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Introduction. A central problem in topological dynamics is the classification

of minimal sets. In full generality, this problem appears to be quite difficult.

Therefore, it seems appropriate to single out certain minimal sets which are "well

behaved" in some sense, and are hopefully more amenable to classification.

It is for this purpose that we introduce the regular minimal sets in this paper

They are the universal minimal sets for certain ("admissible") properties. Several

characterizations are given (Theorem 3); the class of regular minimal sets is

shown to coincide with the minimal right ideals of enveloping semigroups of

transformation groups, and also with those minimal sets having a maximal supply

of endomorphisms.

If Tis a topological group, the class of regular minimal sets with phase group T

forms a partially ordered set 3#(T), in which the partial ordering is defined by

the existence of a homomorphism. It is shown (Theorem 5) that 0t(T) is a com-

plete lattice.

In this paper, certain aspects of the general theory of regular minimal sets

are developed. A second paper, which will be written jointly with Brindell Horelick

will study in detail the regular minimal sets (X, T), with Tdiscrete abelian, which

are proximally equicontinuous (see [1, §6]). A structure theorem for these mini-

mal sets will be given, and a number of examples constructed.

I. Universal minimal sets. We recall that a minimal set is a transformation

group (X, T), with the phase space X compact Hausdorff such that for each

xeX, the orbit closure Cl(xT) = A". If T is a topological group, a universal

minimal set for T is a minimal set (M, T) such that every minimal set with

phase group T is a homomorphic image of (M, T). (That is, if (X, T) is minimal,

there is a continuous map n:M-*X such that 7t(xi) = 7t(x)r, for xeX and

t e T.) For any group T, a universal minimal set exists and is unique up to iso-

morphism. This is proved in [6] (see also [3]). However, we prove it again here,

since the ideas involved are used again in a later proof (Theorem 2), and because

our proof of uniqueness differs from the proof in [6].

The existence of universal minimal sets is straightforward. Consider the class

M = {(Xa, T)l<x e si} of all minimal sets with phase group T. No logical dif-
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Acuities arise, since each Xx has a dense subspace with cardinality less than or

equal to the cardinality of T. Let X* = X,ï,i and let M be any minimal set

in the transformation group (X*,T). (The transformation group (X*,T) is de-

fined by coordinatewise action of T; that is, (xa)i = (xat) (teT,xae Xx).) If

nx:X*-+Xx is the ath projection, then nx\M is a homomorphism from (M,T)

to(Xx,T).

The proof of uniqueness is somewhat more difficult. It is sufficient to find a

coalescent minimal set (Z, T) such that (M, T) is a homomorphic image of (Z, T).

(A minimal set is said to be coalescent if every endomorphism is an automorphism,

[1].) Indeed, suppose such a (Z, T) exists, and let (M', T) be any universal mini-

mal set. Then there are homomorphisms a:(Z,T)-+(M,T),/?:(M,T)-»(M',T),

and y:(M', T)-+(Z, T); therefore y/?a is an endomorphism of (Z, T). Since (Z,T),

is coalescent, y/3a is an automorphism, and y is an isomorphism. That is, every

universal minimal set is isomorphic with (Z,T). This also shows that the uni-

versal minimal set is coalescent.

Ellis [6] observes that if 7 is a minimal right ideal in the enveloping semigroup

of (M,T), then (I,T), (regarded as a minimal set) satisfies the above require-

ments. We present here another proof, which, although somewhat longer than

Ellis' proof, is more elementary, since it does not use the enveloping semigroup.

More generally, we prove:

Theorem 1. Let (X, T) be a minimal set. Then there is a cardinal number a

and a minimal subset M of (Xa, T) such that (M,T) is coalescent.

Proof. Let (Y, T) be any transformation group with Y compact Hausdorff.

Recall that ye Tis an almost periodic point if (Cl(yT),T) is a minimal set. Now,

let (X, T) be minimal, and let C be a subset of X. We say that C is an almost

periodic set provided that, whenever D is a set whose cardinality is equal to that

of C, and yeXD with range y = C, then y is an almost periodic point of the

transformation group (XD,T). (It is clear that this definition is independent

of the choice of D and y, and thus depends only on C.) Let # denote the family

of almost periodic sets in X.

Partially order V by set inclusion. Since a neighborhood in a product space

depends on only finitely many coordinates, # is of finite character, and we may

apply Zorn's lemma to obtain a maximal element C of "W. Let yeXe such that

range y = C and such that y is one to one, (for example yc = c, for each ceC).

