ON THE CLASSIFICATION OF NONCOMPACT
COMPLEX ABELIAN LIE GROUPS(")

BY
AKIHIKO MORIMOTO

1. Introduction. The purpose of this paper is to investigate the structures of
some types of noncompact complex abelian Lie groups and to classify all non-
compact connected complex abelian Lie groups of dimension 3. In a previous
paper [5] we have constructed a complex Lie group, on which every holomorphic
function is a constant and which contains no complex torus of positive dimension.
Such a group was called an (H.C)-group. We have then characterized noncompact
complex Lie group of dimension two to be an (H.C)-group (Theorem 5 of [5]).
Furthermore we have classified all connected complex abelian Lie groups of
dimension 2.

In this paper we first prove that any connected complex abelian Lie group
is isomorphic to the product group of an (H.C)-group and a group which is a
Stein manifold (§3).

In §4 we generalize the theorem mentioned above and we shall characterize
a complex Lie group of arbitrary dimension to be an (H.C)-group.

In §5 we shall consider n-dimensional connected complex abelian Lie groups
G of rank n+1, namely G is the factor group of C” by a discrete subgroup I'
which is generated by n + 1 vectors of C" linearly independent over the real
number field and contains n vectors linearly independent over the complex
number field. The family A(n) of such groups will be classified into two subfam-
ilies — one is the family of (H.C)-groups and the other is the family A(n—1) x {C*},
C* being the multiplicative group of nonzero complex numbers.

In §6 we shall prove that a complex abelian Lie group containing no complex
torus of positive dimension contains no compact complex submanifold of positive
dimension, and we shall remark that the group constructed in Theorem 3 [5]
does not contain any compact complex submanifold of positive dimension.

In §§7, 8 we shall introduce the notion of nonsingular matrices of n rows and
m columns for n > m and the one of nonsingular abelian Lie groups of dimension
n and of rank n + m. In the final part of §8 we shall classify the family of all
nonsingular complex abelian Lie groups of arbitrary dimension. Nonsingular
complex abelian Lie groups contain no complex torus of positive dimension.
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However, the converse of this statement is not always true, which causes compli-
cations in the classification of complex abelian Lie groups.

In §§9-11 we consider abelian Lie groups of dimension 3 and of rank 5. In fact,
in §10 we classify singular groups containing no complex torus and in §11 we
classify (H.C)-groups of dimension 3 containing a complex torus of 1 dimension
not as a direct summand.

In §12, summarizing the results obtained in the preceding sections we can
classify all connected noncompact complex abelian Lie groups of dimension 3.
In summary, we may say that, in a sense, most of noncompact complex abelian
Lie group G is a Lie group containing no compact complex submanifold such
that every holomorphic function on G is necessarily a constant.

In the sequel, we shall denote, as usual, by C, R, Q@ and Z the ring of all
complex numbers, real numbers, rational numbers and rational integers respec-
tively.

2. Preliminary lemmas. In this section we shall recall some results in [5] and
prove some preliminary lemmas which will be used later.

A complex Lie group G will be called a Stein group if G is a Stein manifold as
a complex manifold. G will be called an (H.C)-group if every holomorphic func-
tion on G is a constant. Every connected complex Lie group G contains uniquely
a closed connected complex normal subgroup G° such that the factor group G/G°
is a Stein group and that G°®is an (H.C)-group. Every (H.C)-group is
abelian.

Let G be an n-dimensional connected complex abelian Lie group. Then G is
isomorphic to the factor group C"/T" of C" by a discrete subgroup I' of C". The
group I is generated by uy,---,u, which are linearly independent over R. The
number k will be called the rank of G.

DEerFINITION 2.1. Let P be one of the rings C, R, Q and Z. We denote by
M(n,m; P) the P-module of all matrices of n rows and m columns with coef-
ficients in P, where n,m=1. We identify P" with IR(n,1;P). For any
M eI(n, m; P) we denote by ‘M eM(m,n; P) the transposed matrix of M. We
write M(n, n; P) =WM(n, P) and the group of all element M eIN(n, P) with non-
vanishing determinant, det M # 0 (in the case P=Z, detM = 4 1) will be de-
noted by GL(n,P). For MeI(n,m;P) and NeM(n,l;P) we denote by
(M,N) (eM(n,m + I; P)) the matrix obtained by arranging M as the first m
columns and N as the last I columns.

We denote by E, the unit matrix of degree n.

For n > m, we denote by IN*(n, m;C) the set of all Ve M(n,m;C) such that
€1,€5, 5 €y, Uy, -+, U, are linearly independent over R, where e; is the ith unit
vector of C" and where we have put V= (v,-,v,) with y;e C"(i=1,2,---,n).
We remark that I*(n,1;C) = C"— R" holds. For any VeI*(n,m;C) we de-
note by I'(V) the discrete subgroup of C" generated by ey, -, €,, U1, **; Up+
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For any elements uy, ---,u, € P" we denote by {u, -+, u;}p the set of all elements
Tk cu; with c;eP (i=1,--,k).

LEMMA 2.2. Let

M

A C
(B D) e GL(n + m,Z)

with Ae W (n,Z) and let VeM(n,m;C). Supposc there exists V'eI(n,m;C)
such that
(A+ VBV’ = C+VD.

Then det(A+ VB)#0. Moreover, if n>m and V'eIR*(n,m; C), then
VeM*(n,m;C).

Proof. Put ¢ = A + VB. Then, ¢(E,, V') = (4 + VB, (4 + VB)V’)
=(A + VB,C + VD) = (E,, V)M . Hence we have ¢(E,,V')M ~* = (E,,V). Put-
ting (E,, VIM ™' = (u;,uz, -+, Uy, ) With u; € C*, we have ¢(u;)=¢; (i=1,2,---,n).
Hence det¢ # 0. Further, if V' eIR*(n,m;C), we assert that ug,---,u,, are
linearly independent over R. In fact, if Xru; =0 for 0 #'(r, s 7psm)€ R**™,
put ‘(ri, s Thsm) = M™1 - "(ry, -+, 7y sm) . Then the equality (E,, V') *"(r}, s o im)
=y, s Upsm) MM - r -, Fprm) =0 means that eg,--,e,,v}, 0, are
linearly dependent over R, where we have put V' = (v},---,v,). Hence our as-
sertion is proved. Since u,,---,u,,, are linearly independent over R and
since (P(uy), -+, Pty m) = (E,, V), ey, e,,0;, 0, are linearly independent
over R, where V = (v, ---,0,,) . Hence Vet*(n, m;C). Thus Lemma 2.2 is proved.

LEMMA 2.3. Let

A C
M = (B D)eGL(n+m,Z)

with Ae(n, Z) and V,V'eMn,m; C). Put

(A C
M - (BI DI
with A'e M(n, Z). Then, (A+VB)V'=C+ VD holds if and only if
(A4’ +V'B)YY=C'"+V'D’ holds.

Proof. Put ¢ = A + VB. Suppose that (4 + VB)V' = C + VD holds. Then,
as is shown in the proof of Lemma 2.2, we have ¢(E,,V’) = (E,, V)M . Hence
we have (E,, V)M ' =¢ N E,V)=(¢p"",¢ 'V). Thuswehave '+ V'B'=¢~ "
and C’' 4+ V'D’ = ¢ "'V, which imply C’' + V'D’ = (A’ + V’'B’)V. The converse
is clear from what we have proved. Thus Lemma 2.3 is proved.

LEMMA 2.4. TakeV,V'eIN*(n,m;C). Then two complex Lie groups C"[T' (V)
and C"[T(V') are (holomorphically) isomorphic, if and only if there exists a
matrix M e GL(n+m, Z) satisfying the following condition,
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2.1) (A+VB)V' = C+VD

A C
v=(5 )
with Ae M(n,Z).

