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1. Introduction. The purpose of this paper is to investigate the structures of

some types of noncompact complex abelian Lie groups and to classify all non-

compact connected complex abelian Lie groups of dimension 3. In a previous

paper [5] we have constructed a complex Lie group, on which every holomorphic

function is a constant and which contains no complex torus of positive dimension.

Such a group was called an (H.C)-group. We have then characterized noncompact

complex Lie group of dimension two to be an (H.C)-group (Theorem 5 of [5]).

Furthermore we have classified all connected complex abelian Lie groups of

dimension 2.

In this paper we first prove that any connected complex abelian Lie group

is isomorphic to the product group of an (H.C)-group and a group which is a

Stein manifold (§3).

In §4 we generalize the theorem mentioned above and we shall characterize

a complex Lie group of arbitrary dimension to be an (H.C)-group.

In §5 we shall consider n-dimensional connected complex abelian Lie groups

G of rank n +1, namely G is the factor group of C" by a discrete subgroup T

which is generated by n + 1 vectors of C linearly independent over the real

number field and contains n vectors linearly independent over the complex

number field. The family A(n) of such groups will be classified into two subfam-

ilies — one is the family of (H.C)-groups and the other is the family A(n — 1) x {C*},

C* being the multiplicative group of nonzero complex numbers.

In §6 we shall prove that a complex abelian Lie group containing no complex

torus of positive dimension contains no compact complex submanifold of positive

dimension, and we shall remark that the group constructed in Theorem 3 [5]

does not contain any compact complex submanifold of positive dimension.

In §§7, 8 we shall introduce the notion of nonsingular matrices of n rows and

m columns for n > m and the one of nonsingular abelian Lie groups of dimension

n and of rank n + m. In the final part of §8 we shall classify the family of all

nonsingular complex abelian Lie groups of arbitrary dimension. Nonsingular

complex abelian Lie groups contain no complex torus of positive dimension.

Received by the editors May 28, 1965.

(>) This research was supported by the Air Force Office of Scientific Research.

200



NONCOMPACT COMPLEX ABELIAN GROUPS 201

However, the converse of this statement is not always true, which causes compli-

cations in the classification of complex abelian Lie groups.

In §§9-11 we consider abelian Lie groups of dimension 3 and of rank 5. In fact,

in §10 we classify singular groups containing no complex torus and in §11 we

classify (H.C)-groups of dimension 3 containing a complex torus of 1 dimension

not as a direct summand.

In §12, summarizing the results obtained in the preceding sections we can

classify all connected noncompact complex abelian Lie groups of dimension 3.

In summary, we may say that, in a sense, most of noncompact complex abelian

Lie group G is a Lie group containing no compact complex submanifold such

that every holomorphic function on G is necessarily a constant.

In the sequel, we shall denote, as usual, by C, R, Q and Z the ring of all

complex numbers, real numbers, rational numbers and rational integers respec-

tively.

2. Preliminary lemmas. In this section we shall recall some results in [5] and

prove some preliminary lemmas which will be used later.

A complex Lie group G will be called a Stein group if G is a Stein manifold as

a complex manifold. G will be called an (H.C)-group if every holomorphic func-

tion on G is a constant. Every connected complex Lie group G contains uniquely

a closed connected complex normal subgroup G° such that the factor group G/G°

is a Stein group and that G° is an (H.C)-group. Every (H.C)-group is

abelian.

Let G be an n-dimensional connected complex abelian Lie group. Then G is

isomorphic to the factor group C"/r of C by a discrete subgroup T of C. The

group r is generated by Uy,---,uk which are linearly independent over R. The

number k will be called the rank of G.

Definition 2.1. Let P be one of the rings C, R, Q and Z. We denote by

9Jl(n,m;P) the P-module of all matrices of n rows and m columns with coef-

ficients in P, where n,m = l. We identify P" with 5ül(n,l;P). For any

Me3Jl(n,m;P) we denote by rMe95l(m,n;P) the transposed matrix of M. We

write 2R(n, n;P) =9Ji(n,P) and the group of all element Me9Ji(n,P) with non-

vanishing determinant, detM # 0 (in the case P = Z, detM = ± 1) will be de-

noted by GL(n,P). For Me3R(n,m;P) and JVe9Jî(n,/;P) we denote by

(M,N) (e2R(n,m +/;P)) the matrix obtained by arranging M as the first m

columns and JV as the last / columns.

We denote by E„ the unit matrix of degree n.

For n> m, we denote by 9Jl*(n,m;C) the set of all Ve 9Jl(n,m;C) such that

e\,e2,---,e„, v,,---,vm are linearly independent over R, where e¡ is the ith unit

vector of C and where we have put F= (i>i,---,t>m) with v¡e C (i = l,2,---,n).

We remark that SR*(n,l;C) = C"- R" holds. For any VeWf(n,m;C) we de-

note by r(F) the discrete subgroup of C" generated by c,, ■■•,e„,v1,---,vm.
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For any elements u1,---,ukeP" we denote by {uit'~,uk}P the set of all elements

Ej.jCittj with c¡gP (i = l,—,fc).

Lemma   2.2.   Let

M =  (ß   ^)eGL(n + m,Z)

with ^4G9Jl(n,Z) and let Fe9Jl(n,m;C). Suppose there exists F'e9Jl(n,m;C)

such that

(A+ VB)V = C+VD.

Then det(A + VB) # 0. Moreover, if n>m and F'G9JÎ*(n,m; C), then

FGÏÏR*(n,m;C).

Proof. Put (h = A + VB. Then, </>(£„, V) = (A + VB, (A + VB)V)

= (A + VB,C+VD) = (En, V)M. Hence we have <j>(En, V')M "l = (En, V). Put-

ting (En,V')M~i =(u1,u2,---,un+m)mthuieC,weha\e(l)(Ui) = ei(i = l,2,---,n).

Hence det</>#0. Further, if Ve3Jl*(n,m;C), we assert that uit---,un+m are

linearly independent over R. In fact, if  2Zr¡u¡ = 0 for 0 # '(ru ■■•,rn+m) e Rn+m,

put Vi.■••«'•»+») = M_1 '('"i»•"»'■»+m). Then the equality (£„,F')-'(r'i>---.'-»+m)

= (M1,---,Mn+m)-M-M~1-'('-i>---.'-B+m) = 0 means that e1;—,e„,t/„—,t>; are

linearly dependent over R, where we have put V = (t/,, •••,v'm). Hence our as-

sertion is proved. Since u,, •■■,un+m are linearly independent over R and

since (^>(u,),-•-,(/)(«„ + „,)) = (£n, F), e1,---,e„,v1,---,vm are linearly independent

over R, where F = (vlt ■■•,vm). Hence Fe9Jl*(n, m;C). Thus Lemma 2.2 is proved.

Lemma   2.3.   Let

M =  (i    ^eGL(n + ,n,Z)

with AeySi(n, Z) and V, F'e9Jl(n,m; C). Put

wirt i'e3)i(n,Z). Then, (A + FB)F' = C + FD no/ds ¿/ ana" oniy i/

(X' + V'B')V = C + V'D' holds.

Proof. Put <h = A + VB. Suppose that (A + VB)V = C + VD holds. Then,

as is shown in the proof of Lemma 2.2, we have </>(£„, V) = (E„, V)M. Hence

we have (En,V')M~l = ^_,(£„,F) = (<p~K<¡>~ V). Thus we have A' + V'B' = <¡>~l

and C + V'D' = (¡>~lV, which imply C + V'D' = (A' + V'B')V. The converse

is clear from what we have proved. Thus Lemma 2.3 is proved.

Lemma 2.4. Take V,V'e 9Jl*(n, m ; C). Then two complex Lie groups C"/r(F)

and C"/r(F') are (holomorphically) isomorphic, if and only if there exists a

matrix MeGL(n + m, Z) satisfying the following condition.
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(2.1) (A + VB)V = C + VD

where

wirb /4e2R(n,Z).