Let M = CI(yT), and let y'eM. We show that C = range y' is a maximal

almost periodic set and that y' is one to one. Since y ' is an almost periodic point,

C'etë. Suppose ré" is not maximal. Then there is an x'eX — C such that

(y',x') is an almost periodic point of (M x X,T). Let {r„} be a net in Tsuch that

y't„-*y. By choosing a subnet if necessary, we may suppose x't„-*xeX. Then

(y, x) is an almost periodic point of M x X, and by the maximality of C = range y,

xeC. That is, x occurs as one of the coordinates yc of y. Now, let {s„} be a,
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net in Tsuch that (y,x)s„-»(y',x'). Then xs„ = ycs„, and therefore x' = y'ceC.

This is a contradiction, and therefore C is maximal. The proof that y' is one

to one is similar.

Now, let ep be an endomorphism of (M, T). Since Cl((y, ep(y))T) = {(y', </>(y'))|

/eM}, is isomorphic with Cl(yT) = Y, it follows that (y,ep(y)) is an almost

periodic point of CM x M,T). But range y and range <p(y) are both maximal

elements of <€, and hence range y = range ep(y).

Let y be a permutation of C such that, if y* denotes the induced automorphism

of (Xe, T), (that is, the map defined by y*(iyf)) = iyHeJ), then y*(y) = tp(y).

Since ep(y) e M, y*(M) O M ^ í>, hence y*(M) = M. Since y*(y) = ep(y),ep = y*\M

and (/> is an automorphism. The proof is completed.

2. Admissible properties and regular minimal sets. The proofs just given may

be adapted to obtain a large class of minimal sets. These are minimal sets which

are universal for certain properties. To be precise, let T be a topological group,

and let a8 be a property of transformation groups for which :

(i)   there is at least one minimal set (X,T) satisfying SP.

(ii) if iX„ T) (a £ si) is a collection of minimal sets, each of which satisfies

0*, and if M is a minimal subset of the product transformation group (XI6rf^. T)

then (M,T) satisfies 0.

A property 0 satisfying (i) and (ii) will be called an admissible property for T.

Many of the properties studied in topological dynamics (for example "equi-

continuous", "distal", "proximal is an equivalence relation"), are admissible

in this sense. See Corollary 9 in [4], where several admissible properties are

listed.

If 0 is an admissible property for T, then a 0 universal minimal set is a mini-

mal set (X, T) satisfying 0, such that any minimal set for which 0 holds is a

homomorphic image of (X, T).

The proof of the following theorem is identical with the proof given in the

preceding section of the existence and uniqueness of universal minimal

sets.

Theorem 2. Let 0 be an admissible property for T. Then there is a co-

alescent (and therefore unique up to isomorphism) 0 universal minimal set

(X,T).

The next theorem shows that the class of 0 universal minimal sets may be

characterized in several ways. Some of these have to do with the enveloping

semigroup of a transformation group and its minimal right ideals. If Tis regarded

as a subset of Xx, and £ is the closure of T, then £ is compact and is a semigroup

under composition of functions. In particular, (£, T) is a transformation group. The

minimal subsets of (£, T) coincide with the minimal right ideals of the semigroup

£. For further information on the enveloping semigroup, see [5], [7], [1].
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Theorem 3. Let(X,T) be a minimal set. Then the following are pairwise

equivalent.

(1) (X, T) is the & universal minimal set for some admissible property £P.

(2) If a is any cardinal number, and M is a minimal subset of (Xa, T), then

(M, T) and (X, T) are isomorphic.

(3) If I is a minimal right ideal contained in the enveloping semigroup £

of (X,T), then the minimal sets (X,T) and (I,T) are isomorphic.

(A) (X,T) is isomorphic with (I,T), where I is a minimal right ideal in the

enveloping semigroup of some transformation group (Z,T).

(5) If x,yeX, then there is an endomorphism cp of (X,T) such that cp(x)

and y are proximal. (That is, if a is a member of the uniformity of X,

there is a teTsuch that (cp(x)t,yt)ecc.)

(6) If(x,y) is an almost periodic point of(X x X, T), then there is an endo-

morphism cp of (X, T) such that cp(x) = y.

