alpha)\binom{k-\alpha}{\alpha}}
\end{aligned}
$$

where we have integrated by parts k times. From [1 , Chapter 5, $\S 4$] one obtains that the above series is asymptotic to a constant times $\Sigma(n+1)^{\alpha}\left\|a_{n}\right\|_{H}^{2}$ and the lemma follows.

Lemma 3. T_{h} for $h \in M\left(D_{\alpha}, D_{\beta}\right)$ is a bounded linear transformation mapping D_{α} into D_{β}.
Proof. That T_{h} is linear is obvious. We show that T_{h} is bounded by applying the closed graph theorem. Let $\left\{f_{n}\right\}_{n=1}^{\infty} \in D_{\alpha}$ and $f_{n} \rightarrow f$ in D_{α}. Also let $h \cdot f_{n}=g_{n}$ for all n and $g_{n} \rightarrow g$ in D_{β}. We must show $h \cdot f=g$ since $f \in D_{\alpha}$ by completeness and T_{h} has all of D_{α} as its domain. Fix z such that $|z|<1$, then

$$
g(z)=\lambda_{z}^{\beta}(g)=\lim _{n \rightarrow \infty} \lambda_{z}^{\beta}\left(h \cdot f_{n}\right)=h(z) \lim _{n \rightarrow \infty} \lambda_{z}^{\alpha}\left(f_{n}\right)=h(z) f(z),
$$

using the fact that λ_{z}^{β} is continuous (Lemma 1).
We now give a necessary condition for an operator-valued function to belong to $M\left(D_{\alpha}, D_{\beta}\right)$. In order to obtain this condition we need the following lemma.

Lemma 4. Let $h \in M\left(D_{\alpha}, D_{\beta}\right)$, let k be a nonnegative integer and let z_{0} be a complex number $\left(\left|z_{0}\right|<1\right)$. Then there exists an operator $U_{k}\left(z_{0}\right) \in L(H, H)$ such that

$$
\left.\frac{d^{k}\left(h(z) \cdot f_{a}\right)}{d z_{k}}\right|_{z=z_{0}}=U_{k}\left(z_{0}\right) \cdot a
$$

where $a \in H$ and $f_{a} \in D_{\alpha}$ with $f_{a} \equiv a$. Note that $U_{0}\left(z_{0}\right)=h\left(z_{0}\right)$.
Proof. Let $a \in H$ and set $f_{a}(z) \equiv a$. Then f_{a} is a constant function in D_{α} and will be denoted by a throughout the paper. The proof will be by induction on k. Assume the theorem is true for $k<n$. Fix z_{0} of modulus less than 1 and observe that

$$
\begin{aligned}
\left.\frac{d^{n}(h(z) \cdot a)}{d z^{n}}\right|_{z=z_{0}} & =\left.\frac{d}{d z}\left(\frac{d^{n-1}(h(z) \cdot a)}{d z^{n-1}}\right)\right|_{z=z_{0}} \\
& =\lim _{i \rightarrow 0} \frac{U_{n-1}\left(z_{0}+t\right)-U_{n-1}\left(z_{0}\right)}{t} \cdot a
\end{aligned}
$$

where the limit is evaluated in the norm of H. Let

$$
U_{n-1}\left(z_{0}, t\right)=\frac{U_{n-1}\left(z_{0}+t\right)-U\left(z_{0}\right)}{t}
$$

Note that $U_{n-1}\left(z_{0}, t\right) \in L(H, H)$ for t sufficiently small by hypothesis. Also the analyticity of the functions of D_{β} implies

$$
\left.\frac{d^{n}(h(z) \cdot a)}{d z^{n}}\right|_{z=z_{0}}=\lim _{t \rightarrow 0} U_{n-1}\left(z_{0}, t\right) \cdot a
$$

is a fixed vector in H. Thus the family $\left\{U_{n-1}\left(z_{0}, t\right)\right\}_{t \in S}$, where S is a disc about z_{0} in the complex plane with radius smaller than $1-\left|z_{0}\right|$, is uniformly bounded by the uniform boundedness principle. Thus by the uniform boundedness principle stated in a different manner [2, Theorem 2. 12.1, p. 50] if follows that that $U_{n}\left(z_{0}\right)$ defined by $U_{n}\left(z_{0}\right) \cdot a=\lim _{t \rightarrow 0} U_{n}\left(z_{0}, t\right) \cdot a$ for each $a \in H$ belongs to $L(H, H)$.