Proof. Suppose C"/I'(V)~ C"/[(V'). Then the isomorphism ¢ of C"/I'(V)
onto C"/[(V') induces an automotphism ¢ of C" such that ¢(I'(V))=I(V').
Hence {¢(61), s Plen) s d(vy), -, ¢(Um)}z = {el’ s e,,,v{, ) vl:l}Z’ where
V=(vy,",v,)and V' =(v},-,0,). Then, there exists a matrix M =(a;;) e M (n + m, Z)
such that

where

€

J

1]
M=
-

Bepau+ T B0
@2.2)

I
M=

m
vl’c ¢(ej)aj,n+k + 2 <}S(us)an+s,n+k
1

1 5=

)

for i=1,--.,n; k=1,---,m. We see readily that M € GL(n+m, Z). Considering
¢ as an element GL(n, C) we can write (2.2) as the following matrix form.

2.3) (Eas V') = ¢-(E,, V)" M.

The right-hand side of (2.3) is equal to (¢(4 + VB), ¢(C + VD)). Hence we have
E,=¢(A+VB)and V' = ¢(C + VD). Then,¢ "'= A + VBand ¢ "'V'=C+VD
imply the equality (2.1).

Conversely, if (2.1) holds, we see by Lemma 2.2 that det(4 + VB) # 0. Hence
we can put ¢ = (4 + VB)™'. Furthermore we see that (2.3) holds, which means
the conditions (2.2). Therefore we have ¢(I'(V)) =T'(V'). Then, ¢ induces an iso-
morphism of C"/[(V) onto C"/I'(V'). Thus Lemma 2.4 is proved.

We can easily prove the following:

LemMMA 2.5. Let Vell*(n,m;C) and

A C
M = (B D)eGL(n +m, Z)
with AeIN(n,Z). Put A+V -B=uy,,Upsm) With u;eC" (i=1,---,n+m).
Then T(V) = {uy, *,Up4m}z holds.

LeMMA 2.6. Suppose a,,a,,:--,a,€Z (n = 2) are coprime: (a(,a,, -,a,) =1
and a; #0. Then, there exists a matrix M = (a;;) eM(n, Z) such that a,; = a;
(j=1,2,---,n) and that detM = 1.

Proof. The matrix M is constructed inductively as follows. Put p, =(a,,--,a,-,)
(greatest common divisor of ay,-,a,_;), ay=p;-a (k=1,,n—1),
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P2 = (a}’a;3 ) a:—z), al: =Dz ak2 (k =1, n— 2)’ P = (afs""a:—ii)’
al=py-al (k=1,---,n=3) and so on. Then, since (p;,a’Z},,)=1, there
exist s;,t;€Z such that t,p,—s;al”},, =1 for i =1,2,---,n—1, where we have
put a’ = a,. Next, put bU=s,-aj. forj=1,2,---,n—i;i=1,2,--.,n—1 and de-
fine M as follows:

(oay Ay e e e . a,
bocin toet O oo 0
2.4) M=
by by . . . byu-2 t; 0
bll blz ...... bl,n—l tl J

Now we prove that det M = 1 by induction on n. If n = 2 the lemma is clearly
true. Suppose that Lemma 2.6 is true for n — 1. Then by expanding det M with
respect to the nth column we have

bn_l’l tn—l O . . 0
detM = (1) 'a, 0
t
bll blz ooooo bl n_l
a, Ay .« « . . Ay, al al .. ... al_,
bn—l’l tn_l 0 . . . 0 b’._l,l t"_l 0 . . 0

+t1 . . . . =(—a,,sl+tlp1) . . .« . =1,
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where we have used the induction assumption in the third equality. Thus Lemma
2.6 is proved.

3. Decomposition of complex abelian Lie groups. In this section we shall prove
that any connected complex abelian Lie group is isomorphic to the direct product
of an (H.C)-group and a Stein group (cf. [2]).

LEMMA 3.1. Let G be a connected complex abelian Lie group and G’ be a
connected closed complex subgroup of G. If the factor group G/G' is isomorphic
to C (or C*), then G is isomorphic to the direct product G' x C (or G’ x C*
resp.).

Proof. We can suppose that G = C"/T", where I' is a discrete subgroup of
C". Let ¢ be the natural homomorphism of C" onto G. Let W be the connected
component of ¢~ (G’) containing the unit element e of G. The restriction
¢, = ¢/W of ¢ to W defines a covering map of W onto G’. Hence
G' ~W[p~'(e)=W/WNT. Hence W + T/ =G’.

(1) Assume that G/G' ~C.

Since (C"/W)/(W + T/W)~C"|(W +T) ~G|G’ ~C, and since C"|W ~ C, we
have W +T'= W, whence '« W and so WNTI' =T. Hence G' ~ W/I". Now
we take a 1-dimensional complex subspace W' of C" such that C" =W + W’
(direct sum). Then G=C"'=(W+ W)T~WIT x W ~G' xC.

(2) Assume that G/G' ~ C*.

In this case W + I'/W must be an infinite cyclic group, say, W + I'/W =Zd,
where 4 means the coset of W + I'/W containing the element aeI". Clearly
a¢ W. Now put I', =" N W. We assert that I' =T"; + Za (direct sum). In fact,
take an element b eI, then Y(b) = ny(a) for some neZ, where ¥ is the natural
homomorphism of C" onto C"/W. Then b —naeT N"nW =T,, and so
beTl; +Za. We see easily that I'; N.Za = {0}, since a ¢ W. Since C"= W +Ca,
we see that G =C"I' = W/T', + CajZa ~ G’ x C*. Thus Lemma 3.1 is
proved.

THEOREM 3.2. Let G be a connected complex abelian Lie group. Then G
is isomorphic to the direct product G° x C™ x C*" (m,n = 0).

Proof. Since G/G° is a Stein group, G/G® ~ C™ x C*" by Proposition 4 [4].
We prove the theorem by induction on m + n. Suppose that m = 1. Take a
connected complex subgroup G, of G such that ¢(G,/G®) = C™ ! x C*", where
¢ denotes the isomorphism of G/G°® onto C™ x C*". Then G/G, ~ C. Therefore,
by Lemma 3.1, we have G ~ G, x C. Now by the induction assumption
G, = G® x C™™' x C*", where we have used the fact that (G,)° = G°. Hence we
obtain G ~ G® x C™ x C*". In the case m =0, n>1 we can see in the same
argument G ~ G° x C" x C*" by using Lemma 3.1 for the case G/G, ~ C*.
Thus Theorem 3.2 is proved.
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COROLLARY 3.3. Let G be a connected complex abelian Lie group. Then G
is holomorphically convex if and only if G~ T x C™ x C*" (m,n 2 0), where T
is a complex torus.

Proof. By Theorem 2 of [5] G is holomorphically convex if and only if G°
is compact, i.e. G’ = T is a complex torus. Hence we can apply Theorem 3.2.

PROPOSITION 3.4. Let GY,GY be (H.C)-groups and let S, S, be Stein groups.
Put G;=G’x S, for i=1,2,. Then, G, ~G, if and only if G} ~G; and
Sl ~ S2 .

Proof. Suppose dimG{ = dimGJ. If ¢ is an isomorphism of G, onto G,,
put ¢(GY)=G,. Then G| =G since (G)°=G; (i=1,2). Hence G;=G,.
Then ¢ induces an isomorphism of G,/G} onto G,/G?. Thus Proposition 3.4
is proved.

From Proposition 3.4 we obtain the following

COROLLARY 3.5. Let G, and G, be connected complex abelian groups. Let
G;=G? x C™ x C*" (i =1,2) be the decomposition as in Theorem 3.2. Then
G, ~ G, if and only if G} ~G) and m; = m,, n; =n,.

ReEMARK 3.6. By Corollary 3.5 we see that in order to classify connected
complex abelian Lie groups it is sufficient to classify all (H.C)-groups.

4. Characterization of (H.C)-groups.
LemMMA 4.1. Let VeIl*(n,m;C) and G = C"[T'(V). Suppose there exists an
element V'€ M*(n—1,m;C) such that G~ C"/['(V'), where
, v
V' = 0 € W(n,m;C).