Proof. (1) => (2) since, as observed earlier, 0> universal minimal sets are co-

alescent, and (X, T) is a homomorphic image of (M,T). That (3) and (5) are

equivalent is proved in [1, Theorem 4]. (3)=>(4) is obvious, and, since minimal

right ideals in £ are minimal subsets of Xx, [5 Lemma 1], (3) follows from (2).

(2) => (1): Let SP be the property of being a homomorphic image of (X, T).

Condition (i) in the definition of admissible property is certainly satisfied,

since (X, T) is a homomorphic image of itself. Let (Zß, T) (ß e âiï) be a

family of minimal sets satisfying 0>, and let M be a minimal set in the

transformation group CX.PeasZp ,T). For each ße'3, let Xß = X. Let

Xß-.Xß-^ Zß be homomorphisms, and let X: X/¡ s®Xß-* Xjj em^ß De the induced

homomorphism. Now, let M* be a minimal set contained in X~1(M). By as-

sumption M* is isomorphic with X, so Misa homomorphic image of X. The

proof is completed.

(3) => (2):    Let n:I-> X be an isomorphism, and let u be an idempotent in I.

If r¡(u) = x0,   it   follows   immediately   that   x0k = x0.   Then,   if   qel,

n(q) = n(uq) = x0q.

Since n is an isomorphism, this tells us that if a and q' ate distinct elements of

I, then x0q j= x0q'. Now, let M be a minimal set in (Xa, T) and let me M such

that, for some coordinate projection n:X"->X, n(m) = x0, Let m', m"eM,

with m' ¥= m". Since ml = M, there are q',q"el with q' ^ q" such that m' = mq'

and m" = mq". Now n(m') = n(mq') = n(m)q' = x0q', and similarly n(m") = x0q".

By the above remark, x0fl' # x0q", and n (restricted to M) is one to one. Hence,

(M, T) and (X, T) are isomorphic.

(5)=>(6): Let (x,y) be an almost periodic point of (X x X,T), and let cp

be an endomorphism of (X, T) such that y' = cp(y) is proximal with y. Then

there is a minimal right ideal / of E(X) such that yp = y'p, for all pel, [5,

Remark 6].   Let u be an idempotent in I such that   (x, y)u = (x, y). Then
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y'u = yu = y, and epix) = ep(xu) = ep(x)u = y'u = y.

(6)=>(5): Let x,yeX. Let « be an idempotent in a minimal right ideal /

of £ such that xu = x. Then (x,yu) is an almost periodic point of (X x X,T),

and, by (6), there is an endomorphism ep with ep(x) = yu. Thus, ep(x) is proximal

with y.

(4)=>(5): Let p,qel, and let u be the idempotent in / such that qu = q.

Let reí such that rq = pu, [5, Lemma 2]. Since left multiplication in a minimal

right ideal is an endomorphism, and since pu is proximal to p, (5) is proved.

This completes the proof of Theorem 3. A minimal set which satisfies any one

(and therefore all) of the properties listed in this theorem will be called regular.

If (Z, T) is any transformation group with Z compact, its enveloping semi-

group £(Z) always contains at least one minima] right ideal. This assures us

of a plentiful supply of regular minimal sets.

Since regular minimal sets are coalescent, "endomorphism" may be replaced

by "automorphism" in (5) and (6). Moreover, (6) tells us that regular minimal

sets are characterized by possessing "as many endomorphisms as possible".

For, as we observed in the course of the proof of Theorem 1, if (X, T) is any

minimal set, and x,yeX, then a necessary condition that ep(x) = y, for some

endomorphism ep, is that (x,y) be an almost periodic point of (X X X,T).

(6) in Theorem 3 says that (X, T) is regular if and only if this is also sufficient.

Condition (2) in Theorem 3 indicates that regular minimal sets are "stable",

in the sense that no new minimal sets are obtained by taking products of a regular

minimal set with itself. It might be conjectured that minimal sets (X, T) which

are isomorphic with every minimal set in (X x X, T) (and therefore, by an easy

induction, with every minimal set in (X", T) for all positive integers n) are regular.

However, this is not the case, in general. In constructing a counterexample, we

make use of the following purely group theoretic lemma.

Lemma 1. Let A be an abelian group, let S be a subsemigroup of A, and

let ßeA such that ßeS and ß~l£S. Then there is a subsemigroup H of A

such that SezzH, ß~l£H, and, ifyeA, then at least one of y,y~l   is in H.