Theorem 1. Let $h \in M\left(D_{\alpha}, D_{\beta}\right)$. Then h is analytic (given by a Taylor series with coefficients in $L(H, H)$) and

$$
\|h(z)\|_{L} \leqq\left\|T_{h}\right\| \frac{\left\|\lambda_{z}^{\beta}\right\|}{\left\|\lambda_{z}^{\alpha}\right\|}
$$

for each z of modulus less than 1. By $\|A\|_{L}$ we mean the norm of A in $L(H, H)$.
Proof. Fix $a \in D_{\alpha}$. Then $h(z) \cdot a=\boldsymbol{\Sigma} b_{n} z^{n} \in D_{\beta}$, where $b_{n} \in H$ for $n=0,1,2, \cdots$,

$$
b_{n}=\left.\frac{1}{n!} \frac{d^{n}(h(z) \cdot a)}{d z^{n}}\right|_{z=0} .
$$

By Lemma 4, $b_{n}=(1 / n!) U_{n}(0) \cdot a$ where $U_{n}(0) \in L(H, H)$. Thus fixing z_{0} such that $\left|z_{0}\right|<1$, we have that $h\left(z_{0}\right) \cdot a=\left(\Sigma(1 / n!) U_{n}(0) z_{0}^{n}\right) \cdot a$ for each $a \in H$. Since both $h\left(z_{0}\right)$ and $\Sigma(1 / n!) U_{n}(0) z_{0}^{n}$ belong to $L(H, H)$ it follows that they are equal. Finally, it is clear that $\Sigma(1 / n!) U_{n}(0) z^{n}$ has a radius of convergence of at least 1 as $\left\|(1 / n!) U_{n}(0) \cdot a\right\|_{H} \leqq(n+1)^{-\beta / 2}\left\|T_{h}\right\|\|a\|_{\alpha}$ for $a \in H$ implies

$$
\left\|\frac{1}{n!} U_{n}(0)\right\|_{L} \leqq M(n+1)^{-\beta / 2}
$$

by the uniform boundedness principle.
To obtain the second part of the theorem we shall need the following special function. Let $a \in H$ be of norm 1 and w be a complex number of modulus less than 1. Define $f_{a, w}(z) \in D_{\alpha}$ by $f_{a, w}(z)=\Sigma(n+1)^{-\alpha} a(\bar{w} z)^{n}$. Note that

$$
\left\|f_{a, w}\right\|_{\alpha}^{2}=\Sigma(n+1)^{-\alpha}|w|^{2 n} \text { and }\left\|f_{a, w}(w)\right\|_{H}=\Sigma(n+1)^{-\alpha}|w|^{2 n}
$$

Fix w of modulus less than 1 and let $\varepsilon>0$ be given. Choose $a \in H$ such that $\|a\|_{H}=1$ and $\|h(w)\|_{L}<\|h(w) \cdot a\|_{H}+\varepsilon$. Thus

$$
\begin{aligned}
\|h(w)\|_{L}\left\|f_{a, w}(w)\right\|_{H} & <\left(\|h(w) \cdot a\|_{H}+\varepsilon\right)\left(\boldsymbol{\Sigma}(n+1)^{-\alpha}|w|^{2 n}\right) \\
& \leqq\left\|\lambda_{w}^{\beta}\right\|\left\|T_{h}\right\|\left\|f_{a, w}\right\|_{\alpha}+\varepsilon \boldsymbol{\Sigma}(n+1)^{-\alpha}|w|^{2 n} .
\end{aligned}
$$

Since $\left\|f_{a, w}(w)\right\|_{\boldsymbol{H}}$ is nonzero, we may divide both sides by it obtaining

$$
\|h(w)\|_{L}<\left\|T_{h}\right\| \frac{\left\|\lambda_{w}^{\beta}\right\|}{\left\|\lambda_{w}^{\alpha}\right\|}+\varepsilon .
$$

Letting $\varepsilon \rightarrow 0$, the theorem follows.
We now turn to the task of obtaining sufficient conditions that an analytic operator-valued function be a multiplier for different choices of α and β. The first case we shall consider is $0>\alpha \geqq \beta$.

Theorem 2. $h \in M\left(D_{\alpha}, D_{\beta}\right)$ for $0>\alpha \geqq \beta$ if and only if $h(z)$ is an analytic operator-valued function mapping the unit disc into $L(H, H)$ and $\|h(z)\|_{L}$ $=O\left(\left(1-|z|^{2}\right)^{(\beta-\alpha) / 2}\right)$.

Proof. For $h \in M\left(D_{\alpha}, D_{\beta}\right)$, Theorem 1 implies h is analytic and

$$
\|h(z)\|_{L} \leqq\left\|T_{h}\right\| \frac{\left\|\lambda_{z}^{\beta}\right\|}{\left\|\lambda_{z}^{\alpha}\right\|} \leqq K\left(1-|z|^{2}\right)^{(\beta-\alpha) / 2}
$$

since $\Sigma(n+1)^{-\beta}|z|^{2 n}$ is asymptotic to $\left(1-|z|^{2}\right)^{\beta-1}$ for $1>\beta$ [1, Chapter 5, p. 96 and p.108].