Then, there exists a nonzero vector xeQ"*™ such that
(4.1) (V,E)x = 0.

Proof. Since C"/T(V)~C"/T(V'), there exists, by Lemmas 2.3 and 2.4 a
matrix M e GL(n + m, Z) such that

“4.2) (A+V'B)V =C+V'D,

where we have put

A C
“=(5 b)
with 4€ M(n,C). From (4.2) we have
AV—C = V'(D—BV) = (V (D'BV)).

0




1966] NONCOMPACT COMPLEX ABELIAN GROUPS 207

Putting V" =V"(D — BV), we have

4.3) AV—-C = (V(:).

Now we put

with A’e M(n—1,n; Z),aeZ" and
- (%)
—c
with C'e M(n—1,m; Z),ceZ™. Then from (4.3) we have
‘aV+'c = 0.

()

we obtain (‘V,E,)x =0. Thus Lemma 4.1 is proved.

LeMMAa 4.2. Let G =C"I'(V) with VeM*(n,m;C). Suppose there exists a
nonzero vector x € Q"*™such that(4.1)holds. Then thereexists V"' € M*(n—1,m;C)
such that G ~C"T'(V') with

Putting

0
where 0 =(0,---,0)eM(1,m;C).

V' = (V” ) € M*(n,m;C),

Proof. By (4.1) we can suppose that there exist 0 # ae Z",ce Z™ such that
4.9 aV = c.

Moreover, by changing indices {1,2,---,n} and by multiplying rational numbers
if necessary, we can suppose that a = (a,, -, a,), a; # 0and (a;,a,, ", a,4+m) =1
(coprime), where we have put ¢ =(a,4+1,**,dp+m). Put

P = (a1’°'°9an+m-—1), a = plak1 (k = 1,2,"',” +m— 1)’
P2 = (a}aa;""’a:-km—z)’ al% = Pza: (k =12,-,n+m-2),
P3= (a%’ a%’ "'5a3+m—3)’ al? = p3al? (k = 132a e, +m— 3)’

and so on. Then we have (p,8,4m) =1, (P2:8p4m-1) =1, (P3,824m-2) =1 and
so on. Hence there exist s;,t;€Z such that

4.5) i+ Dit1 — Si+ la:+m—i =1
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for i =0,1,---,n + m — 1, where we put a’,,, = a,,,. In this process, we take
S;ip1=F1, ty; =0 if al,, ,=+1 holds. Next, put b, =sa} for
j=12,n+m—i; i=12,--,n+m~—1. Let M’ be the matrix obtained
by replacing n by n + m in (2.4). Then by Lemma 2.6 M'e GL(n + m,Z). Put

,_(Ac
=5 )

with 4’ e M(n, Z). Then we have

rnd
(4.6) B= |1 5=
: P

Lria

fori=1,2,--,m.Put C(k) =(a,+1,"**»Qpsm-10,+,0)€Z™for k =1,2,---,;m—1.
Then we have

tmel

tm_lez'l'r _1C(m“'1)
@.7 D=

b

Im-2€3 + I'm-2C(m—2)

L tle,,, + rIC(l)

where ¢; (i=1,:--,m) are unit vectors in C™.
We assert that det(BV — D) # 0. In fact, by using (4.4), (4.6) and (4.7) we have

TG r,C tne;
BV—-D = V—-D = = | w12+, -1C(m-1)
r.a r,C tie, + riC(l)
[ TOnt1 = *
0 o Tm=18n42 = lnmy
0........... 0 FiQuim—1t; J

Hence, if det(BV — D)=0, there exists an index i (1 <i<m) such that
Fdpsm—i+1 — 8;=0. By (4.6) we have

4.8) Sinem-i+1 — Piti=0.
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On the other hand, we see that a,,,_;+; = paiih_i+1, Where we have put
D =Dpi1DP>" D;~1 . Hence (4.8) is written as follows

4.9 SiPApin-i+1— Piti = 0
By (4.5) we have

(4.10) ~Smin—is1 + Dt = L.
Adding (4.9) to (4.10) we obtain

“4.11) SiOmin-i+1(P —1) = 1.

Since all numbers in the left-hand side of (4.11) are integers, we see that
a:n-+ln-i+1 = *1.

Then, by the process of finding s;,t;, we have #; =0 and s; = F 1. Then by (4.9)
we obtain (% 1) p(+ 1) =0, which is a contradiction. Thus we have proved
our assertion det(BV — D) #0.
Now we denote by M the matrix obtained from M’ by exchanging the first
row and the nth row. Put
A C
u=(3 3)

with A€ M(n, Z). Then the nth row of C — AV is ¢ — aV = 0. Hence, if we de-
fine V' by V' =(C — AV)(BV—D)™', we see that the nth row of V' is zero.
Moreover, by the definition of V', we have V'(BV—D)=C — AV, and so
(A 4+ V'B)YV = C + V'D. Hence, by Lemmas 2.2-2.4, we see that V' e R*(n,m;C)
and that G = C"/T'(V) ~ C"/['(V'). Thus Lemma 4.2 is proved.

PRrROPOSITION 4.3. Let G = C"T'(V) with VeI*(n,m;C). Then, G contains a
closed complex subgroup G, such that G ~ G, x C* if and only if there exists
a nonzero vector xeQ"*™ such that (4.1) holds.

Proof. If G~ G, x C*, by Corollary 3.5, we see that G, ~ C"~Y/['(V;) for
some V, eM*(n — 1,m;C). Putting
V' = (I:)‘ )eim*(n,m; 0,

G ~C"I'(V"). By Lemma 4.1 there exists a nonzero vector xeQ"*™ such that
(4.1) holds. The converse is also true by Lemma 4.2. Thus Proposition 4.3 is proved.
We can now characterize (H.C)-groups as follows (cf. [2]).

THEOREM 4.4. Let G be an (H.C)-group of dimension n. Then G is isomor phic
to C"T(V) for some Ve M*(n,m;C) satisfying the following condition:

4.12) xeQ"*" (V,E)x =0 imply x=0.
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Conversely any such group C"|T(V) satisfying (4.12) is an (H.C)-group.

Proof. If G is an (H.C)-group, then G is a connected complex abelian Lie
group (§2). Hence G~ C"/I' for some discrete subgroup of C". Consider
the complex subspace U of C "spanned by I'. We assert that U = C™". If not,
there exists a complex subspace W # {0} of C" such that C" = U + W (direct
sum). Then G~ C"T' ~ U/T"x W, which is a contradiction. Since U = C", we
can find a system of generators s,,::-,s,., of I" such that s,,---,s, are linearly
independent over C. Take an automorphism ¢ of C" such that ¢(s;) =¢;
(i=12,---,n) and put ¢(s,4;)=v; (j=1,2,---,m). Then it is clear that
G~ C"I(V) for V= (v, ,0,) €eIM* (n,m;C). Now, by Proposition 4.3 the
matrix V satisfies (4.12).

Conversely, suppose G = C"/I'(V) satisfies (4.12). If G is not an (H.C)-group,
by Theorem 3.2, G ~ G°% x C' x C*™ for some I, m with I+ m > 0. We shall
see that 1=0. In fact, if 1>0, put G°=C"/T(V,) for no=n—(l + m),
Vo €M*(ny, my;C). Then G° x C' x C*™~ C"T", where T" contains only n — I
vectors of C" linearly independent over C, which is a contradiction. Since ! =0,
G = G® x C*™(m > 0). Then by Proposition 4.3, there exists a nonzero vector
x€Q"*™ satisfying (4.1), which is again a contradiction. Thus Theorem 4.4 is
proved.