Proof. Suppose C"/r(F) ~ C"/r(F'). Then the isomorphism $ of C"/r(F)

onto C"/r(F') induces an automotphism </> of C such that (¡>(F(V)) = F(V).

Hence {4>(ey), •••, (h(en), 4>(v ,),-•-, <KO}z = {«i» — » emv[,-, v£z, where

V=(vl,---,vm)and V=(v'y,---,v'm).Jhcn, there exists a matrix M = (aiJ)e<Xll(n + m, Z)

such that
n m

e¡ =   Z <p(e,-K¡ +   2 (p(vk)an+k4,
j=l k=1

(2.2)
n m

»¿ -  E 4>(ej)aJtn+k +  S <f>(vs)an+S:„+k
j=l s=l

for z = l,--,n; fe = l,--,m. We see readily that M e GL(n + m, Z). Considering

(¡) as an element GL(n, C) we can write (2.2) as the following matrix form.

(2.3) (En,V) = <h-(E„, V)-M.

The right-hand side of (2.3) is equal to (cj)(A + VB), <j>(C + VD)). Hence we have

£„ = 4>(A + VB) and V = (¡>(C + FD).Then, </> _1= A + VB and (¡)~lV' = C+ VD

imply the equality (2.1).

Conversely, if (2.1) holds, we see by Lemma 2.2 that detL4 + VB) # 0. Hence

we can put $ = (A + VB)'1. Furthermore we see that (2.3) holds, which means

the conditions (2.2). Therefore we have 4>(F(V)) = F(V). Then, <j> induces an iso-

morphism of C"/r(F) onto C"/r(F'). Thus Lemma 2.4 is proved.

We can easily prove the following:

Lemma  2.5.   Let VeWl*(n,m;C) and

m=(b   £)eGL('J+"l'Z)

with AeW(n,Z). Put A + V ■ B = (uu — ,«„+,„) with uteC (i = 1, —,» + m).

Then F(V) = {uy,---,un+m}z holds.

Lemma 2.6. Suppose ax ,a2, ■■■,aneZ (n 2; 2) are coprime: (ay,a2,---,a„) = 1

and ay # 0. Then, there exists a matrix M = (aij)e9Jl(n, Z) szzcb rbaf a<j = a¡

(j = 1,2, ■■•,«) and that detM = 1.

Proof. The matrix M is constructed inductively as follows. Putp¡ =(a1,"-,aB_1)

(greatest   common   divisor   of   au •••,a„_1),   ak = pt-al    (k = 1, ••-,n — 1),
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Pi = (a\,a\, —, a»1-2), alk=p2-a2 (k = 1, -, n - 2), p3 = (a?,-,a„2_3),

ak=P3'<*k (k= l,---,n — 3) and so on. Then, since (p¡,a'nZ\+,) = 1, there

exist s¡,t¡eZ such that i,p; — S;a¡,-!+i = 1 for / = 1,2,—,n — 1, where we have

put a° = a„. Next, put 0^ = s,ay for 7 = 1,2, —,n —i; j = l,2,—,n —1 and de-

fine M as follows:

(2.4) AÍ =

ln-l

b2i b22

bn bi2

0

a«

0

¿>2,n-2        *2    0

Now we prove that det M = 1 by induction on n. If n = 2 the lemma is clearly

true. Suppose that Lemma 2.6 is true for n — 1. Then by expanding det M with

respect to the nth column we have

detM = (-l)"_1aB

K-i,i        t,,_1    0

+ fi

a, a2   .   .   .

K-1,1   t„-i   0  .

bt:

a„-i

. 0

b2i        b22 .    .   .   . t2

0

Vn-l

(-a^i+t^i)

bn-í,l    '„-1        0

«i-i

"21 o22   ...      f2

= 1,
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where we have used the induction assumption in the third equality. Thus Lemma

2.6 is proved.

3. Decomposition of complex abelian Lie groups. In this section we shall prove

that any connected complex abelian Lie group is isomorphic to the direct product

of an (H.C)-group and a Stein group (cf. [2]).

Lemma 3.1. Let G be a connected complex abelian Lie group and G' be a

connected closed complex subgroup of G. If the factor group G/G' is isomorphic

to C (or C*), then G is isomorphic to the direct product G' x C (or G' x C*

resp.).

Proof. We can suppose that G = C"/r, where T is a discrete subgroup of

C. Let 4> be the natural homomorphism of C onto G. Let IF be the connected

component of </>-1 (<?') containing the unit element e of G, The restriction

q>l = <t>/W of (j) to IF defines a covering map of W onto G'. Hence

G' aWI<p~\e)=WIWriT. Hence IF + r/r = G'.

(1) Assume that G/G'^C.

Since (CnIW)l(W + T/W) s C"/(IF 4- T) ~ G/G' s C, and since Cn\W ~ C, we

have W + Y=W, whence r c IF and so W n T = r. Hence G' m W¡T. Now

we take a 1-dimensional complex subspace IF' of C such that C = W + W'

(direct sum). Then G = C¡T = (W + W')¡T m W¡T xW'^G' xC.

(2) Assume that G¡G' c±C*.

In this case IF + T/W must be an infinite cyclic group, say, IF + T/W = Za,

where à means the coset of W+ TJW containing the element aeT. Clearly

a$W. Now put T, = T n IF. We assert that T = T^+Za (direct sum). In fact,

take an element b e Y, then ij/(b) = n\¡/(a) for some neZ, where \j/ is the natural

homomorphism of C" onto C/W. Then b — na eF n W = rlt and so

fceT, +Za. We see easily that r,n,Za = {0}, since a £ IF. Since C"= JF+Ca,

we see that G = C"/r = W{Tt + Ca/Za ~ G' x C*. Thus Lemma 3.1 is

proved.

Theorem 3.2. Let G be a connected complex abelian Lie group. Then G

is isomorphic to the direct product G° x Cm xC*" (m,n ^ 0).

Proof. Since G¡G° is a Stein group, G/G0 =* Cm x C*n by Proposition 4 [4].

We prove the theorem by induction on m + n. Suppose that m ^ 1. Take a

connected complex subgroup Gj of G such that (¿»(GJG0) = Cm_1 x C*n, where

0 denotes the isomorphism of G/G° onto Cm x C*n. Then G/Gt ca C. Therefore,

by Lemma 3.1, we have G ~ G, x C. Now by the induction assumption

G^G0 x Cm_1 x C*", where we have used the fact that (G,)° = G°. Hence we

obtain G ^G° x Cm x C*n. In the case m = 0, n 2; 1 we can see in the same

argument G ^ G° x Cm x C*n by using Lemma 3.1 for the case G¡Gi sa C*.

Thus Theorem 3.2 is proved.
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Corollary 3.3. Let G be a connected complex abelian Lie group. Then G

is holomorphically convex if and only if G ^T x Cm x C*" (m,n = 0), where T

is a complex torus.

Proof. By Theorem 2 of [5] G is holomorphically convex if and only if G°

is compact, i.e. G° = T is a complex torus. Hence we can apply Theorem 3.2.

Proposition 3.4. Let G°y,G° be (U.C)-groups and let Slt S2 be Stein groups.

Put G^G^xSi for i = 1,2,.  Then, Gy^G2 if and only if G?^G2°   and

S¡ « S2.

Proof. Suppose dimG° 2: dimG2. If (j) is an isomorphism of G y onto G2,

put <p(Gl) = G'y. Then G\ c G°2 since (G,)° = G,° (i = 1,2). Hence G'y = G°2.

Then <p induces an isomorphism of Gy¡G° onto G2jG2. Thus Proposition 3.4

is proved.

From Proposition 3.4 we obtain the following

Corollary 3.5. Let Gy and G2 be connected complex abelian groups. Let

Gi = G°i x Cm x C*": (i = 1,2) be the decomposition as in Theorem 3.2. Then

Gy ä G2 if and only if Gy s¡ G2 and mt = m2, n¡ =n2.

Remark 3.6. By Corollary 3.5 we see that in order to classify connected

complex abelian Lie groups it is sufficient to classify all (H.C)-groups.