Proof. Let Jt° be the class of subsemigroups of A which contain S and do

not contain ß~l. It is easy to see that there is a maximal He 3?; we show that

this semigroup H has the required properties.

Let ye A. We first show that some power of y is in //. For, let H' denote the

semigroup generated by //, y, and y"1. Then (unless y or y_1 eH, in which case

we are finished), //' properly contains //. By the maximality of H, ß"1 e H', so

ß~l=y'h (heH,reZ). Then y~r =ßheH2ezzH.

Now let ye A, and suppose y$H and y_1 <£H. We consider two cases. First,

suppose there is an n > 1 such that y"eH and y~neH, but ys£H, 0 < \j\ <n.

Let //' be the semigroup generated by //, y, and y_1. Then, as above ß~x = hyr
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(reZ), y~' = hßeH. It follows easily that r = kn, some keZ, and therefore

y'eH. Then ß~x = hy'eH, and this is a contradiction.

Therefore, suppose that there is an integer n such that y"eH, y~"$H,

and yJ £ H, for 0 < | j | < n. We may suppose n > 0 (so n > 1). Suppose y~'"eH

where m > 0, and is the smallest positive integer for which this is the case. Then

m> n, and y"~m = y"y~meH. But 0 > n — m > —m, and | n — m\ <m. That

is y~(m~n)eH, and this is a contradiction, since m> m — n>0. Hence no

negative power of y is in H. Let //x denote the semigroup generated by y and

H. Since H is properly contained in H y, ß~ ' e H y. Then as before, y~r = ßheH

and this is a contradiction.

This completes the proof of the lemma. Now, let T be abelian, and let (X, T)

be a regular minimal set with the following four properties:

(i)    the automorphism group A of (X, T) is abelian,

(ii)   (X, T) is not distal,

(iii) there is a ße A such that ßm(x) # xí (xeX, teT) unless m = 0 and t = e.

(iv) If R is any subset of X x X which contains the diagonal A, and is con-

tained in the proximal relation P, then R is closed.

An example of such a minimal set is given in [1, §7].

Let S be the semigroup generated by T and ß; clearly ß"1 $S. Let // be the

subsemigroup of A guaranteed by Lemma 1. Now, let (x,x')eP with x ^ x'.

If heH, identify h(x) with h(x'), and call the resulting equivalence relation P.

(That P is an equivalence relation follows from the fact that if ep is an endo-

morphism different from the identity, then (/>(x) and x are not proximal, [1,

Theorem 2].) Since Á ezz R ezz P, R is closed, and Y= X/R is a compact Haus-

dorff space.

Since H is a semigroup, each h e II induces a continuous map h* on Y such

that Tth = h* k (where n is the natural projection from X -* Y). In particular,

(since Tez: S ezz H), T acts as a group of homeomorphisms on Y, and, for each

h £ S, h* is an endomorphism of the minimal set (Y, T).

Let (yy,yf) be an almost periodic point of (Y x Y, T), and let (x!,x2) be an

almost periodic point of (X x X, T) for which n(x¡) = y, (i = 1,2). Since (X, T)

is regular, there is an h e A such that h(x¡) = x2. Either h or h~ ' is in //; suppose

g = h~lell. Then g*iyf) = g*(jr(x2)) = 7t(g(x2)) = jt(x.) = yt. Then (yx,y2)

= ig*iy2\ y2)> and Cl((y,, yf)T) = Cl((g*(y2), y2)T) is isomorphic with

Cl(y2T)= T. Thus every minimal set in (Y" x Y,T) is isomorphic with iY,T).

However, (V, T) is not coalescent, since /T1 <£//, and therefore ß* is not one

to one. Hence (Y, T) is not regular.

The choice of a noncoalescent example was not fortuitous, as the next theorem

shows.

Theorem 4.   Let CX, T) be a coalescent minimal set and suppose that {X, T)
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is isomorphic with every minimal set (M,T) contained in (X xX,T).   Then

(X,T) is regular.