5. Classification of (H.C)-groups of dimension n and of rank » + 1.

DEerINITION 5.1.  Let (C* — R")’ be the set of all v =*(«;,---,a,) € C" — R" such
that 1,a;,---,a, are linearly independent over Q. For M = (q;;)e GL(n + 1,Z)
and v ="(a,,,a,) € (C" — R")’ we define v’ = M(v) = "(«;,---,a,) € C" as follows:

J

(5.1) o = (a.-,n+1 > aii“i)/(

n
an+1.j°“—an+1,n+1)
j=1 =1

for i =1,2,---,n. We note that the denominator of (5.1) does not vanish since
1,a,,---,0, are linearly independent over Q.

LEMMA 5.2. Let veC"— R". Then, C"/I'(v) is an (H.C)-group if and only
if ve(C"—R"'.
In fact, we see readily that the condition (4.12) for m =1 means that

1,a,,--+,, are linearly independent over Q.

LemMAa 5.3. Letve(C"— R") and M e GL(n+ 1, Z). Then M(v)e (C" — R")’.

Proof. Put v’ = M(v). By a simple calculation we see that the equalities (5.1)
mean (A + v'By = C + dv’ for

=3 )
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where AeM(n,Z). Then by Lemma 2.4, C"/I'(v)~C"T'(v') holds. Hence,
by Lemma 5.2, C"I'(v’) is an (H.C)-group and so v»'e(C" — R")".

LemMMA 5.4. Let v,v'e(C"— R")'. Then, C"[I'(v) ~ C"T'(v") if and only if
there exists an element M € GL(n + 1, Z) such that v’ = M(v).

In fact, the condition (2.1) for m =1 is equivalent to (5.1) if 1,e,--,, are
linearly independent over Q. Thus Lemma 5.4 is proved.

Since it is easily seen that [ MM']~ = Mo M’ for M,M'e GL (n+ 1,Z) we
have the following

LEMMA 5.5. The group GL(n+ 1,Z) operates on (C"— R")’ by the action
(M, v) > M(v).

DEFINITION 5.6. We denote by A(n) the set of all complex abelian Lie groups
C"I'(v) with ve C"— R" (two isomorphic ones being of course identified).
We can now classify A(n) as follows.

THEOREM 5.7. We denote by A%n) (A'(n) resp.)thesubset of all (H.C)-groups
(non (H.C)-groups resp.) in A(n). Then A(n) can be classified as follows:

Am) = A%(n)u A’(n) (disjoint),
A'(n) = A(n—1) x {C*},
A%(n) = (C"— R"'/GL(n + 1, Z).

In fact, if GeA’(n), then by Theorem 3.2 G =~ G° x C' x C*". However,
we see I =0 by the same argument as in the proof of Theorem 4.4. Hence
G ~ G, x C* for G, = G® x C*"~!, The group G, is easily seen to be an ele-
ment of A(n — 1). On the other hand, it is seen by Lemmas 5.2-5.5 that there
exists a natural one-one correspondence between A°(n) and the quotient space
of (C" — R")’ by the action of GL(n + 1, Z). Thus Theorem 5.7 is proved.

6. Nonexistence of compact complex submanifolds.

THEOREM 6.1. Let G =C"[[(v) be an element of A°(n). Then G contains
no compact complex submanifold of positive dimension.

Proof. Let U be the real subspace of C" spanned by I'(v) over R, and let W
be the real subspace of C" such that C" = U + W (direct sum). Then G is iso-
morphic to K x W= K x R""! as a real Lie group, K being the maximal com-
pact subgroup of G. Let f; (i=1,2,---,n—1) be the real-valued function on G
defined by f; (k,xq,**,X%,~1) = X; for ke K, x;€ R. Then f; is a plurisubharmonic
function on G, since 9%f/0Z,0Z,=0 for u,v=1,---,n, {Z,,---,Z,} being the
complex coordinates on C". Now suppose that there exists a compact complex
submanifold X in G. Then the plurisubharmonic function ﬁlX on X must be
a constant a; (cf. e.g. [3]). Put a = (a,, -, a,-,). Then X is contained in K x {a}.
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Hence we can suppose that X is contained in K = K x {0}. Since X is a complex
submanifold of G, the tangent space T,(x) of X at e is contained in the maximum
complex subspace f, of the tangent space T,(K) of K at e. Since dimcf, =1,
dimcX < 1. Suppose dimcX = 1. Now, for xe K, let D, be the maximum com-
plex subspace of the tangent space T,(K) of K at x. It is clear that the assignment
x— D, is a real 2-dimensional involutive distribution D on K in the sense of
Chevalley [1]. Then X is an integral manifold of D. Since X is compact, X is a
maximal integral manifold of D, containing the unit element e. On the other
hand K, is a maximal integral manifold of D containing e, where K, is the sub-
group of G corresponding to the Lie subalgebra f,. Hence X and K, must coin-
cide by a theorem of [1]. Hence K, must be compact. Then by Theorem 2 [5]
G is holomorphically convex and hence G is not an (H.C)-group, which is a contra-
diction. Thus Theorem 6.1 is proved.

LEMMA 6.2. Let K be a Lie group. Let D = {D,} be an involutive distribu-
tion on K invariant under left translations on K. Let X be a closed integral
manifold of D containing the unit element e, i.e. T(X) = D, for any xe X.
Then there exist a neighborhood U of e in K and an integral manifold X' of D
in U such that X' > XNU and that dimX' =dimD.

Proof. Let K, be the maximal integral manifold of D containing e (dim K,
= dim D). Then K|, is a subgroup of K. If dim X = dim D, the lemma is clearly
true. Suppose dim X < dim D = dim T,(K,). Take an element Y, € T(K,) — T.(X).
Then there exists a neighborhood U, of e such that L)Y, ¢ T,(X) for ae U, N X,
where L, denotes the differential of the left translation L, corresponding to a € K.
Clearly LY, €D, for any a e K. We shall denote by expt Y, the one-parameter
subgroup of K whose tangent vector at e is Y, . Now we put

X, ={(xptY)x|xeX NU,, [t| <g}.

Then X, is an integral manifold of D for sufficiently smalle; > 0.If dim X, < dimD,
take again an element Y, e T,(K,) — T,(X,). Then there exists a neighborhood
U, of e such that L)Y, ¢ T(X) for aeU, N X,. Put

X, ={(exptV)x|xe W, NU,, |t| <&,}.

Then X, is an integral manifold of D for sufficiently small &, > 0. If dimX, <dim D
take an element Y; € T(K,) — T.(X,) and so on. We can finally find a neighbor-
hood U and an integral manifold X’ satisfying the required properties. Thus
Lemma 6.2 is proved.

COROLLARY 6.3. Notations being as in Lemma 6.2, and K, being the maximal
integral manifold of D containing e, we have X = K,, if X is connected.

Proof. Take a point pe X, then p~'X is an integral manifold of D containing
e. Therefore, by Lemma 6.2, we can find a neighborhood U, of e and an integral
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manifold X, of D in U, (depending on p) such that U, Np™'X < X, < K,.
Put pX,=K,. Then K, is an integral manifold of D containing p and dimK,
=dimK,. Now put X, = {peXlecKo}. It is clear that ee X, and that
X, is open in X. We shall prove that X, is closed in X. Take poe X, NX.
Since K,, N X is open in X, there is a point p, € K, N X,. Then, since K,
and K, are both integral manifolds of D containing p, and since
dimK, =dimK, =dimD, there exists a neighborhood U of p, such that
K, "U =K, NU. On the other hand, since p, € X,, K,, = K, holds. Hence
K,,NU c K, and so K,  c K, since K, is a maximal integral manifold of D.
Therefore p,e X,, whence X, is closed in X. Since X is connected X = X,
holds, which implies X < K,. Thus Corollary 6.3 is proved.

THEOREM 6.4. Let G be a connected complex abelian Lie group. If G con-
tains no complex torus of positive dimension, then G contains no compact complex
submanifold of positive dimension.