4. Characterization of (H.C)-groups.

Lemma 4.1. Let VeW(n,m;C) and G = C¡T(V). Suppose there exists an

element V" e SR*(n-l,m;C) such that G^C¡F(V), where

V = iJ^em(n,m;C).

Then, there exists a nonzero vector xeQn+m such that

(4-1) ('F,£Jx - 0.

Proof. Since Cn¡T(V) a C/F(V), there exists, by Lemmas 2.3 and 2.4 a

matrix M e GL(n + m, Z) such that

(4.2) (A+V'B)V = C + V'D,

where we have put

Hi 9
with A e 9JÎ(n, C). From (4.2) we have

AV-C = V'(D-BV)=^D-BV^).
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Putting V'"=V"(D-BV), we have

(4-3) AV~C=^¡).

Now we put

- " ( \ )
with A'e'm(n-l,n;Z),aeZn and

C
(-;)

with C'em(n-l,m;Z),ceZm. Then from (4.3) we have

'aV+'c = 0.

Putting

0  -
we obtain ('F,Em)x = 0. Thus Lemma 4.1 is proved.

Lemma 4.2. Let G = C¡T(V) with Ve^R*(n,m;C). Suppose there exists a

nonzero vector x e Qn+msuch that(4.1)holds. Then there exists V" e S0l*(n — l,m;C)

such that G sa C/r(V) with

-C) em.*(n,m;C),

where 0 = (0,-,0)eSR(l,m;C).

Proof.   By (4.1) we can suppose that there exist 0#ae Z",ceZm such that

(4.4) aV= c.

Moreover, by changing indices {1,2, ■■-,«} and by multiplying rational numbers

if necessary, we can suppose that a = (a,, ■■•,a„), ay # 0 and (a1,a2, •■•,an+m) = 1

(coprime), where we have put c = (an+1,---,a„+m). Put

Py =(a1,---, aB+m_i), ak = pya¡       (fc«= 1,2,—,» 4-m - 1),

p2 = (aj,a],---,a„1+m_2), «i = p2flt   (fc = 1,2,—,n + m - 2),

P3 = (af,fl2,-",an2+m_3),at = p3at3    (fe = 1,2,—,» + m-3),

and so on. Then we have (Pi,aB+J = 1, (p2,an1+m-i) = 1, (P3,a2+m-2) = 1 and

so on. Hence there exist s¡,t¡eZ such that

(4.5) í¡+1p¡+1-sf+1czB+m_i = l
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for i = 0,1,—,n + m - 1, where we put a°+m = a„+m. In this process, we take

s;+1 = + l, ii+1 = 0 if aj,+m_; = ± 1 holds. Next, put biJ = siaJ for

j = l,2,---,n + m — i; i = 1,2,—,8 + m — 1. Let M' be the matrix obtained

by replacing n by n + m in (2.4). Then by Lemma 2.6 M'eGL(n + m,Z). Put

* ' (b 5)
with A'e 93î(n, Z). Then we have

(4.6) B

rma

rm-ia

Lfifl

. r, ~Pi

for i = 1,2,-.-.m.Put C(fc) = (*„+„ •••,aB+m_»,0,-,0)eZmfor fc = l,2,-,m-l.

Then we have

(4.7) D =
í»-l«2 + ',»-lC(»t-l)

im-2e3 + rm_2C(m-2)

U1É>m + r,C(l)

where c, (i=»l, •••,!») are unit vectors in Cm.

We assert that det(BV- D) # 0. In fact, by using (4.4), (4.6) and (4.7) we have

BF-Z) =

rma

r,a

[ rmC

V-D =

Lr,C   J

i«-i*j + ',«-iC(m-l)

lhem + r\C(l)

rman+l — tm

0

0 0 rian+m-tl   j

Hence,  if det(BF— D) = 0, there  exists  an  index  i  (1 ^ ¡ ^ m)   such  that

'•ifl.+m-j+i - ', = 0. By (4.6) we have

(4.8) ■S|«„ + m-¡ + l -P(íj = 0.
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On the other hand, we see that aB+m_i+1 = pa„,~+B_i+1, where we have put

p = PiP2 ••• p¡-i. Hence (4.8) is written as follows

(4.9) SiPaLVn-i+i-M = 0

By (4.5) we have

(4.10) -*iaîr+»-i+i + ft»i-l-

Adding (4.9) to (4.10) we obtain

(4.11) siaBT+1B-i+,(p-l) = l.

Since all numbers in the left-hand side of (4.11) are integers, we see that

«irA-i+i = ±i-
Then, by the process of finding s(, t¡, we have t¡ = 0 and s¡ = + 1. Then by (4.9)

we obtain (+l)p(±l) = 0, which is a contradiction. Thus we have proved

our assertion det(BF —D)#0.

Now we denote by M the matrix obtained from M' by exchanging the first

row and the nth row. Put

-(¡3
with A e 9Jl(n, Z). Then the nth row of C - AV is c - aV = 0. Hence, if we de-

fine V by V = (C- AV)(BV- JO)-1, we see that the nth row of V is zero.

Moreover, by the definition of V, we have V'(BV—D) = C — AV, and so

(A + V'B)V = C + V'D. Hence, by Lemmas 2.2-2.4, we see that V eS0i*(n,m;C)

and that G = Cn¡T(V) at Cn¡T(V). Thus Lemma 4.2 is proved.

Proposition 4.3. Ler G = C/r(V) with VeW*(n,m\C). Then, G contains a

closed complex subgroup Gy such that G a. Gy x C* if and only if there exists

a nonzero vector xeQn + m such that (4.1) holds.

Proof. If G ~ Gy x C*, by Corollary 3.5, we see that Gy ~ C'^TCVi) for

some VyeW(n-l,m;C). Putting

V = (V^em*(n,m;C),

G~Cn/r(F'). By Lemma 4.1 there exists a nonzero vector xeQn+m such that

(4.1) holds. The converse is also true by Lemma 4.2. Thus Proposition 4.3 is proved.

We can now characterize (H.C)-groups as follows (cf. [2]).

Theorem 4.4. Let G be an (H.C)-growp of dimension n. Then G is isomorphic

to C/r(V) for some Ve 9K*(n,m;C) satisfying the following condition:

(4.12) xeQ"+m,('F,£Jx = 0 imply x = 0.
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Conversely any such group C¡r(V) satisfying (4.12) is an (H.C)-group.

Proof. If G is an (H.C)-group, then G is a connected complex abelian Lie

group (§2). Hence G rs CjT for some discrete subgroup of C. Consider

the complex subspace U of C "spanned by T. We assert that U = C. If not,

there exists a complex subspace IF # {0} of C such that C" = U + W (direct

sum). Then G ^ CfT c± UjT x IF, which is a contradiction. Since U = C, we

can find a system of generators x1;—,s„+m of T such that s,,---,s„ are linearly

independent over C. Take an automorphism $ of C such that <j>(si) = ei

(i = 1,2,—,n) and put d)(s„+J) — Vj (j = 1,2,—,m). Then it is clear that

GaC/TtF) for F= (y„-,pjeäll* (n,m;C). Now, by Proposition 4.3 the

matrix F satisfies (4.12).

Conversely, suppose G = C"/r(F) satisfies (4.12). If G is not an (H.C)-group,

by Theorem 3.2, G ^ G0 x Cl x C*m for some /, m with / + m > 0. We shall

see that Z = 0. In fact, if Z>0, put G° = C"7r(F0) for n0 = n-(l + m),

F0eaR*(n0,m0;C). Then G° x Cl x C*m=¿ C"/r, where T contains only n - I

vectors of C linearly independent over C, which is a contradiction. Since / = 0,

G = G° x C*m(m > 0). Then by Proposition 4.3, there exists a nonzero vector

xeQ"+m satisfying (4.1), which is again a contradiction. Thus Theorem 4.4 is

proved.