Conversely, if h is an analytic operator-valued function mapping the unit disc into $L(H, H)$ and $\|h(z)\|_{L} \leqq C\left(1-|z|^{2}\right)^{(\beta-\alpha) / 2}$, then by the integral representation of the norm of D_{α} for $\alpha<0$ it follows that $h \in M\left(D_{\alpha}, D_{\beta}\right)$.

For $0>\alpha=\beta, M\left(D_{\alpha}, D_{\alpha}\right)$ consists of bounded analytic operator-valued functions. It is well known that $M\left(D_{0}, D_{0}\right)$ is also precisely the bounded analytic operatorvalued functions.

Next we consider the case where $\beta>\alpha$. In this case a convexity theorem, similar to the Riesz-Thorin Convexity Theorem [4, Chapter 12, p. 93], is needed. We shall simply state this theorem since the proof is similar to that of the Riesz-Thorin Convexity Theorem.

Theorem 3. If $h \in M\left(D_{\alpha_{1}}, D_{\beta_{1}}\right)$ and $h \in M\left(D_{\alpha_{2}}, D_{\beta_{2}}\right)$ and $\alpha=(1-\lambda) \alpha_{1}+\lambda \alpha_{2}$, $\beta=(1-\lambda) \beta_{1}+\lambda \beta_{2}, 0 \leqq \lambda \leqq 1$, then $h \in M\left(D_{\alpha}, D_{\beta}\right)$ and $\left\|T_{h}\right\|_{\alpha, \beta} \leqq\left\|T_{h}\right\|_{\alpha_{1}, \beta_{1}}^{1-\lambda}\left\|T_{h}\right\|_{\alpha_{2}, \beta_{2}}^{\lambda}$.

Corollary 1. $M\left(D_{\alpha}, D_{\alpha}\right) \subset M\left(D_{\beta}, D_{\beta}\right)$ for $\alpha>\beta$.
Proof. If $\beta<0$ and $h \in M\left(D_{\alpha}, D_{\alpha}\right)$ then Theorem 2 implies $h \in M\left(D_{\beta}, D_{\beta}\right)$. For $\beta \geqq 0$ and $h \in M\left(D_{\alpha}, D_{\alpha}\right)$, Theorems 1 and 2 imply that $h \in M\left(D_{0}, D_{0}\right)$. Thus the corollary follows immediately from Theorem 3.

Theorem 4. $M\left(D_{\alpha}, D_{\beta}\right)=\{h(z) \mid h(z) \equiv 0\}$ for $\beta>\alpha$.

Proof. The proof will be given in three parts, namely:(i) $\beta>1 \geqq \alpha$, (ii) $1 \geqq \beta>\alpha$ and (iii) $\beta>\alpha>1$. Theorem 1 gives the inequality

$$
\|h(z)\|_{L} \leqq\left\|T_{h}\right\|\left[\frac{\sum_{n=0}^{\infty}(n+1)^{-\beta}|z|^{2 n}}{\sum_{n=0}^{\infty}(n+1)^{-\alpha}|z|^{2 n}}\right]^{1 / 2}
$$

For (i) we note that as $|z| \rightarrow 1$ the series in the numerator approaches a constant by Abel's Theorem and the series in the denominator tends to infinity. This implies that $\|h(z)\|_{L}$ approaches zero as $|z| \rightarrow 1$, so by the maximum modulus theorem for analytic vector-valued functions [2, Chapter 3, p. 59] it follows that $h(z) \equiv 0$.

In case (ii) we may assume that $1>\beta$ (for $\beta=1$ we replace it by $(\beta+\alpha) / 2$ strengthening the inequality). Here as in Theorem 2, we note that

$$
\|h(z)\|_{L} \leqq C\left(1-|z|^{2}\right)^{(\beta-\alpha) / 2}
$$

C a fixed constant independent of z. Letting $|z| \rightarrow 1$, we see that $\|h(z)\|_{L} \rightarrow 0$ since $\beta>\alpha$.

Finally in case (iii) we note that both series converge as $|z| \rightarrow 1$. Thus $h(z)$ is a bounded analytic operator-valued function. By Theorem $2, h \in M\left(D_{-2}, D_{-2}\right)$. Hence Theorem 3 implies $h \in M\left(D_{\alpha^{\prime}}, D_{\beta^{\prime}}\right) \quad$ where $\quad \alpha^{\prime}=(1-\lambda)(-2)+\lambda \alpha \quad$ and $\beta^{\prime}=(1-\lambda)(-2)+\lambda \beta$. Let $\lambda=2 /(2+\alpha)$, then $\alpha^{\prime}=0$ and $\beta^{\prime}>0$. Therefore $h(z) \equiv 0$ by either (i) or (ii), depending upon β^{\prime}.