Proof. Let / be a minimal right ideal in E(X). We show that (X, T) and

(/,T) are isomorphic. Let xeX. By [1, Lemma 3], it is sufficient to show that

xu = x, for a unique uel. Suppose xu=xr = x, where u,rel, and u is an

idempotent. Let zeX, and let y = zu. Then (x,y)u = (x,zu2) = (x,zu) = (x,y),

so (x,y) is an almost periodic point of (X xX,T). Let M =Cl((x, y)T), and

let n:M-+X be the first coordinate projection. Since M is isomorphic with X

and (X, T) is coalescent, n is an isomorphism. Now n((x,y)r) = n(xr,yr) =

xr = x = n(x,y). Then (x,y)r = (x,y), and yr = y. Therefore zr = zur = yr =

y = zu. Since z is arbitrary r = u. The proof is completed.

3. The lattice ®(T). Let T be a fixed topological group. We let 3t(T) denote

the class of regular minimal sets with phase group T. 3iï(T) may be partially

ordered by defining (X, T) ¡> (Y, T) if there is a homomorphism n: (X, T)^>(Y,T).

Since regular minimal sets are coalescent, ^ is indeed a partial ordering.

If (M,T) is the universal minimal set for T, and (1,T) is the trivial minimal

set (that is, the minimal set whose phase space consists of a single point) then

M = X = 1, for all XeSt(T).

One might attempt to partially order the class of all minimal sets with phase

group Tin this manner. However, it seems likely (although no example is known)

that there can exist two non isomorphic minimal sets, each of which is a homo-

morphic image of the other.

We now proceed to investigate the structure of J"(T).

Theorem 5.   ¡%(T) is a complete lattice.

Proof. It is sufficient to show that every nonempty family in M(fT) has a

greatest lower bound, [2, Theorem 2, Ch. IV]. Let (X„ T) e ât(T), (a. esé),

and let 3? denote the property of being a homomorphic image of each (Xa, T).

As in the proof of (2) => (1) in Theorem 3, one verifies that & is an admissible

property. Let (X, T) be the 0> universal minimal set. Then {Xa, T) k (X, T) for

all a e sé, so certainly (X, T) is a lower bound for the family [(X,,, T) | a e sé~\.

If (Y,T)eât(T) is another lower bound, then, by the defining property of "0>

universal", (X,T) = (Y,T), and (X,T) is a greatest lower bound.

We employ the usual lattice theoretic notations V ¡X¡ and f\ ¡X¡ for the least

upper bound and greatest lower bound of the subfamily {(X¡, T) | i eJ} of !M{T).

Now, we show how V¡-^¡ an^ A j-Xj may be explicitly constructed.

Theorem 6. Let (X¡,T)ea#(T) (ieJ) and let M be any minimal subset of

the product transformation group ÍX.¡X¡,T). Then M= \/¡ X¡.

Proof. We first show that (M, T)eM (T). Let x = (x.) and y = (y¡) in M such

that (x,y) is an almost periodic point of (M xM,T). Then, for each ieJ,
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(x¡, y) is an almost periodic point of iX, x X,, T), and, since CX,, T) is regular,

there is an automorphism ep, of iX,, T) with ^¡(x,) = y,. Let ep denote the auto-

morphism of i~X,¡X,,T) defined by applying ep, to each coordinate. Then, if

A = ep | M, A(x) = y, so A(M) = M, and A is an automorphism of (M, T). Thus

(6) of Theorem 3 is satisfied, and iM,T) is regular. Suppose (M',T)e0lCT) with

M' — X, (ieJ). PuttingM'¡ = M', for ieJ, one shows, again as in (2)=>(1)

of Theorem 3, that there is a homomorphism ep':M' ~* M. Therefore M' — M,

and M= \f tXt.
In order to discuss the construction of the greatest lower bound of a collection

of regular minimal sets, we require a lemma, which is of independent interest.

It asserts that if (X,T)^(Y,T) there is "essentially" only one homomorphism

from X to T.

Lemma 2. Let (X,T), (Y, T) be minimal, with (Y,T)e@(T). Let epy and ep2

be homomorphismsfrom (X, T) to (Y,T). Then there is a unique automorphism a

ofCY, T) such that ep2 = aepy.

Proof. Consider the homomorphism ep from (yx^,T)to(i*x Y,T) defined

by <Pixy,x2) = (epl(xy),ep2(x2)). Let xeX and let yi = ep,(x) (¿=1,2). Then

(Ji> y 2) = $(x>x) »s an almost periodic point of (Y x Y, T).

Hence there is an automorphism a. of (Y, T) such that a(yf) = y2. Then

o.epy(x) = a(yf) = y2 = ep2(x). Since aepy and ep2 agree at x, they are identical.

That a is unique is clear.