5. Classification of (H.C)-groups of dimension n and of rank n + I.

Definition 5.1. Let (C - R")' be the set of all v = '(a„ — ,a„) e C - R" such

that l,a1,---,an are linearly independent over Q. For M = (a;j)eGL(n + 1,Z)

and v = t(a1,—,0La)e(C- Ä")' we define r/ = Jtf(t>) = '(a',,•••,<)eC" as follows:

(5.1) a'; =  (a/.„+i - £ auajjl( 2   a„+i,A-a„+i,n+i]

for i = 1,2,—,n. We note that the denominator of (5.1) does not vanish since

1,a,, — ,a„ are linearly independent over Q.

Lemma 5.2. Let veC- R". Then, C/r(v) is an (H.C)-group if and only

if ve(C-Rn)'.

In fact, we see readily that the condition (4.12) for m = 1 means that

l.a,,—,a„ are linearly independent over Q.

Lemma   5.3.   Let ve(C- R")' and M e GL(n + 1, Z). Then M(v) e (C - R")'.

Proof. Put v' = M(v). By a simple calculation we see that the equalities (5.1)

mean (A + v'B)v = C + dv' for

"-ii %
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where   AeM(n,Z).   Then   by  Lemma  2.4,   C"IT(v) a C*/TY>') holds. Hence,

by Lemma 5.2, CfT(v') is an (H.C)-group and so c'e(C" - R")'.

Lemma 5.4. Lei p,»'6(C" - IP)'. Then, C"IT(v) a C/T(v') if and only if
there exists an element MeGL(n + 1, Z) stzcb that v' = Ñ(v).

In fact, the condition (2.1) for m = 1 is equivalent to (5.1) if Laj,—,a„ are

linearly independent over Q. Thus Lemma 5.4 is proved.

Since it is easily seen that [MM']~ =MoA$' for M,M'eGL (n+ 1,2) we

have the following

Lemma 5.5. The group GL(n+l,Z) operates on (C — R")' by the action

(M,v)-*M(v).

Definition 5.6.   We denote by A(n) the set of all complex abelian Lie groups

C"ir(v) with v e C — R" (two isomorphic ones being of course identified).

We can now classify ¿(n) as follows.

Theorem 5.7. IFe denote by A°(n) (A'(n) resp.) the subset of all (H.C)-groups

(non (H.C)-growps resp.) in A(n). Then A(n) can be classified as follows:

A(n) = A°(n)\j A'(n) (disjoint),

A'(n)= A(n-l)x {C*},

A°(n) = (C - Rn)'/GL(n + 1, Z).

In fact, if GeA'(n), then by Theorem 3.2 G =s G0 x Cl x C*m. However,

we see / = 0 by the same argument as in the proof of Theorem 4.4. Hence

G ziGyxC* for Gy = G°x C*m_1. The group Gy is easily seen to be an ele-

ment of A(n — 1). On the other hand, it is seen by Lemmas 5.2-5.5 that there

exists a natural one-one correspondence between ^4°(n) and the quotient space

of (C - R")' by the action of GL(n + 1,2). Thus Theorem 5.7 is proved.

6. Nonexistence of compact complex submanifolds.

Theorem 6.1. Let G = C/r(v) be an element of A°(n). Then G contains

no compact complex submanifold of positive dimension.

Proof. Let U be the real subspace of C spanned by F(v) over R, and let IF

be the real subspace of C such that C = U + W (direct sum). Then G is iso-

morphic to K x W= K x R"'1 as a real Lie group, K being the maximal com-

pact subgroup of G. Let/ (z = 1,2,•■ -,n — 1) be the real-valued function on G

defined by/ (k,Xy,---,x„-y) = x¡ for keK, x¡e R. Then/ is a plurisubharmonic

function on G, since d2f¡dZudZv = 0 for p,v = l,—,n, {Zy,---,Z„} being the

complex coordinates on C. Now suppose that there exists a compact complex

submanifold X in G. Then the plurisubharmonic function /, | X on X must be

a constant at (cf. e.g. [3]). Put «»(a,,-, a„_,). Then X is contained in K x {a}.
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Hence we can suppose that X is contained in K = K x {0}. Since AT is a complex

submanifold of G, the tangent space Te(x) of X at e is contained in the maximum

complex subspace ï0 of the tangent space Te(K) of K at e. Since dimcï0 = 1,

dimcX ^ 1. Suppose dimcX = 1. Now, for x e K, let Dx be the maximum com-

plex subspace of the tangent space TX(K) of K at x. It is clear that the assignment

x -» Dx is a real 2-dimensional involutive distribution D on K in the sense of

Chevalley [1]. Then X is an integral manifold of D. Since X is compact, X is a

maximal integral manifold of D, containing the unit element e. On the other

hand K0 is a maximal integral manifold of D containing e, where K0 is the sub-

group of G corresponding to the Lie subalgebra ï0. Hence X and K0 must coin-

cide by a theorem of [1]. Hence K0 must be compact. Then by Theorem 2 [5]

G is holomorphically convex and hence G is not an (H.C)-group, which is a contra-

diction. Thus Theorem 6.1 is proved.

Lemma 6.2. Let K be a Lie group. Let D = {Dx} be an involutive distribu-

tion on K invariant under left translations on K. Let X be a closed integral

manifold of D containing the unit element e, i.e. TX(X) cz Dx for any xeX.

Then there exist a neighborhood U of e in K and an integral manifold X' of D

in  U such that X' =>Xr\U and   that dimX'=dimD.

Proof. Let K0 be the maximal integral manifold of D containing e (dimZC0

= dim D). Then K0 is a subgroup of K. If dim X = dim D, the lemma is clearly

true. Suppose dimX < dimD = dim Te(K0). Take an element Y, g Te(K0) - Te(X).

Then there exists a neighborhood Ul of e such that L'0F, £ Ta(X) for a e Ut C\ X,

where L'a denotes the differential of the left translation La corresponding to a e K.

Clearly l!aYxeDa for any aeK. We shall denote by expiF, the one-parameter

subgroup of K whose tangent vector at e is F,. Now we put

X1={(exptY1)x\xeX CiUi, |/|<e,}.

Then X, is an integral manifold of D for sufficiently small e, > 0. If dim Xt < dimD,

take again an element Y2eTe(K0) — Te(X,). Then there exists a neighborhood

U2 of e such that LaY2 i Ta(X) for a g U2 O X,. Put

X2 = {(exp t Y2)x\x eW1nU2, \ t \ < e2}.

Then X2 is an integral manifold of D for sufficiently small e2 > 0. If dimX2 <dimZ)

take an element F3 e Te(K0) — Te(X2) and so on. We can finally find a neighbor-

hood U and an integral manifold X' satisfying the required properties. Thus

Lemma 6.2 is proved.

Corollary 6.3. Notations being as in Lemma 6.2, and K0 being the maximal

integral manifold of D containing e, we have XczK0, if X is connected.

Proof. Take a point peX, then p~ 1X is an integral manifold of D containing

e. Therefore, by Lemma 6.2, we can find a neighborhood Up of e and an integral
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manifold Xp of D in Up (depending on p) such that Upr\p~1XcXp<=K0.

Put pXp = Kp. Then Kp is an integral manifold of D containing p and dim Kp

= dim K0. Now put X0 = {p e X | Kp c K0}. It is clear that eeX0 and that

X0 is open in X. We shall prove that X0 is closed in X. Take p0eX0 ni.

Since ATpo ni is open in X, there is a point px eKPo nX0. Then, since Xpo

and Xpi are both integral manifolds of D containing py and since

dimKP0 = dimKPi = dimD, there exists a neighborhood 1/ of p¡ such that

JCPl CsU = Kpo n Í/. On the other hand, since pt e X0, KPi c K0 holds. Hence

Kpo r\U œ K0 and so Kpo c K0 since K0 is a maximal integral manifold of D.

Therefore p0eX0, whence X0 is closed in X. Since X is connected X = X0

holds, which implies X <= K0. Thus Corollary 6.3 is proved.

Theorem 6.4. Let G be a connected complex abelian Lie group. If G con-

tains no complex torus of positive dimension, then G contains no compact complex

submanifold of positive dimension.