Proef. Suppose that there exists a connected compact complex submanifold
X in G containing e. Let K, K, be the same subgroups of G and D = {D,} be
the same distribution on K as in the proof of Theorem 6.1, which shows that
X < K and that X is an integral manifold of D. Then by Corollary 6.3 we have
X = K,. Let K’ be the maximal compact subgroup of K, and ¥’ be the Lie al-
gebra of K'. Put f;, =¥ N ,/(—1)f and take the subgroup K, of K corresponding
to ;. Then by the same argument as above we see that X = K,. We consider
again the maximal compact subgroup K” of K, and let " be the Lie algebra of
K".Put §, =¥ N /(—1D¥" and take the subgroup K, corresponding to ,, and
so on. Thus we have a sequence of complex subgroups K; K, -- such that K; > X
fori=1,2,---. Since G does not contain any complex torus of positive dimension,
we see that K; # K;,, if dimK;> 0. Hence we have X = {e}. Thus Theorem
6.4 is proved.

REMARK 6.5. We see that the group G constructed in Theorem 3 [5] contains
no compact complex submanifold of positive dimension.

REMARK 6.6. Using the fact that the set of all singular points of a complex
analytic set is also an analytic set, we can prove that the group in Theorem 6.4
contains no compact complex analytic set of positive dimension.

7. Nonsingular n X m matrices with n > m.
DEfINITION 7.1. We shall call a matrix VeIt(n,m;C) (n > m) nonsingular
if det(4 + VB) # 0 for any

M (A C) eGL(n+m, Z)

“\B »

with A eM(n,Z). Otherwise V will be called singular.
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LemMA 7.2. A matrix VelRk(n,m;C) (n> m) is nonsingular if and only
if det(D — BV) # 0 for all

A C
M = (B D)eGL(n+m,Z)

with Ae M(n, Z).
Proof. Assume V is nonsingular. Take M € GL(n + m, Z) and put
(4 C (A C
M=(5 o) *'=(5 )
with 4,4’ eM(n, Z). Since det(4’ + VB') # 0, we can define V' eN(n,m;C) by
(7.1) (A'+VB) =C' +VD'.

The equality (7.1) is -equivalent, by Lemma 2.3, to the -equality
(A+V’'B)V = C+V'D, whichimplies AV — C = V'(D — BV), which is rewritten as

(ﬁ g)(—VE".) =(_VL:,,) (D - BV)

t(D - BV)(‘V" —Em) = (tVs _Em)‘My

or

which is equivalent to
‘‘D-BV)(V',—E)M™' = (‘'V,—E,).

Now, put (V', —E,)M "' = (u,++,u,,,) With u;eC™for i=1,2,---,n + m.
Then, we have ‘(D —BV)u,,; = —e; (i =1,---,m), which shows that
det(D — BV) # 0. Conversely if det(D — BV) # 0 for any

A C
M= (B D)eGL(n+m,Z),

we can define V' by the equality
A'V-C' =V'(D'=B'Y),

which is equivalent to (4 + VB)V' = C + VD. Hence by Lemma 2.2 det(4 + VB)
# 0. Thus Lemma 7.2 is proved.

LemMMAa 7.3. Let Ve(n,m;C) (n > m) be nonsingular. Take

M = (A C)eGL(n+m,Z)

B D
with AeIN(n, Z) We define V' eI (n,m;C) by
(1.2) (A+VB)V' = C+VD.

Then V' is also nonsingular.
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Proof. Take M, e GL(nm, Z) and put

(4, ¢
My = (Bl Dl)

with A4, eIR(n, Z). Put

M,=MM™! = (A2 C’) and M;! =(A2 C’)

~\B, D, B, D,

with A,, A5 eM(n, Z). We define V"€ M (n,m;C) by

(7.3) 43+ VBy)V" = C, + VD,.
We shall prove the following
(7.4) (A; +V'B)V' = C,+V'D,.
Put
1 _ (A C
M= (B’ D’

with 4’ eI(n, Z). Then we have

A2 = AIAI + CIB’, C2 = AIC' + C]_D’,
(1.5
B2 = BlAl'l'DlB’, D2= BIC’+D1D'.

Now from (7.3) and Lemma 2.3 we have
(7.6) (Az + V”Bz)V = C2 + V”Dz.

Inserting (7.5) into (7.6) we have (4,4'+ C,B')V + V'(B,A' + D, B")V
=A,C'+CD’' +V'(B,C' + D,D’), and so

(1.7) A(A'V—-C)+V'B(A'V—=C") = C(D' —B'V)+V'D (D' - B'V).

On the other hand, from (7.2) and Lemma 2.2 we have (4’ + V'B’) V= C’ + V'D’.
Hence we have

(7.8) A'V—-C =V'(D'—BV).
Inserting (7.8) into (7.7) we obtain
(7.9) (A; + V'B)V'(D'— B'V) = (C, + V'D,)(D' — B'V).

Since V is nonsingular det(D' — B'V) # 0 by Lemma 7.2. Hence (7.9) implies
(A, + V'B)V'=C, + V"D, whence (7.4) is proved. Then by Lemma 2.3 we see

(45 + V'BYV' = C; + VD],

where we have put
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A] C

-1 _ 1 1

wi' = (5 o)

with A7€I(n,Z). Hence, by Lemma 2.2, det(4]+ V'B})#0. Since
M, e GL(n+ m, Z) was arbitrary, we have proved that V' is nonsingular.

DEerINITION 7.4. We denote by Mi**(n,m;C) the set of all VeI*(n,m;C)
such that V is nonsingular. For

A C
M = (B D)eGL(n+m,Z)

with 4 e IR(n, Z) and for VeM**(n, m; C) we define V' = M*(V)eIN(n, m;C) by
7.1) (A'"+VB)Y' = C'+VD’,

L (A
M= = (B’ D’
with 4’ eM(n, Z).

LEMMA 7.5. For any VeIl**(n,m;C) and Me GL(n + m,Z), we have
M*(V)eIM**(n,m;C). Moreover for any M, M,eGL(n+ m, Z) we have
(MM ,)* = M*o M*.

where we have put

Proof. The first half is the consequence of Lemma 7.3. Next, we put
V’'=M*(V) and V"= M*¥V'). Then we have, by Lemma 2.3, the following
two equalities:

(7.10) (A+V'B)V= C+V'D,

(7.11) (4, + V'B)V'= C, + V"D;.

Multiplying D — BV from the right to (7.11) we get

(7.12) (4, + V'B))V'(D — BV) = (C + V"D,)(D — BV).

From (7.10) we have AV — C = V’(D — BV). Inserting this into (7.12) we obtain
((4,A+ C,B)+ V"(B;A + D,B))V = A,C+ C,D + V"(B,C + D,D),

which means (M, M)*(V) = V'’ = M{(M*V). Thus Lemma 7.5 is proved.
REMARK 7.6. From the above considerations we see that the group

GL(n+ m, Z) operates on M**(n,m;C) by the action (M, V)— M*(V). In the

case m = 1 < n, this operation coincides with the one considered in Lemma 5.5.

8. Nonsingular abelian Lie groups of dimension 7.

THEOREM 8.1. Let VeIR**(n,m;C) (n > m). Then G=C /F(V) contains no
complex torus of positive dimension as a subgroup.
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Proof. Suppose G contains a complex torus T of dimension ¢ > 0. We shall
prove that there exists M e GL(n + m, Z) such that det(4 + VB) =0, where

A C
= (5 o)
with 4eMn, Z).

First we denote by K the maximal compact subgroup of G and g(f,t resp.)
the Lie algebra corresponding to G(K, T resp.). Put f, =f N /(—1)f. Then it
is clear that t =f,. Identifying g with C" we see that t contains 2t vectors
Uy, Uy, -, Uy € linearly independent over R. We can suppose that u,,---,u,
span the vector space t over C. We denote by W the real vector subspace of
C" spanned by u,---,u,,, over R. We can suppose W NI is generated by
Uy, U 4q. Put

where a,-j,bi"eZ for i=1,2,--,t+1;j=1,---,n; k=1,---,m. We shall prove
that there exists a matrix M € GL(n + m, Z) such that M = (a;;) satisfies the fol-
lowing equalities

a;; = ai.’ i=1,-,n;j=1,-t+1,
8.1) . .
a; = by " i=n+1,-n+m;j=1,-,t+1.