For H infinite dimensional and the remaining choices of α and β a necessary and sufficient condition for an analytic operator-valued function to belong to $M\left(D_{\alpha}, D_{\beta}\right)$ is not known. In the special case of H finite dimensional, $\alpha>1$ and $\alpha>\beta$ a necessary and sufficient condition will be given. We shall consider the remaining values of α and β in three parts. Namely, (i) $1 \geqq \alpha \geqq \beta \geqq 0$, (ii) $1 \geqq \alpha \geqq 0 \geqq \beta$, and (iii) $\alpha>1, \alpha \geqq \beta$. Note that two of these sufficient conditions contain the case $\alpha=\beta=0$ which has already been characterized and each will say that the function must have absolutely convergent Taylor coefficients which is not as good as the known sufficient condition on $M\left(D_{0}, D_{0}\right)$. Due to the similarity of the proofs of each case we shall prove only one case and state the others.

Theorem 5. Let $\left\{n_{k}\right\}_{k=0}^{\infty}$ be a strictly increasing sequence of nonnegative integers. Let $\phi\left(n_{k}\right) \geqq 1$,

$$
\sum_{k=0}^{\infty} \frac{1}{\left(n_{k}+1\right)^{\alpha} \phi\left(n_{k}\right)}=C_{1}<\infty, \quad 1 \geqq \alpha \geqq \beta \geqq 0,
$$

and

$$
\sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha} \phi\left(n_{p}\right)} \leqq C_{2}<\infty
$$

where C_{2} is independent of k. If

$$
h(z)=\sum_{k=0}^{\infty} A_{n_{k}} z^{n_{k}} \text { and } \sum_{k=0}^{\infty}\left(n_{k}+1\right)^{\beta} \phi\left(n_{k}\right)\left\|A_{n_{k}}\right\|_{L}^{2}<\infty
$$

then $h \in M\left(D_{\alpha}, D_{\beta}\right)$.
Proof. Let $f(z)=\boldsymbol{\Sigma} b_{n} z^{n} \in D_{\alpha}$ and form

$$
\begin{aligned}
\|h \cdot f\|_{\beta}^{2}= & \sum_{k=0}^{\infty} \sum_{n=n_{k}}^{n_{k}+1-1}(n+1)^{\beta}\left\|\sum_{p=0}^{k} A_{n_{p}} b_{n-n_{p}}\right\|_{H}^{2} \\
\leqq & \sum_{k=0}^{\infty} \sum_{n=n_{k}}^{n_{k}+1-1}(n+1)^{\beta}\left(\sum_{p=0}^{k} \frac{1}{\left(n_{p}+1\right)^{\beta} \phi\left(n_{p}\right)\left(n-n_{p}+1\right)^{\alpha}}\right) . \\
& \times\left(\sum_{p=0}^{k}\left(n_{p}+1\right)^{\beta} \phi\left(n_{p}\right)\left\|A_{n_{p}}\right\|_{L}^{2}\left(n-n_{p}+1\right)^{\alpha}\left\|b_{n-n_{p}}\right\|_{H}^{2}\right) .
\end{aligned}
$$

Now for $n_{k} \leqq n<n_{k+1}$,

$$
\begin{aligned}
(n & +1)^{\beta} \sum_{p=0}^{k} \frac{1}{\left(n_{p}+1\right)^{\beta} \phi\left(n_{p}\right)\left(n-n_{p}+1\right)^{\alpha}} \\
& \leqq\left(\frac{n+1}{n+2}\right)^{\beta} \sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha-\beta} \phi\left(n_{p}\right)}\left(\frac{1}{n_{p}+1}+\frac{1}{n_{k}-n_{p}+1}\right)^{\beta} \\
& \leqq \sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha-\beta}\left(n_{p}+1\right)^{\beta} \phi\left(n_{p}\right)}+\sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha} \phi\left(n_{p}\right)} \\
& \leqq\left(\sum_{p=0}^{k} \frac{1}{\left(n_{p}+1\right)^{\alpha} \phi\left(n_{p}\right)}\right)^{\beta / \alpha}\left(\sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha} \phi\left(n_{p}\right)}\right)^{(\alpha-\beta) / \alpha}+C_{2} \\
& \leqq C_{1}^{\beta / \alpha} C_{2}^{(\alpha-\beta) / \alpha}+C_{2}=C<\infty .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|h \cdot f\|_{\beta}^{2} & \leqq C \sum_{k=0}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1} \sum_{p=0}^{k}\left(n_{p}+1\right)^{\beta} \phi\left(n_{p}\right)\left\|A_{n_{p}}\right\|_{L}^{2}\left(n-n_{p}+1\right)^{\alpha}\left\|b_{n-n_{p}}\right\|_{H}^{2} \\
& \leqq C\left(\sum_{k=0}^{\infty}\left(n_{k}+1\right)^{\beta} \phi\left(n_{k}\right)\left\|A_{n_{k}}\right\|_{L}^{2}\right)\|f\|_{\alpha}^{2} \\
& =A\|f\|_{\alpha}^{2} .
\end{aligned}
$$