Proof. Suppose that there exists a connected compact complex submanifold

X in G containing e. Let K,K0 be the same subgroups of G and D = {Dx} be

the same distribution on K as in the proof of Theorem 6.1, which shows that

X c K and that X is an integral manifold of D. Then by Corollary 6.3 we have

X c K0. Let K' be the maximal compact subgroup of K0 and ï' be the Lie al-

gebra of K'. Put iy =1' nj(-l)V and take the subgroup Ky of K corresponding

to ïy. Then by the same argument as above we see that X c Ky. We consider

again the maximal compact subgroup K" of K¡ and let ï" be the Lie algebra of

K". Put ï2 =i" r\y/(—l)l" and take the subgroup K2 corresponding to I2, and

so on. Thus we have a sequence of complex subgroups Ky K2-- such that Kt => X

for i = 1,2, •••. Since G does not contain any complex torus of positive dimension,

we see that Kt # Ki+1 if dim K¡ > 0. Hence we have X = {e}. Thus Theorem

6.4 is proved.

Remark 6.5. We see that the group G constructed in Theorem 3 [5] contains

no compact complex submanifold of positive dimension.

Remark 6.6. Using the fact that the set of all singular points of a complex

analytic set is also an analytic set, we can prove that the group in Theorem 6.4

contains no compact complex analytic set of positive dimension.

7. Nonsingular n X m matrices with n > m.

Definition 7.1. We shall call a matrix VeW(n,m;C) (n>m) nonsingular

if detL4 + VB) 5¿ 0 for any

M =  (ß     CD)eGUn + m,Z)

with Ae3Jl(n,Z). Otherwise F will be called singular.
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Lemma  7.2.   A matrix Ve3Si(n,m;C) (n>m) is nonsingular if and only

if det(Z) - BV) + 0 for all

M - (i   ^GGL(n + m,Z)

with Ae*m(n,Z).

Proof.   Assume F is nonsingular. Take M g GL(n + m, Z) and put

with ¿,A'G5Dc(n,Z). Since det04' + FB')# 0, we can define F'eSR(n,m;C) by

(7.1) (A' + VB')V = C + VD'.

The equality (7.1) is equivalent, by Lemma 2.3, to the equality

(A + V'B)V = C + V'D, which implies AV-C =V'(D - BV), which is rewritten as

or

'(D-BV)('V',-Em) = ('V,-Em)'M,

which is equivalent to

'(D-BV)(V',-Em)'M-x = ('V,-Em).

Now, put '(V',-EjM~l = (u,, —,un+m) with u¡GCmfor ¿=1,2,—,n + m.

Then, we have '(D — BV)u„+i = — e¡ (i = 1, —,m), which shows that

det(D - BV) # 0. Conversely if det(Z) - BV) ¿ 0 for any

M = (ß   ß)eGL(» + w>z)>

we can define V by the equality

A'V-C = F'(Z)'-B'F),

which is equivalent to (A + VB)V = C+VD. Hence by Lemma 2.2 det(A + VB)

# 0. Thus Lemma 7.2 is proved.

Lemma   7.3.   Let FGSR(n,m;C) (n>m) be nonsingular. Take

M =  (ß    ß)eGLin + m,Z)

withAem(n,Z) We define F'e2R(n,w;C) by

(7.2) (A + VB)V = C + VD.

Then V is also nonsingular.
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Proof.   Take M, e GL(n m, Z) and put

«■ - (i S)
with AteW(n,Z). Put

«—.•<-*-(£ £)-«'-(£ SD
with A2,A'2em(n,Z). We define F*e9K(it,m;C) by

(7.3) (A'2+VB'2)V" = C'2 + VD'2.

We shall prove the following

(7.4) (A, + V"BX)V = C, + V"D1.

Put

with /Fe9Jl(n, Z). Then we have

¿2 = ¿M' + QB',    C2=/liC' + C^',

(7.5)

B2 = BiA' + DiB',   D2=BlC + Z),D'.

Now from (7.3) and Lemma 2.3 we have

(7.6) (A2 + VB2)V=C2 + V"D2.

Inserting    (7.5)   into   (7.6)   we   have    (AtA' + C^B')V + V"(BYA' + D, B')V

= AyC + CtD' + V"(B^C + DiD'), and so

(7.7) AiiA'V- C) + V"BV(A'V- C) = C,(D' - B'V) + F"D,(D' - B'V).

On the other hand, from (7.2) and Lemma 2.2 we have (A' + V'B')V= C + V'D'.

Hence we have

(7.8) A'V-C = V'(D'-B'V).

Inserting (7.8) into (7.7) we obtain

(7.9) (Ai + V"B¿)V(D' - B'V) = (C, + VDl)(D' - B'V).

Since F is nonsingular det(D' — B'V) # 0 by Lemma 7.2. Hence (7.9) implies

(Ai + V"Bi)V' = C, + V"Dl, whence (7.4) is proved. Then by Lemma 2.3 we see

(A\ + V'B\)V" = C, 4- VD\,

where we have put
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«¡--(ÄS)
with A'yeWfaZ).    Hence,    by    Lemma    2.2,    det(A[ + V'B'y) ¿0.    Since

M,eGL(n+m,Z) was arbitrary, we have proved that V is nonsingular.

Definition 7.4. We denote by 2R**(n,m;C) the set of all FeäR*(n,m;C)

such that F is nonsingular. For

M =  (b    ß)eGUn + m,Z)

with^e9K(n,Z) and for FeSR**(n,m;C) we define V = M*(F)e5Dl(n,m;C) by

(7.1) (A' + VB')V = C'+ VD',

where we have put

«-* ■ (Í 5)
with ,4'eäJt(n,Z).

Lemma 7.5. For any Fe9JÎ**(n,m;C) and M e GL(n + m, Z), we have

M*(F)eäR**(n,m;C).   Moreover for  any   M, My e GL(n + m, Z)   we   have

(MMy)*  = M*OM*y.

Proof. The first half is the consequence of Lemma 7.3. Next, we put

V' = M*(V) and V" = M*y(V). Then we have, by Lemma 2.3, the following

two equalities:

(7.10) (A+V'B)V= C + V'D,

(7.11) (Ay  +   V"By)V'=     Cy   +   V" D y .

Multiplying D — BV from the right to (7.11) we get

(7.12) (Ay + V'By) V'(D - BV) = (C + V"Dy)(D - BV).

From (7.10) we have AV - C = V'(D - BV). Inserting this into (7.12) we obtain

((AyA  +  CyB) +   V"(ByA  + D yB))V    =     AyC +  CyD  +   V"(ByC + D yD) ,

which means (MtM)*(V)= V" = M*(M*V). Thus Lemma 7.5 is proved.

Remark 7.6. From the above considerations we see that the group

GL(n+ m,Z) operates on SR**(n,m;C) by the action (M,V)-y M*(V). In the

case m = 1 < n, this operation coincides with the one considered in Lemma 5.5.

8. Nonsingular abelian Lie groups of dimension n.

-     Theorem 8.1.   Ler Fe$0i**(n,m;C) (n > m). Then G = C/r(V) contains no

complex torus of positive dimension as a subgroup.
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Proof. Suppose G contains a complex torus T of dimension t > 0. We shall

prove that there exists M e GL(n + m, Z) suchthat detL4+F£) = 0, where

-6 3
with Aem(n, Z).

First we denote by K the maximal compact subgroup of G and g(t,t resp.)

the Lie algebra corresponding to G(K,T resp.). Put I0 =ï n^/(-l)ï. Then it

is clear that t cf0. Identifying g with C we see that t contains 2r vectors

Uy,u2,---,u2teF linearly independent over R. We can suppose that ult ••-,«,

span the vector space t over C. We denote by W the real vector subspace of

C spanned by ut, —,«,+< over R. We can suppose IF n F is generated by

«i»—»«t+i' Put

n m

«¡ =   Z a/e,- +   E foJ'Ufc,
J = 1 (i = 1

where aj,bkeZ for i = 1,2, —,í 4-1; J «■ 1, —,»; fc = 1, —,m. We shall prove

that there exists a matrix M e GL(n + m, Z) such that M = (ai;) satisfies the fol-

lowing equalities

au = a),    i = l,—,«; j = 1,— ,f 4-1,
(8.1)

ay = bj- ", z' = n + 1,—,n + m; j = 1,—,< + 1.