J
A C
v=(3 )
with 4eM(n, Z), we have A + VB =(a;) with «; =a’+ Xj_, ba®, where
we have put V= (v;, -, 0,), t,,= (@, -, af”). Then, we have A+ VB =
(Ugsstty41,A") with A'€eMM(n,n —t—1;C). Since u,, €t ={uy, -, u}c, we
see that det(4 + VB) = 0. It is now sufficient to prove the existence of M satis-
fying (8.1).

We denote by ¢ the natural projection of C" onto C"/W. The map ¢ is of
course an R-linear map. Since ¢(I') is finitely generated abelian group without
torsion, there exists a system of generators{¢(x,), ---, ¢(x,)} of ¢(I') with x, -+, x,e’
such that every element a of ¢(I') can be written uniquely as

For such an

(8.2) a=X a¢(x), aeZ.

i=1
Now, we assert that every element yel’ can be written uniquely as
y=Xijexi+ Xitidu;, c¢,d;eZ for i=1,-,s; j,-t+1. In fact
o) = Zi-1cd(x) = d( X3-,c;x;) for some c;eZ. Hence y — Xc;x;e WNT.
Therefore y — Xex; = Xdju; for some d;eZ by the assumption for W. The
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uniqueness of the expression (8.2) is easily verified. Since I' is a discrete subgroup
of C", we see that x,,---,x,,uy,-- U, are linearly independent over R
(cf. e.g. [6, p. 27]). Hence weseethats=n+m—t—1.Putw,=u; (i <t + 1)
and w;,=x;_,_, (n+m=i>t+1). Finally put

m
ae; + kzl Ayir, Vi

\‘Vi =

™M=

J
for i=1,2,---,n + m. Since wy,---,w,,,, 1s a system of generators of I" we see
that M = (a;;)€ GL(n + m, Z) and that M satisfies the condition (8.1). Thus
Theorem 8.1 is proved.

DerINITION 8.2. We shall call G in Theorem 8.1 a nonsingular abelian Lie
group of dimension n and of rank n + m. The set of all such groups will be de-
noted by A(n,m). Then, A(n,1) coincides with 4°%n) in Theorem 5.7.

Combining Theorem 8.1 and 6.4 we have proved the following

COROLLARY 8.3. Any nonsingular abelian Lie group contains no compact
complex submanifold of positive dimension.

THEOREM 8.4. Every nonsingular abelian Lie group G is an (H.C)-group.

Proof. Let G=C"T'(V) with VeIR**(n,m;C). If G is not an (H.C)-group,
then by Theorem 4.4, G is isomorphic to G, x C* with some subgroup G, of G.
Then we can suppose that

- ("
7= (%)

with V, eM*(n — 1,m;C). Then by taking

A C
M=(el,"'sen—l’en+laemen+2,"',en+m) = (B D)GGL(n+m,Z),

we see that det(4 — VB) = 0. Hence G is singular. Thus Theorem 8.4 is proved.
Combining Lemma 2.4, Remark 7.6 and Definition 8.2 we obtain the following

THEOREM 8.5. There exists a natural one-one correspondence between
A(n,m) and the quotient space **(n,m;C)/GL(n + m, Z) of M**(n,m;C)
by the operation of GL(n + m, Z) defined in Definition 7.4.

REMARK 8.6. Unfortunately, the converse of Theorem 8.1 does not hold
which causes complications in the classifications of complex abelian Lie groups.
As is shown in the sequel, there exist many VeIt*(n, m; C) such that C"/I'(V) con-
tains no complex torus and that V is nevertheless singular.

9. Singular (H.C)-groups of dimension 3 and of rank 5. From now on we shall
restrict ourselves to the case of dimension 3.

LemMA 9.1. Let VeI*(3,2;C). Then V is singular if and only if C3|T(V)
is isomorphic to C*/T(V’) where V' = (v},v;) and vye{eex)¢-
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Proof. Suppose V is singular. Then there exists a matrix

M = (g g) eGL(S, Z)
with AeIN3,Z) such that det(4+ VB)=0. Put A+ VB=(u;,u,,u;),
C+ VD = (ug,us), where u;e C* for i = 1,2,---,5. We assert that rank (4 + VB)
=2. In fact, since u,,u,,u; are linearly independent over R (cf. Lemma 2.5),
dim¢ {uy, us, us}e = 3 dimg {uy, uy, us}e = 3 dimg {u,, u,, us}g = 3/2. Hence
dim¢ {u,, uy, u3}¢ = 2, which means rank(4 + VB) =2. Now, since
dim¢{uy,---,us}c =3, we can suppose, by changing the indices if necessary,
that u, u,,u, are linearly independent over C. Take the automorphism ¢ of
C? such that ¢(u,) = e,, P(u;) = e, $p(us) = e; and put ¢(us) = v}, P(u;) = v3-
Then, by using Lemma 2.5, we see that C3/[(V) = C*/{u -+, us}z ~ C*|[(V")
with V' = (v{,v3). Since uze {u,u,}c, we see that vie{e;, e,}c-

To prove the converse it is sufficient to show that V'’ satisfying the condition
of Lemma 9.1 is singular. For, if Vis nonsingular, V'’ is also nonsingular by Lem-
ma 7.3. Now, if we take

N

M= (95,82,81,83,84) = (g IC))GGL(S,Z) with 4 = \

L

o o O
o = O

1
0
0
then it is clear that det(4 + V'B) =0. Thus Lemma 9.1 is proved.

DErFINITION 9.2. For VeIRt*(3,2; C) and for

M = (g g)eGL(S, Z)

with A eIM(3, Z) we define x(V,M)eZ by
9.1) x(V,M) = rank(AV — C).

We shall denote by y(V) thc minimum of y(V,M) for M e GL(5,2). Clearly
0= x(V)£2 holds.

LeMMA 9.3. Let VeIN*(3,2;C) be singular and let C3|T(V) be an (H.C)-
group. Then, C3|T(V) ~ C3}|T(V’) with V' = (v{,v};), v,€Ce,, if and only if
x(V)=1.

Proof. We can suppose that V= (v,,v,) with v,e{e;,e,}¢ by Lemma 9.1.
Suppose that y(V) = 1. Then there exists

, (A C
M’ = (B, D,)eGL(S,Z)

with A’ €M(3, Z’) such that x(V,M’) = 1. Put M’ = (4", C") with 4" € M(5,3;Z).
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Then

Since

we have rank (4"V — C") = 2. Therefore, we can suppose, by exchanging the
rows of M’ if necessary, that there exists M € GL(S, Z) such that

a ¢ I'al Cy
M = Al C1 =
a, ¢ [Az C,

with 4, eM@3,Z), A,eM4,3;1Z) and a,,a,eM(1,3; Z) satisfy the following
conditions:

rank (4,V—C,) = 2,
9.2) rank (4,V—-C,) =1,
41Xy + 42)y + 432y —agq # 0, O

41Xy +a43)2 — A4s # 0,

where we have put M = (a;;) and vy = ‘(x, y,,2,). If gy X, + ag2p; + 4321 — ayq
# 0, we can define y},z, € C as follows

©.3) Vi = (24— a21%; — Q22¥1 — 332 ) /(A4 Xy + A42y1 + A432) — A44),
2y = (@34 = a3;%; — a3;)1 — 332,)[(A41 %1 + Q421 + Q4321 — 4.
Further, we can define x,x; by the following (9.4), since (9.2) holds:
X1(@a1X1 + a4y + 432y — Ag4) + X5(as51 Xy + as52Y1 — As3Z; — Asg)
9.4) = Q14— Qg1 Xy — Gg2)y — A13Zy,

x{(a41%2 + A42Y; — A45) + X3(@s51 X5 + As3Y, — ass)

= Q15— A11X2 —A43)2-

Putting
A C Xy X3
M = (B D) with AeI(3,Z) and V'= | y; 0 |,
z; 0

we see, by a simple calculation, that (4 + V'B)V = C + V'D holds. Hence, by
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Lemma 2.4, C3/T(V) ~ C3|T(V'). In the case a X, + a4,y + d432; — dgq =0
and a4;X; + a4,y, — a4s # 0, we can prove in the same way.