Theorem 6. Let $\left\{n_{k}\right\}_{k=0}^{\infty}$ be a strictly increasing sequence of nonnegative integers. Let $\phi\left(n_{k}\right) \geqq 1,1 \geqq \alpha \geqq 0 \geqq \beta$, and

$$
\sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{a} \phi\left(n_{p}\right)} \leqq C_{1}
$$

where C_{1} is a positive constant independent of k. If

$$
h(z)=\sum_{k=0}^{\infty} A_{n_{k}} z^{n_{k}} \text { and } \sum_{k=0}^{\infty}\left(n_{k}+1\right)^{\beta} \phi\left(n_{k}\right)\left\|A_{n_{k}}\right\|_{L}^{2}<\infty
$$

then $h \in M\left(D_{\alpha}, D_{\beta}\right)$.
Theorem 7. Let $\alpha>1, \alpha \geqq \beta$ and $h(z)=\boldsymbol{\Sigma}_{n=0}^{\infty} A_{n} z^{n}$. If $\boldsymbol{\Sigma}_{n=0}^{\infty}(n+1)^{\beta}\left\|A_{n}\right\|_{L}^{2}<\infty$ then $h \in M\left(D_{\alpha}, D_{\beta}\right)$.

We now consider the case where H is finite dimensional and show that in this case the converse of Theorem 7 is valid. We shall also give an example of a multiplier when H is infinite dimensional for which the converse of Theorem 7 is not true.

Let H be an m-dimensional Hilbert space with basis $\left\{e_{i}\right\}_{i=1}^{m}$ and inner product \rangle. Here $L(H, H)$ consists of all $m \times m$ matrices over the complex numbers. Note that for $A=\left(a_{i j}\right)_{i, j=1}^{m} \in L(H, H)$,

$$
\|A\|_{L} \leqq \sum_{i=1}^{m}\left(\sum_{j=1}^{m}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Theorem 8. Let H be an m-dimensional Hilbert space and

$$
h(z)=\Sigma A_{n} z^{n} \in M\left(D_{\alpha}, D_{\beta}\right) \text { where } A_{n}=\left(a_{i j}^{n}\right)_{i, j=1}^{m} \text { then } \Sigma(n+1)^{\beta}\left\|A_{n}\right\|_{L}^{2}<\infty .
$$

Proof. We assume $\alpha>\beta$ for in the light of Theorem 4, the other case is vacuous. First note that

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1)^{\beta}\left\|A_{n}\right\|_{L}^{2} & \leqq \sum_{n=0}^{\infty}(n+1)^{\beta}\left\{\sum_{i=1}^{m}\left(\sum_{j=1}^{m}\left|a_{i j}^{n}\right|^{2}\right)^{1 / 2}\right\}^{2} \\
& \leqq 2^{m-1} \sum_{n=0}^{\infty}(n+1)^{\beta}\left(\sum_{i=1}^{m} \sum_{j=1}^{m}\left|a_{i j}^{n}\right|^{2}\right)
\end{aligned}
$$

Let $b=\Sigma \gamma_{i} e_{i} \in H$ be of norm 1, then

$$
\left\|T_{h}\right\|^{2} \geqq\left\|T_{h} b\right\|_{\beta}^{2}=\sum_{n=0}^{\infty}(n+1)^{\beta} \sum_{i=1}^{m}\left|\sum_{j=1}^{m} a_{i j}^{n} \gamma_{j}\right|^{2}
$$

By choosing $\gamma_{j}=0$ for $j \neq p$ and $\gamma_{p}=1$, it follows that

$$
\left\|T_{h}\right\|^{2} \geqq \sum_{n=0}^{\infty}(n+1)^{\beta} \sum_{i=1}^{m}\left|a_{i p}^{n}\right|^{2}
$$

for $p=1,2, \cdots, m$. Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1)^{\beta}\left\|A_{n}\right\|_{L}^{2} & \leqq 2^{m-1} \sum_{n=0}^{\infty}(n+1)^{\beta} \sum_{i=1}^{m} \sum_{j=1}^{m}\left|a_{i j}^{n}\right|^{2} \\
& =2^{m-1} \sum_{j=1}^{m} \sum_{n=0}^{\infty}(n+1)^{\beta} \sum_{i=1}^{m}\left|a_{i j}^{n}\right|^{2} \\
& \leqq m \cdot 2^{m-1}\left\|T_{h}\right\|^{2} .
\end{aligned}
$$