For such an

-G3
with AeW(n,Z), we have ,4 + VB = (a¡¡) with au = a, + Sj.tbja^, where

we have put F= (v¡, •••,fm)> ^ ==(oti)»*"»a»))- Then, we have A + VB =

(uy,---,ut+y,A') with A'eyji(n,n — t — 1;C). Since uf+1et = {«i>-".«»}c> we

see that det(A + VB) = 0. It is now sufficient to prove the existence of M satis-

fying (8.1).

We denote by qb the natural projection of Conto C/W. The map (¡> is of

course an K-linear map. Since <£(r) is finitely generated abelian group without

torsion, there exists a system of generators{</>(x i ), • • •, <Kxs)} of cp(F) with x y, ■ ■ ■ ,xs e F

such that every element a of <p(F) can be written uniquely as

s

(8.2) a = S     a^Xi),       a¡eZ.
¡=i

Now,   we   assert   that   every   element   yeT   can   be   written   uniquely   as

y= Ttsi = yCixi+ X'jVydjUj,   c¡,djeZ    for    z' = l,—,s;   /,—i + 1.    In   fact

4>(y)= T,i = yCi(h(Xi) = (j)('Lsi = yC¡xl) for some c¡eZ. Hence y- Zc¡x¡eIFnr.

Therefore y— Y,cixi= HdjUj for some djeZ by the assumption for W. The
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uniqueness of the expression (8.2) is easily verified. Since T is a discrete subgroup

of C, we see that xi,---,xs,ui,---,ul + l are linearly independent over R

(cf. e.g. [6, p. 27]). Hence we see that s = n + m — t — 1. Put w¡ = u¡ (i £j í + 1)

and w¡ = *;_,_, (n + m ï: i > t + 1). Finally put

n m

W,   =     I    B;;«?;  +     I    a„+tjJüfc
y-i *=i

for i = 1,2,—,n + m. Since w,,—,w„+m is a system of generators of T we see

that M = (a¡j)eGL(n + m, Z) and that M satisfies the condition (8.1). Thus

Theorem 8.1 is proved.

Definition 8.2. We shall call G in Theorem 8.1 a nonsingular abelian Lie

group of dimension n and of rank n + m. The set of all such groups will be de-

noted by A(n,m). Then, ^4(n, 1) coincides with A°(n) in Theorem 5.7.

Combining Theorem 8.1 and 6.4 we have proved the following

Corollary 8.3. Any nonsingular abelian Lie group contains no compact

complex submanifold of positive dimension.

Theorem 8.4.   Every nonsingular abelian Lie group G is an (H.C)-group.

Proof. Let G = C¡T(V) with Fe9JÎ**(n,m;C). If G is not an (H.C)-group,

then by Theorem 4.4, G is isomorphic to G, x C* with some subgroup G, of G.

Then we can suppose that

with F, e93t*(n-l,m;C). Then by taking

M =(e,,-,e„_„e„+„É?„,e„+2,-,é-„+m) =  I \ eGL(n + m,Z),

we see that det(A — VB) = 0. Hence G is singular. Thus Theorem 8.4 is proved.

Combining Lemma 2.4, Remark 7.6 and Definition 8.2 we obtain the following

Theorem 8.5. There exists a natural one-one correspondence between

A(n,m) and the quotient space 9Jl**(n, m;C)/GL(n + m, Z) of¡R**(n,m;C)

by the operation of GL(n + m, Z) defined in Definition 7.4.

Remark 8.6. Unfortunately, the converse of Theorem 8.1 does not hold

which causes complications in the classifications of complex abelian Lie groups.

As is shown in the sequel, there exist many Fe9Jc*(n, m ; C) such that C¡r(V) con-

tains no complex torus and that F is nevertheless singular.

9. Singular (H.C)-groups of dimension 3 and of rank 5. From now on we shall

restrict ourselves to the case of dimension 3.

Lemma 9.1. Let Fe93i*(3,2;C). Then Vis singular if and only if C3jT(V)

is isomorphic to C3¡T(V) where V = (i>i,t>2) and v'2e{ei,e2}ç.
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Proof.   Suppose V is singular. Then there exists a matrix

m = (b  £)«<*«*>

with Aeim(3, Z) such that detL4+F£) = 0. Put A + VB = (Uy,u2,u3),

C+ FD = («4,m5), where uLeC3 for i = 1,2, ••-,5. We assert that rank (A + VB)

= 2. In fact, since Uy,u2,u3 are linearly independent over R (cf. Lemma 2.5),

dimci«!, u2, u3}c = \ dimjj {uy, u2, u3}c ^ 2 dim,, {uu u2, u3}R = 3/2. Hence

dimc{uy, u2,u3}c = 2, which means rank(/l + VB) = 2. Now, since

dimc{wj,—,M5}c =3, we can suppose, by changing the indices if necessary,

that w1u2,M4 are linearly independent over C. Take the automorphism 4> of

C3 such that <p(uy) = e¡, (j)(u2) = e2, 4>(u¿) = e3 and put <j)(u5) = v\ ,cj>(u3) = v'2.

Then, by using Lemma 2.5, we see that C3jF(V) = C3/{uy,---,u5}z ^C3/F(V)

with V = (v'y,v'2). Since u3e{uy,u2}c, we see that f2e{e1,e2}c.

To prove the converse it is sufficient to show that V satisfying the condition

of Lemma 9.1 is singular. For, if Fis nonsingular, V is also nonsingular by Lem-

ma 7.3. Now, if we take

C\ f 0   0   1 1
M= (e5,e2,ey,e3,ej =  ( \eGL(5,Z) with A =     0    1    0  I   ,

v*   D} I 0   0   0 J

then it is clear that det(.4 + VB) = 0. Thus Lemma 9.1 is proved.

Definition 9.2.   For Ve3R*(3,2; C) and for

- (s 3
with Ae'¡0l(3,Z) we define x{V,M)eZ by

(9.1) X{V,M) = rank(zlF-C).

We shall denote by x(F) the minimum of x(KM) for MeGL(5,Z). Clearly

0^x(V) = 2 holds.

Lemma 9.3. Let Fe93t*(3,2;C) be singular and let C3/F(V) be an (H.C)-

grozzp. Then, C3¡F(V) a¿ C3fF(V') with V' = (v'y,v2), v2eCelt if and only if

X(V) = 1.

Proof. We can suppose that V=(v¡,v2) with v2e{e¡,e2}c by Lemma 9.1.

Suppose that ^(F) = 1. Then there exists

m' = (b'' CD)eGL^

with A' e9K(3, Z') such that X(V, M') = 1. Put M' = (A", C") with A" e9JÎ(5,3 ;Z).
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rank M'(4)--* (-*)-*•
we have rank (A" V — C") = 2. Therefore, we can suppose, by exchanging the

rows of M' if necessary, that there exists MgGL(5, Z) such that

M =

a,    c.

At   C,
L a2    c2 j U2  C2

with ,4,e50l(3,Z), ¿2e50î(4,3;!Z) and al,a2eyfi(\,3; Z) satisfy the following

conditions :

(9.2)

rank042F-C2) = 2,

rank (^,F-C,) = 1,

a4,x, + a42y, + a43z, - a44 # 0, or

a41x2 + a42y2-a45 ^ 0,

where we have put M = (alV)and vi = 'ixi»yuzi)- If«4iX, + 042^1 + fl43zi — a44

^0, we can define y\,z\eC as follows

(9.3)
>'i  = (û24-«21^1-«22^1-«232i)/(a4,x,+a42y,+a43z,-a44),

Z'l    =   (^34-031^1 -«32^1 -fl33Zl)/(ß41^1 +«42>'l 4" «43^1 -a44).