Conversely suppose that C*/I'(V) ~ C3/['(V’). Then, by Lemma 2.4, there
exists an M = (a;;) € GL(S, Z) such that (4 + V'B)V = C + V’'D with

A C
M= (3 o)
and AeIN(3, Z). This equality implies

’
V1(@41%1 + 42y + Q4321 — 44) = Q24 — A% — A33)1 — 3374,

V1(a41X2 + a42y2 — a4s) = Q5 — A31X; — A22)2,

©-3) 23(@41X; + Q42Y1 + 04321 — Gas) = A34 — 31Xy — 32Y; — A33Z4,
21(a41%2 — a42y2 — aus) = Q35 — A31X; —d33);-

If we put

a, ¢;)
M = [Al Cl
a ¢

with a;,a, eM(1,3; Z)and 4, e IM(3, Z), then (9.5) mean that rank (4,V—-C,) < 1.
Put

4, ¢
M = [a, ¢

then we have y(V,M’) < 1. On the other hand, since C3/['(V) is an (H.C)-group,
2(V,M") =1 for any M"e GL(S, Z) by Theorem 4.4. Hence we have y(V) = 1.
Thus Lemma 9.3 is proved.

LemMAa 9.4. Let G=C3[(V) with VeI*3,2;C). Then G contains a
1-dimensional complex torus if and only if G=C? [T (V') with V' =(v1,v;),v, € Ce,.

Proof. Suppose that C*/I'(V) ~ C3/[(V’). Let ¢ be the natural homomor-
phism of C3 onto C3/T'(V’). Then ¢(Ce,) is compact, since Ce, contains e, and
vy. Hence G contains a 1-dimensional complex torus.

Conversely, suppose that G contains a 1-dimensional complex torus T. Let
¥ be the natural homomorphism of C3 onto G. Let K be the maximal compact
subgroup of G and ¥(g, t resp.) the Lie algebra of K (G, Tresp.). Putf, =t N /(- 1)E.
Then clearly t < f,. Identifying g with C® we see that t contains u,,u, eI such
that u, = zu, # 0 with ze C — R. We can suppose that {u,,u,}g NT = {u,,u,}2.
Then, by the same argument as in the proof of Theorem 8.1, we can find three
elements u3,u,,us €l such that ' = {u,,u,,---,us},. Moreover, we can suppose
that u,,u;,u, are linearly independent over C. Then we can take an automor-
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phism n of C* such that n(u,) =e;, n(us) =e,, n(u,) =es. Put nus)=ro;,
n(u,) = vh. Then C3/T(V) ~ C3I'(V’) and v} € Ce, . Thus Lemma 9.4 is proved.

DEFINITION 9.5. We denote by i’ the set of all Vedlt*(3,2;C) such that
x(C) =2, V=(vy,v,) with v, € {e;,e,}¢ and that (4.12) holds for n =3, m = 2.

Let
Xy X,
V= {yl )’2}-
Ltz; O

Then it is straightforward to see that, if nine numbers

1,X1,¥15215X25 Y25 X1V2 — X2¥1, %2215 Y221

are linearly independent over Q then Ve'.
Combining Lemma 9.1, 9.3 and 9.4 we obtain

THEOREM 9.6. Let VeMM*(3,2;C). Put G = C*/T(V) and suppose that G is
an (H.C)-group. Then, G is singular and contains no complex torus of 1-dimension
if and only if VeIl'.

10. Classification of singular (H.C)-groups. I.

DeriNniTION 10.1. Let Gbe a group and S be a set. Suppose that for any xe S
there is given a subset G, of G containing the unit element e and that for any
element ge G,, g(x) €S is defined. The family {G,} will be called a pseudo-group
operating on S if the following three conditions are satisfied:

(10.1) e(x) = x for any x€ S,
(10.2) geG, implies g~ € G,(y),
(103)  geG,,8'€G,(,y imply g'ge G, and (g'g)(x) = g'(g(x)) holds.

If {G,} is a pseudo-group operating on S, we say two elements x, ye S are
equivalent if there exists an element ge G, such that g(x) = y. The set of equiv-
alence classes will be called the quotient space of S by the pseudo-group {G,}
and denoted by S/{G,}.

DeriNiTION 10.2. For Vedk(3,2;C) and

a,
M=[;

as

eGL(, Z2)

with ‘a;e Z°, we define F;(V,M)eC as follows:

(10.4) Fii(V,M) = det ((Zj) (-11,32 ))

for 15i, j<5S.
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DEerNITION 10.3. We denote A= GL(5, Z). For VeIR(3,2;C) we shall denote
by A, the set of all M € A such that

F34(V,M) = 0.
Clearly Ese Ay for any V.

Lemma 10.4. For VeI’ and for

A C
M = (B D)eAy

with AeI(3, Z), there exists uniquely an element V' € IR’ such that
(A+V'B)V=C+V'D.

X1 X2
V= [yl J’zJ-

z; O

Proof. Put

Since F;3(V,M) =0 and since (4.12) holds for V, there exists a unique zj;eC

satisfying

(10.5) 21(a41%1 + A42); + 4321 — A44) = G35 — G312 — A32); — A33Z,,
21(as1x2 + a42y2 — ass) = G35 — d31X; — 332,

Next, since (V) = 2, we see that F,s(V, M) # 0. Hence we can define x|, x}, y}
and y, e C by the following equalities:

xj = Fsy(V,M)[F,s(V; M), x5 = F4(V,M)[F4s(V, M),
y1 = Fs;(V, M)[Fs(V, M), y; = F4(V, M)[F ;5(V, M)

Xy X3
V' = [y'l y’z}.

’
zy O

(10.6)

We put

By a direct calculation we see that (10.5), (10.6) imply the following equality
(10.7) (A+V'B)Y = C+V'D.

Hence, by Lemma 2.4, C3/T'(V) ~ C3/T(V"). Since C*/T(V) contains no complex
torus of dimension 1, C3/I'(V’) contains no complex torus of dimension 1. There-
fore, by Theorems 9.6 and 4.4, V'eI’. Now, by Lemma 2.3, (10.7) implies
(A’ + VB)Y'=C' + VD', where

w (5 5)

B' D'
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with A'eM(3,Z). Then, by Lemma 2.2, det(4’ + VB')#0, and so
V'=(A"+ VB')™!-(C'+VD’), which proves the uniqueness of V’. Thus
Lemma 10.4 is proved.

DerINITION 10.5. For VeI’ and MeAy, the element V' in Lemma 10.4
will be denoted by V' = M(V).

LemMAa 10.6. Let MeA and VeI'. Then MeAy if and only if there
exists V' eIN(3,2;C) such that (10.7) holds, where we put

v (45

with AeM@G, Z).

Proof. Put
X X, X1 X
V= lyl yz} and V' = [,v’l y’z}.
z; 0 zy 0

By a simple calculation, (10.7) implies the equalities (10.5). We assert that
2} #0. In fact, if z} = 0, we see that C*/T'(V) ~ T x C*, where T'is a complex
torus of dimension 2, which is a contradiction. Then, since z} 5 0, (10.5) implies
F3,(V,M)=0. Hence M eA,. The converse is already proved in Lemma 10.4.
Thus Lemma 10.6 is proved.

THEOREM 10.7. The family {A,}, VeI’ is a pseudo-group operating on M'.