Let H be an infinite dimensional Hilbert space with basis $\left\{e_{\gamma}\right\}_{\gamma \in A}$ and let $S=\left\{e_{i}\right\}_{i=0}^{\infty}$ be some subset of this basis such that $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$. For

$$
g(z)=\Sigma a_{n} z^{n} \in D_{\alpha},\|g\|_{\alpha}^{2}=\sum_{n=0}^{\infty} \sum_{\gamma \in A}(n+1)^{\alpha}\left|\left\langle a_{n}, e_{\gamma}\right\rangle\right|^{2} .
$$

Let $h(z)=\boldsymbol{\Sigma}(n+1)^{-\beta / 2} P_{n} z^{n}$ where P_{n} denotes the orthogonal projection of H into the subspace spanned by e_{n} of S. For $g(z)=\Sigma b_{n} z^{n} \in D_{\alpha}(\alpha>1, \alpha \geqq \beta)$,

$$
\begin{aligned}
\|h \cdot g\|_{\beta}^{2} & =\sum_{n=0}^{\infty}(n+1)^{\beta}\left\|\sum_{k=0}^{n}(k+1)^{-\beta / 2} P_{k} b_{n-k}\right\|_{H}^{2} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}(n+k+1)^{\beta}(k+1)^{-\beta}\left|\left\langle b_{n}, e_{k}\right\rangle\right|^{2} \\
& \leqq \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}(n+1)^{\alpha}\left|\left\langle b_{n}, e_{k}\right\rangle\right|^{2} \\
& \leqq \sum_{n=0}^{\infty} \sum_{\gamma \in A}(n+1)^{\alpha}\left|\left\langle b_{n}, e_{\gamma}\right\rangle\right|^{2} \\
& =\|g\|_{\alpha}^{2} .
\end{aligned}
$$

This implies that $h(z)$ is a multiplier from D_{α} to D_{β}. Finally, note that

$$
\sum_{n=0}^{\infty}(n+1)^{\beta}\left\|(n+1)^{-\beta / 2} P_{n}\right\|_{L}^{2}=\sum_{n=0}^{\infty} 1=\infty
$$

II. Examples. We now give two examples in the case where H is a one-dimensional Hilbert space (i.e. the complex numbers). The first example will be a function, h, such that $h \in D_{1}$ and $h \notin M\left(D_{1}, D_{1}\right)$ and the second will be of a multiplier that will imply $M\left(D_{\alpha}, D_{\alpha}\right) \subset M\left(D_{\beta}, D_{\beta}\right)$ properly for $\alpha>\beta \geqq 0$.

Theorem 9. There exists a function $h(z)=\Sigma_{n=0}^{\infty} a_{n} z^{n}$ such that $\Sigma_{n=0}^{\infty} a_{n}<\infty$, $a_{n}>0$ for all $n, a_{n} \downarrow 0$ and $h \notin M\left(D_{1}, D_{1}\right)$.

Remark. $\Sigma a_{n}<\infty$ and $a_{n} \downarrow 0$ imply $(n+1) a_{n} \rightarrow 0$. Thus $\Sigma(n+1)\left|a_{n}\right|^{2}$ $\leqq M \Sigma a_{n}<\infty$ and one sees that $h \in D_{1}$. For H one-dimensional Theorem 7 becomes $M\left(D_{\alpha}, D_{\alpha}\right)=D_{\alpha}$ for $\alpha>1$. This example shows that $M\left(D_{1}, D_{1}\right) \neq D_{1}$. A second way to observe this fact is to note that D_{1} contains unbounded functions (i.e. $\Sigma_{3}^{\infty}\left(z^{n} / n \ln n\right)$) which by Theorem 1 can not belong to $M\left(D_{1}, D_{1}\right)$. This reasoning may also be used to show that $M\left(D_{\alpha}, D_{\alpha}\right) \neq D_{\alpha}$ for $\alpha<1$.