Further, we can define x\,x'2 by the following (9.4), since (9.2) holds:

x'1(a41x1 + a42y, + a43Zi - a44) + x2(a5,x, 4- a^y, - a53z, - a54)

= a14-allx1-a12yi-al3zl,

x,'(a41x2 + a42y2 - a45) + x2'(a51x2 + a52y2 - a55)

(9.4)

= a. a 11X1 012^2■

Putting

X,  x2

M = (g   £) with A 6501(3, Z) and V =

we see, by a simple calculation, that (^ + V'B)V= C + V'D holds. Hence, by

y'i 0
L z'i 0  )
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Lemma 2.4, C3/F(V) a C3¡F(V). In the case a41Xy + a42yt + a43Zy - a44 = 0

and a41x2 + a42y2 — a45 # 0, we can prove in the same way.

Conversely suppose that C3¡F(V)^C3¡F(V). Then, by Lemma 2.4, there

exists an M = (aiy)eGL(5, Z) such that (A + VB)V = C + VD with

M -G 3
and ,4e9Jl(3,Z). This equality implies

y'l(a4l*l + «42^1 + «43*1 - «44)  =  «24 - 021*1 ~ «22^1 ~ 023*1 >

/l(«41*2 + «42^2 - 045) =   «25 ~ «21*2 ~ 022^2 »

(9-5) z'y(a4yXy   + ü^y   + ü43Zy   -  ü44)   =   ÍZ34 - a3yXy   -  ü^y   ~  fljjZj ,

z'l(«41*2 - «42^2

If we put

«45)

M

=   «35 -«31*2 -«32^2-

«1     c,

Ay      Cy

a2    c2J

with a„a269K(l,3; Z)andAye3)l(3,Z),then(9.5) mean that rank(AyV-Cy) = 1.

Put

(Ay     Cy)
M'    = «I

«2

Cl

e2

then we have x(V,M') = 1. On the other hand, since C3/F(V) is an (H.C)-group,

X(V,M") — 1 for any M" e GL(5, Z) by Theorem 4.4. Hence we have x(F) = 1.

Thus Lemma 9.3 is proved.

Lemma 9.4. Let G = C3/F(V) with FeSR*(3,2;C). Then G contains a

1-dimensional complex torus if and only ifG^C3 ¡F(V) with V = (v[, v2), v2 e Cev

Proof. Suppose that C3/r(F) a C3/r(F'). Let <f> be the natural homomor-

phism of C3 onto C3/r(F'). Then 4>(Cey) is compact, since Ce y contains et and

v'y. Hence G contains a 1-dimensional complex torus.

Conversely, suppose that G contains a 1-dimensional complex torus T. Let

\j/ be the natural homomorphism of C3 onto G. Let K be the maximal compact

subgroup of G and ï (g, t resp.) the Lie algebra of K (G, Tresp.). Put ï0=ï O J( - l)ï.

Then clearly t c ï0 ■ Identifying g with C3 we see that t contains ult u2 e F such

that Uy = zu2 ^ 0 with zeC — R. We can suppose that {zzi,zz2}H OT = {zz1,u2}z.

Then, by the same argument as in the proof of Theorem 8.1, we can find three

elements M3,M4,zz5£r such that T = {zz1,u2,---,w5}z. Moreover, we can suppose

that Uy,u3,u4 are linearly independent over C. Then we can take an automor-
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phism tj of C3 such that n(w,) = e¡, n(u3) = e2, n(«4) = e3. Put r¡(us) = v[,

r¡(u2) = v'2. Then C3/T(V) ~ C3/r(F') and v'2 e Cei. Thus Lemma 9.4 is proved.

Definition 9.5. We denote by 501' the set of all Fe50î*(3,2;C) such that

X(C) = 2, V=(vi,v2) with v2e{e¡,e2}c and that (4.12) holds for n = 3, m = 2.

Let

-x,   x2

v =      >',   y2

.zi     0 J

Then it is straightforward to see that, if nine numbers

i >xuyi,zux2> yiix\y2 ~ xïy \.,x2z \iy iz \.

are linearly independent over Q then Fe50i'.

Combining Lemma 9.1, 9.3 and 9.4 we obtain

Theorem 9.6. Let Fe50i*(3,2;C). Put G = C3jT(V) and suppose that G is

an (H.C)-group. Then, G is singular and contains no complex torus off-dimension

if and only if Fg501'.

10.   Classification of singular (H.C)-groups. I.

Definition 10.1. Let G be a group and S be a set. Suppose that for any xeS

there is given a subset Gx of G containing the unit element e and that for any

element g e Gx, g(x) e S is defined. The family {Gx} will be called a pseudo-group

operating on S if the following three conditions are satisfied :

(10.1) e(x) = x for any xeS,

(10.2) geGx implies g~1eGgM,

(10.3) geGx,g'eGg(x) imply g'geGx and (g'g)(x) = g'(g(x)) holds.

If {Gx} is a pseudo-group operating on S, we say two elements x, yeS are

equivalent if there exists an element geGx such that g(x) = y. The set of equiv-

alence classes will be called the quotient space of S by the pseudo-group {Gx}

and denoted by S¡{GX}.

Definition 10.2.   For Fe50î(3,2;C) and

fa,

M =

a5j

6 GL(5, Z)

with 'a¡eZ5, we define F¡¡(V,M)eC as follows:

(10.4) F,(F,M) = det((^)(_^))

for l£f,/á5.
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Definition 10.3.   We denote A= GL(5,Z). For Fe9K(3,2;C) we shall denote

by Ay the set of all M e A such that

F34(V,M) = 0.

Clearly £5 e Av for any V.

Lemma   10.4.   For Ve1)V and for

M (« 3^
with Ae'¡Ol(3,Z), there exists uniquely an element F'eSlt' such that

(A+ VB)V=C+VD.

Proof.   Put

V =

Since F33(V,M) = 0 and since (4.12) holds for V, there exists a unique z\eC

satisfying

(10.5)
z\(a4xxx -I- a42yx + a43zx - a44) = a34 - a3íz¡ - fl32y, - a33zt,

z'i(«4i*2 + «42^2 - «4s) «35 -«31*2 -«

Next, since /(F) = 2, we see that F45(V,M) # 0. Hence we can define x',,x2,yi

and y'2 e C by the following equalities :

(10.6)

We put

x', = F51(F,M)/F45(F,7V/), x'2 = F4l(V,M)/F45(V,M),

y[ = F52(V,M)/F4S(V,M), y'2 = F42(V,M)/F45(V,M)

V =
1 2

y'i  y2

-1 0

By a direct calculation we see that (10.5), (10.6) imply the following equality

(10.7) L4 + VB)V = C + V'D.

Hence, by Lemma 2.4, C3/r(F) 2* C3/r(F'). Since C3/r(F) contains no complex

torus of dimension 1, C3/r(F') contains no complex torus of dimension 1. There-

fore, by Theorems 9.6 and 4.4, VeW. Now, by Lemma 2.3, (10.7) implies

(A' + VB')V = C + VD', where

M
1= I A'   C'\

\B'   D'J
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with /F e501(3, Z). Then, by Lemma 2.2, det (A' + VB') ¿ 0, and so

V' = (A' + VB')'1 -(C' + VD'), which proves the uniqueness of V. Thus

Lemma 10.4 is proved.

Definition 10.5.   For Fe50i' and MeAF, the element  V in Lemma 10.4

will be denoted by V = M(V).

Lemma   10.6.    Let Me A and Fe50F.   Then MeAv if and only if there

exists F'e50l(3,2;C) such that (10.7) holds, where we put

M

with Ae501(3, Z).

Proof.   Put

F =

Xj

y i

X2

y 2

o

■ (í 3

and V =
1 2

y\  y'2

z\    0

By a simple calculation, (10.7) implies the equalities (10.5). We assert that

z\ # 0. In fact, if z', = 0, we see that C3\T(V) c?T xC*, where Tis a complex

torus of dimension 2, which is a contradiction. Then, since z, ^ 0, (10.5) implies

F34.(V,M) = 0. Hence MeAv. The converse is already proved in Lemma 10.4.

Thus Lemma 10.6 is proved.