Proof. First, for VeI’ and MeA,, V' = M(V) is well defined by Lemma
10.4. The condition (10.1) is trivial. We shall prove (10.3) for {A,}. Take Ve M’,
MeAy and M’ €Ayy,. Put V' =M(V) and V" = M'(M(V)), and put

M= (5 o) w= (o o) = (5 5)
with A4,A4’, A" €eIN(3, Z). Then, we have the following two equalities
(A+V'B)V=C+V'D,
A" +V'BYW' = C'+V'D',
which imply (4" + V"B")V = C" 4+ V"D", which shows, by Lemmas 10.4 and 10.6,
that M’'M € Ay, and that V” = (M’M) (V). Hence we obtain M'(M(V)) = (M'M)V)

which proves (10.3).
Next, we shall prove (10.2). For this purpose we put V' = M(V) and

-1 (A4 C
M= = (B’ D’

with A’'eIR(3,Z). Then we have (4 + V'B)V = C + V’'D, which implies, by
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Lemma 2.3, (A'+VB')V'=C’'+ VD’, which shows, by Lemma 10.6, that
M™'eAy = Ay, and V=M~ (V). Thus Theorem 10.7 is proved.
From the above considerations we have proved the following

THEOREM 10.8. Let A’(3,2) be the set of all singular (H.C)-groups of di-
mension 3 and of rank 5 which contains no complex torus of dimension 1. Then
there exists a natural one-one correspondence between A'(3,2) and the quotient
space M'[{Ay}.

11. Classification of singular (H.C)-group. 1I.

DeriNiTION 11.1. We denote by IN” the set of all VeIM*(3,2;C) such that
V=(vy,v,) and v,eCe; and that V satisfies (4.12) for n=3, n=2. For
M e A = GL(5,Z), we put

(- [}

with a,e C? (i =1,2,---,5). We say q,; and a, are equivalent if Ca, = Ca; and
we denote by v(V,M) the number of equivalence classes of ay,:-:,as by this
equivalence relation. Clearly 2 S w(V,M) <5. We shall denote by v(V) the
minimum of wW(V,M) for MeA. Then it is easily seen that 2 < (V) < 3.

Let
Xy X2
V= [yl 0 ] .
Zy 0

We can easily see that, if seven numbers
1,X1, Y1521, X2, X215 X22, are linearly independent over Q,w(V) = 3.

LemMA 11.2. Take VeIR’. Then the group G = C3|I'(V) contains a 1-di-
mensional complex torus as a direct summand if and only if (V) =2,

Proof. Suppose W(V,M) = 2 for some M =(a;)eA. We can suppose,
exchanging the indices if necessary, that F,s(V,M)#0. We assert
that F,,(V,M) = F3,(V,M) = F5s(V,M) = 0. If not, we may assume that
F4(V,M) = F,,(V,M) = F3,(V,M) =0. In this case, putting

X1 X3
V= [yl 0 } ’
z, O

we can define x],y1,2z; €C by the following equalities:

(11.1)  x}(as1Xy + Ag2y1 + 4321 — A44) = Q14— 11Xy — A12Y1 — G1324,

(11.2)  x1(a41%2 — as5) = Q15— 811X,
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(11.3)  y1(@41Xy + a4o)1 + 4321 — Aaq) = G4 — az1Xy — 432)1 — A232,
(11.4)  yi(aa1x; — aus) © = Q35— A31X3,

(11.5)  z1(@41Xy + Q421 + 43Z; — A44) = G354 — 31X — A32); — 3325,
(11.6)  z1(a41x2 — a4s) = G35 — G31X3. |

Put

x; O 4 C

V' = |y, 0 | eM3,2;C) and M =

0 B D
1

with 4eIM@3, Z). Then (11.1)(11.6) show that (4 + V'B)V=C + V'D holds.
Hence, by Lemmas 2.2 and 2.3, we have V' e M*(3,2; Z), which is a contradiction.
Thus our assertion is verified.

Since F,,(V,M) = F;,(V,M) = F,5(V,M)=0, we can define x,,y;,z; €C by
the following equalities:

(AL7)  x3(asixy + aspyy + as3zy — ass) = Ay — Ay X1 — Ay2Y; — d13Zy,
(11.8)  x3(as1x; — ass) = G5 — A11X2,

(11.9)  yi(aa1xy + a42y1 + 432y — Q4q) = @24 — G2)Xy — G221 — G232,
(11.10)  yi(as1x; — aas)

, ‘
(11.11)  2i(ag;1%; + a42y1 + 4321 — A4q) = G354 — A31X1 — 321 — A33Z4,

zs — Az1X3,

(11.12)  zi(a41x2 — a45) = Q35 — 31X3.
Putting 0 x,
z, 0

we see that (11.7)-(11.12) are equivalent to the equality (4+ V'B)V=C+ V'D for
A C
w=(55
with 4eIM(3, Z). Put v’ = (y,,7,). Then by Lemma 2.4,
G ~C'/{1,x;}; x C}T(v)= Tx C*}T(v'),

where T is a 1-dimensional complex torus.

Conversely, if G~ T x G,, where T is a 1-dimensional complex torus, the1
itis easy to find x5, y;,z; € C and M = (a;;) satisfying the equalities (11.7) ~ (11.12)
Then v(V,M) =2, whence W(¥) =2. Thus Lemma 11.2 is proved.

DErFINITION 11.3. We denote by " the set of all VeIN*(3,2;C) such that
V =(v,,v;), v,€Ce;, W(V)=3 and that V satisfies the condmon (4 12) for
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n=3, m=2. For VeIR”, we denote by A’, the set of all MeA such that
Fyo(V,M) = F43(V,M) = 0.

LemMA 11.4. For any VeIR” and M e A’y we can find uniquely an element
V' eMM” such that (A + V'B)V = C + V'D, where

A C
v=(3 )
with Ae M(3,Z). If we denote V' = M(V), then the family {A,} is a pseduo-
group operating on M".

In fact, we can prove this lemma exactly in the same manner as the proof of
Theorem 10.7. We may omit the proof in detail.
From the above considerations we have proved the following.

THEOREM 11.5. Let A”(3,2) be the set of all singular (H.C)-groups of dimen-
sion 3 and of rank 5 which contains a 1-dimensional complex torus not as a direct
summand. Then there exists a natural one-one correspondence between A’(3,2)
and the quotient space M"|{Ay}.

12. Final remarks. Summarizing the results obtained in the precedingsections,
we obtain the complete classification of noncompact connected complex abelian
Lie groups of dimension 3.

We denote by X(n) the set of all connected complex abelian Lie groups of
dimension n, two isomorphic ones being of course identified. We denote by A%(n),
A'(n), A°%n) and T (n) the set of all noncompact (H.C)-groups of dimension n,
non-(H.C)-groups of dimension n, (H.C)-groups of dimension n and of rank
n + 1, and the complex tori of dimension n respectively. Let A(3) be the set of all
nonsingular groups of dimension 3 and of rank 5. Let 4’(3) be the set of all singular
(H.C)-groups of dimension 3 and of rank 5 containing no complex torus of di-
mension 1. Finally let A”(3) be the set of all singular (H.C)-groups of dimension 3
and of rank 5 containing a 1-dimensional complex torus not as a direct summand.
Then, we have the following

THEOREM 12.1.
AB3) = A°(3) VA'(3) UT (3) (disjoint),
A°(3) = A°(3) U A(3) uA'(3) VA"(3) UT(1)x A°(2) (disjoint),
A%n) = M**(n,1;C)/GL(n + 1,2),
4 (3)= M**(3,2;C)/GL(5,2),
A'3) = M[{Av},
A47(3) = M"/{A%},
A'(3) = {C,C*}xA(2).
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REMARK 12.2. Any one of the subsets 4°(3), 4(3), 4'(3) or A”(3) contains non-
countably many elements.

ReMARK 12.3. For any (H.C)-group G the group of holomorphic homeo-
morphisms of G is a complex Lie group, whose Lie algebra is isomorphic to the
one of G.
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