Proof. Let $n_{2}=2, \gamma>1$ and $n_{k}=\left[\exp \left(k^{2} \ln ^{\gamma} k\right)\right]+n_{k-1}+1$ for $k=3,4,5, \cdots$, where the brackets denote the greatest integer. Let $\varepsilon>0$ be given and set

$$
a_{n}=\frac{k+\varepsilon / 2^{n}}{\left(n_{k}+1\right) \ln \left(n_{k}-n_{k-1}-1\right)}
$$

for $n_{k-1}+1 \leqq n \leqq n_{k}$ and also set $a_{0}>a_{1}>a_{2}>a_{3}$ where a_{3} will be given by the above formula. We shall first note four facts.

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{n} & \leqq 3 a_{0}+\sum_{k=3}^{\infty} \sum_{n=n_{k-1}+1}^{n_{k}} a_{n} \tag{i}\\
& \leqq 3 a_{0}+\varepsilon+\sum_{k=3}^{\infty} \frac{k\left(n_{k}-n_{k-1}\right)}{\left(n_{k}+1\right) \ln \left(n_{k}-n_{k-1}-1\right)} \\
& \leqq 3 a_{0}+\varepsilon+\sum_{k=3}^{\infty} \frac{2}{k \ln ^{\gamma} k}<\infty
\end{align*}
$$

as $\gamma>1$.

$$
\begin{align*}
\sum_{k=3}^{\infty} \frac{k^{2}}{\ln ^{5 / 4}\left(n_{k}-n_{k-1}-1\right)} & \geqq \sum_{k=3}^{\infty} \frac{k^{2}}{\ln ^{5 / 4}\left\{\exp \left(k^{2} \ln ^{\gamma} k\right)\right\}} \tag{ii}\\
& =\sum_{k=3}^{\infty} \frac{1}{k^{1 / 2} \ln ^{5 \gamma / 4} k}=\infty
\end{align*}
$$

(iii) $n_{k-1} / n_{k} \rightarrow 0$ as $k \rightarrow \infty$, this is easily seen since $n_{p}=O\left\{\exp \left(p^{2} \ln ^{y} p\right)\right\}$.
(iv) $a_{n} \downarrow 0$. We must check only at the jumps since it is clear that $a_{n} \downarrow 0$ for $n_{k-1}+1 \leqq n \leqq n_{k}$. Now

$$
\begin{aligned}
\frac{a_{n_{k}}}{a_{n_{k-1}}} & =\frac{\left(n_{k-1}+1\right) \ln \left(n_{k-1}-n_{k-2}-1\right)\left(k+e / 2^{n}\right)}{\left(n_{k}+1\right) \ln \left(n_{k}-n_{k-1}-1\right)\left(k-1+e / 2^{n-1}\right)} \\
& \leqq \frac{\left(n_{k-1}+1\right)(k-1)^{2} \ln ^{\gamma}(k-1) \cdot 2 k}{\left(n_{k}+1\right) \frac{1}{2} k^{2} \ln ^{\gamma} k \cdot(k-1)} \\
& =\frac{4\left(n_{k-1}+1\right)(k-1) \ln ^{\gamma}(k-1)}{\left(n_{k}+1\right) k \ln ^{\gamma} k} \downarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$.
Let $h(z)=\Sigma a_{n} z^{n}, f(z)=\Sigma b_{n} z^{n}$ where $b_{n}=1 /(n+e) \ln ^{5 / 8}(n+e)$: Note that $f \in D_{1}$. Set $h(z) f(z)=\Sigma c_{n} z^{n}$. Let $r=0,1,2, \cdots,\left[\left(n_{k}-n_{k-1}-1\right) / 2\right]$, then

$$
\begin{aligned}
c_{n_{k}-r} & \geqq \sum_{n=0}^{n_{k}-n_{k}-1-r-1} a_{n_{k}-r-n} b_{n} \\
& \geqq \frac{k}{\left(n_{k}+1\right) \ln \left(n_{k}-n_{k-1}-1\right)} \sum_{n=0}^{n_{k}-n_{k}-1-r-1} b_{n} \\
& \geqq \frac{\frac{1}{2} k \ln ^{3 / 8}\left(n_{k}-n_{k-1}-r-1\right)}{\left(n_{k}+1\right) \ln \left(n_{k}-n_{k-1}-1\right)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|h \cdot f\|_{1}^{2} & \geqq \frac{1}{4} \sum_{k=3}^{\infty} \sum_{r=0}^{\left[\left(n_{k}-n_{k-1}-1\right) / 2\right]} \frac{\left(n_{k}-r+1\right) k^{2} \ln ^{3 / 4}\left(n_{k}-n_{k-1}-r-1\right)}{\left(n_{k}+1\right)^{2} \ln ^{2}\left(n_{k}-n_{k-1}-1\right)} \\
& \geqq \frac{1}{4} \sum_{k=L}^{\infty} \frac{\frac{1}{2}\left(n_{k}+n_{k-1}\right) \frac{1}{2}\left(n_{k}-n_{k-1}-3\right) k^{2} \ln ^{3 / 4} \frac{1}{2}\left(n_{k}-n_{k-1}-1\right)}{\left(n_{k}+1\right)^{2} \ln ^{2}\left(n_{k}-n_{k-1}-1\right)} \\
& \geqq C \sum_{k=3}^{\infty} \frac{k^{2}}{\ln ^{5 / 4}\left(n_{k}-n_{k-1}-1\right)}=\infty,
\end{aligned}
$$