Theorem 10.7.    The family {Av}, Fe50l' is a pseudo-group operating on 501'.

Proof. First, for Fe50l' and MeAK, V = M(V) is well defined by Lemma

10.4. The condition (10.1) is trivial. We shall prove (10.3) for {Av}. Take VeM',

MeAv and M'eAM(F). Put V = M(V) and V" = M'(M(V)), and put

with A,A',A"eyji(3,Z). Then, we have the following two equalities

04+ V'B)V = C+V'D,

(A' + VB')V = C' + V"D',

which imply (A" + V"B')V = C" + V'D", which shows, by Lemmas 10.4 and 10.6,

that M'MeAv and that F" = (M'M)(V). Hence we obtain M'(M(V)) = (M'M)(V)

which proves (10.3).

Next, we shall prove (10.2). For this purpose we put V = M(V) and

«- = (i Dc:)

with ^'e50î(3,Z). Then we have (A 4- V'B)V = C + V'D, which implies, by
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Lemma  2.3, (A'+VB')V = C + VD',   which  shows,  by  Lemma  10.6, that

M-1 e Ay = AM(V) and F = M~l(V). Thus Theorem 10.7 is proved.

From the above considerations we have proved the following

Theorem 10.8. Let .4'(3,2) be the set of all singular (H.C)-groups of di-

mension 3 and of rank 5 which contains no complex torus of dimension 1. Then

there exists a natural one-one correspondence between -<4'(3,2) and the quotient

space M'I{AV}.

11.   Classification of singular (H.C)-group. II.

Definition 11.1. We denote by W the set of all VeW(3,2;C) such that

V=(vy,v2) and v2eCet and that F satisfies (4.12) for n = 3, n = 2. For

M e A = GL(5, Z), we put

M U)
with ateC2 (i = 1,2, —,5). We say a¡ and a¡ are equivalent if Cat = Ca¡ and

we denote by v(V,M) the number of equivalence classes of au — ,a5 by this

equivalence relation.  Clearly 2 — v(V,M) = 5.   We shall denote by v(F) the

minimum of v(V,M) for Me A. Then it is easily seen that 2 = v(V) = 3.

Let

*1      *2

V=     yi   0

.zt    0

We can easily see that, if seven numbers

l»*i»>'i>zi>*2»*23;i>*2zi are linearly independent over Q,v(F) = 3.

Lemma 11.2. Take VeW. Then the group G = C3/F(V) contains a i-di-

mensional complex torus as a direct summand if and only z'/v(F) = 2.

Proof. Suppose v(V,M) = 2 for some M = (ah)eA. We can suppose,

exchanging the indices if necessary, that F4S(V, M) ^ 0. We assert

that £24(F,M) = £34(F,JV0 = F1S(V,M) = 0. If not, we may assume that

Fy4(V,M) = F24(V,M) = F34(V,M) = 0. In this case, putting

*i

yt

*2

0

0  J

we can define x'y,y'y,z\eC by the following equalities:

(11.1) x[(a41Xy + a42yy + a43zx - a44) = a14 - a^Xy - a12yt - al3Zy,

(11.2) x\(a41x2 - a45) = ais - a^Xj,,



226

(11.3)

(11.4)

(11.5)

(11.6)

Put

AKIHIKO MORIMOTO [May

/i(a41x1 + a42y, + a43z, - a44) = a24 - a21Xi - a^y^ - a23z1,

>>;(a41x2 - a45) = a25 - a21x2,

z'1(a4,x1 + a42y, + a43zt - a44) = a34 - a3,x, - a32y, - a33z,,

z,(a4,x2 — a45) =a3S —a31x2.

F'  =

0   1

0

g501(3,2;C) and M
"(i o)

with ,4 e 501(3, Z). Then (11.1)-(11.6) show that (A+ V'B)V=C+ V'D holds.

Hence, by Lemmas 2.2 and 2.3, we have V e50l*(3,2; Z), which is a contradiction.

Thus our assertion is verified.

Since F24(F,M)=F34(F,AÍ) = F,5(F,AÍ) = 0, we can define x2,y\,z[eC by

the following equalities:

(11.7) x2(a5,x, + aS2yx + a53zx - a54) = a,4 - a^x, - a12yi - a13zx,

(11.8) x2(a5,x2-a55) = a,5 - aiXx2,

(11.9) /,(a41Xi + 842y, + a43z, - a44) = a24 - a2,x, - a22yl - a23z,,

(11.10) >>i(a4,x2 - a45) = a25 -a21x2,

(11.11) z',(a41x1 + a42y, + a43z, - a44) = a34 - a31x, - a32>'i - a33z,,

(11.12) z',(a4,x2 - a45) =a35-a3,x2.

Putting

V =
ro    x'2

y'i  o
z,    0   J

we see that (11.7)-(11.12) are equivalent to the equality (A + V'B)V=C+V'D for

m       lA    C\
\B   O)

with ,4e50t(3,Z). Put v'= (y[,z\). Then by Lemma 2.4,

G * CV{1,x'i}z x C2/r(i;') = Tx C2/r(t/),

where T is a 1-dimensional complex torus.

Conversely, if G = F x G,, where T is a 1-dimensional complex torus, the i

it is easy to find x2,yi,z[eC and M = (a¡¡) satisfying the equalities (11.7) — (11.12)

Then v(F,M) = 2, whence v(F) = 2. Thus Lemma 11.2 is proved.

Definition 11.3. We denote by 501'" the set of all Fe50c*(3,2;C) such that

V = (v1,v2), v2eCelt v(V) = 3  and that F satisfies the condition (4.12) for
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n = 3, m = 2. For VeW, we denote by AV the set of all Me A such that

F42(F,M) = F43(F,M) = 0.

Lemma 11.4. For any FeSR" and MeA'v we can find uniquely an element

V em'" such that (A + VB)V = C+ VD, where

with AeM(3,Z). If we denote V = M(V), then the family {A'v} is a pseduo-

group operating on Mm.

In fact, we can prove this lemma exactly in the same manner as the proof of

Theorem 10.7. We may omit the proof in detail.

From the above considerations we have proved the following.

Theorem 11.5. Let ^"(3,2) be the set of all singular (H.C)-groups of dimen-

sion 3 and of rank 5 which contains a 1-dimensional complex torus not as a direct

summand. Then there exists a natural one-one correspondence between A"(3,2)

and the quotient space <Mm¡{Ar}.

12. Final remarks. Summarizing the results obtained in the preceding sections,

we obtain the complete classification of noncompact connected complex abelian

Lie groups of dimension 3.

We denote by A(n) the set of all connected complex abelian Lie groups of

dimension n, two isomorphic ones being of course identified. We denote by A°(n),

Ä'(n), A°(n) and T(n) the set of all noncompact (H.C)-groups of dimension n,

non-(H.C)-groups of dimension n, (H.C)-groups of dimension n and of rank

n + 1, and the complex tori of dimension n respectively. Let .4(3) be the set of all

nonsingular groups of dimension 3 and of rank 5. Let A'(3) be the set of all singular

(H.C)-groups of dimension 3 and of rank 5 containing no complex torus of di-

mension 1. Finally let A" (3) be the set of all singular (H.C)-groups of dimension 3

and of rank 5 containing a 1-dimensional complex torus not as a direct summand.

Then, we have the following

Theorem 12.1.

1(3) = Ä°(3) ul'(3) UT(3) (disjoint),

Ä°(3) = A°(3) u 4(3) UA'(3) U A"(3) U 1(1) x A°(2) (disjoint),

A°(n) = m**(n, 1 ; C)/GL (n + 1, Z),

A (3)= m**(3,2;C)IGL(5,Z),

A'(3)=WI{Ar},

A"(3) = W"l{A'r},

1(3) - {C,C*}xl(2).
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Remark 12.2. Any one of the subsets A°(3),A(3),A'(3) or ^"(3) contains non-

countably many elements.

Remark 12.3. For any (H.C)-group G the group of holomorphic homeo-

morphisms of G is a complex Lie group, whose Lie algebra is isomorphic to the

one of G.
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