where C is a positive constant. Thus $h \notin M\left(D_{1}, D_{1}\right)$.
Theorem 10. Fix α and β such that $0<\alpha<\beta \leqq 1$. Then there exists a function, h, such that $h \in M\left(D_{\alpha}, D_{\alpha}\right)$ and $h \notin M\left(D_{\beta}, D_{\beta}\right)$.

Remark. For H a one-dimensional Hilbert space, Theorem 7 implies $M\left(D_{\alpha}, D_{\alpha}\right)=D_{\alpha}$ for $\alpha>1$. Combining this with observation that $D_{\alpha} \subset D_{\beta}$ properly for $\alpha>\beta$, it is clear that $M\left(D_{\alpha}, D_{\alpha}\right) \subset M\left(D_{\beta}, D_{\beta}\right)$ properly for $\alpha>\beta>1$. Theorem 10 extends this to $\alpha>\beta \geqq 0$.

Proof. Let $n_{k}=(k+1)^{p}$ where $p>4 /(\beta-\alpha), \phi\left(n_{k}\right)=(k+1)^{2}$ and

$$
h(z)=\sum_{k=0}^{\infty} \frac{z^{n_{k}}}{\left(n_{k}+1\right)^{\beta / 2}} .
$$

Note that

$$
\sum_{k=0}^{\infty} \frac{1}{\left(n_{k}+1\right)^{\alpha} \phi\left(n_{k}\right)} \leqq \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}}<\infty,
$$

and

$$
\sum_{p=0}^{k} \frac{1}{\left(n_{k}-n_{p}+1\right)^{\alpha} \phi\left(n_{p}\right)} \leqq \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}}<\infty
$$

for all k. Also

$$
\sum_{k=0}^{\infty}\left(n_{k}+1\right)^{\alpha} \phi\left(n_{k}\right)\left|\frac{1}{\left(n_{k}+1\right)^{\beta / 2}}\right|^{2} \leqq \sum_{k=0}^{\infty} \frac{\phi\left(n_{k}\right)}{n_{k}^{\beta-\alpha}}=\sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}}<\infty
$$

By Theorem 5, $h \in M\left(D_{\alpha}, D_{\alpha}\right)$. Finally,

$$
\|h\|_{\beta}^{2}=\sum_{k=0}^{\infty}\left(n_{k}+1\right)^{\beta}\left|\frac{1}{\left(n_{k}+1\right)^{\beta / 2}}\right|^{2}=\sum_{k=0}^{\infty} 1=\infty
$$

This shows that $h \notin M\left(D_{\beta}, D_{\beta}\right)$ since $g(z)=\Sigma_{n=0}^{\infty} A_{n} z^{n} \in M\left(D_{\beta}, D_{\beta}\right)$ implies $\Sigma_{n=0}^{\infty}(n+1)^{\beta}\left\|A_{n} \cdot a\right\|_{H}^{2}<\infty$ for each vector $a \in H$.
Note that these are also examples regardless of the dimension of H, since any function of the scalar case can make a function of the vector case simply by taking it to be the coefficient of a vector of H or the identity of $L(H, H)$.
III. Summary. We have given necessary and sufficient conditions for $0 \geqq \alpha \geqq \beta$ and $\beta>\alpha$. When H is finite dimensional a complete characterization is also given for $\alpha>1$ and $\alpha \geqq \beta$. Aside from the obvious desire to complete the description of $M\left(D_{\alpha}, D_{\beta}\right)$ is the general case, the most interesting question left open is probably the lack of a complete characterization of $M\left(D_{\alpha}, D_{\alpha}\right)$ for $0<\alpha \leqq 1$ and H onedimensional.

References

1. G. H. Hardy, Divergent series, Oxford, at the Clarendon, 1949.
2. E. Hille, and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1957.
3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Engelwood Cliffs, N. J., 1962.
4. A. Zygmund, Trigonometric series, Cambridge Univ. Press, New York, 1959.

University of Arizona, Tucson, Arizona

[^0]: Presented to the Society, January 24, 1966; received by the editors June 18, 1965.
 (1) This paper represents part of the author's dissertation at the University of Michigan. The author wishes to express his gratitude to Professor Allen L. Shields for his guidance.