Now we proceed to discuss the construction of f\, X,, where (Xt,T)eâiiT).

Let X* denote the disjoint union of the X, and let T act on X * in the obvious

manner. Let x = (x¡) be an almost periodic point in (X;X;,T) and let

M = Cl(xT). (So M = \f ¡X). Now, in X* identify x, with Xj, for all i,jeJ,

and let P denote the closed, T invariant equivalence relation generated by this

identification. (That is, P is the smallest closed T invariant equivalence relation

in X# containing all ix„xf).) Let X* = X#¡R. X* is compact, and since P

is T invariant, it is meaningful to speak of the transformation group (X*, T).

Theorem 7.   X* = /\,X,.

Proof. It is easy to see that (X*, T) is minimal, and is a homomorphic image

of each (X„T). Let CY,T)e0lCT) such that all X, è Y and consider homomor-

phisms \p,:X¡-> Y (i e^). Let n,: M -* X, be the restriction to M of the pro-

jection from XjXj-^X;. Let ep, = ip,n,:M-+ Y. FixjeJ, and, for each ieJ,

let ot, be an automorphism of iY,T) such that, as in Lemma 2, a,ep, = epj. Then,

if we write xp[ for a,\p,, all ip¡Tt,:M-+ Y are identical. Now, if i,ke.f, ip'¿ix) =

yp'¡7i,ix) = ip'knkix) = ypkixk). Let rp':X*-+Y be the homomorphism defined by

\p'\X, = \p', (ieJ). Since tp',ix) = \p'kixk), for all i,keJ, ip' induces a homo-

morphism ip*:X*-*Y.
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In order to complete the proof, it is only necessary to show that (X*, T) e ¡%(T),

Let 0 denote the property of being a homomorphic image of each X¡. & is an

admissible property, and we show that (X*, T) is the S¿ universal minimal set.

Let (Z, T) satisfy SP. Then there are homomorphisms n¡:X¡->Z. Let J be a

minimal right ideal in £(Z), and let Qi:E(Xi)-^E(Z) be the induced semigroup

homomorphism, [7, Lemma 2]. Let Ii be a minimal right ideal in E(X¡) such

that 9¡(f) = I. Since (X¡, T)e&t(T), Xt and It are isomorphic, so there are homo-

morphisms ki'.Xt-*I. Now, (I,T)e¿%(T), so, by the first part of this proof,

there is a homomorphism X:X*-*I. Since there is always a homomorphism

from 7 to Z, (Z, T) is a homomorphic image of (X*, T), and the proof is completed.

Let (X, T) be any minimal set, and let 7 be a minimal right ideal in E(X).

Then the minimal set (7, T), which is in ¿%(T), can be mapped homomorphically

onto (X, T). Moreover, the method used in the last paragraph of the preceding

proof shows that (7, T) is the "least" (with respect to the partial ordering ^)

regular minimal set with this property. Using the method of proof of (2) =s» (1)

in Theorem 3, as well as Theorem 6, it is also easy to prove the existence of a

"largest" regular minimal set (Y, T) which is a homomorphic image of (X, T).

However, an explicit description of (Y, T) is not readily available.

The admissible property SP is said to be divisible if every homomorphic image

of a minimal set satisfying 3P also satisfies SP.

Theorem 8. Let SPi be divisible admissible properties (ie J), and let SP

denote the conjunction of the SP{ (i.e., SP holds if and only if each 0>i holds).

Then

(i)   SP is an admissible divisible property.

(ii) If X¡ is the 0>i universal minimal set, and X is the SP universal minimal

set, then X =/\¡X¡.

Proof. The proof of (i) is immediate. To prove (ii), observe that X¡ = X,

since (X, T) satisfies each 0>i. Therefore f\ ¡Xt ^ X. Since each 0>¡ is divisible,

/\¡Xi satisfies SP ¡ (]eJ). That is, A¡^¡ satisfies SP, and X = /\¡ X¡.

Let SP be an admissible property, and let (X, T) be any minimal set. In [7],

Gottschalk and Ellis prove that there is a smallest, closed T invariant equivalence

relation S such that the quotient minimal set (X/S,T) satisfies SP. S is called

the SP structure relation for (X, T). Using this result and Theorem 8, we easily

obtain :

Corollary 1. LetSPbe a divisible admissible property. Let (X,T)eâ?(T),

let S denote the 3P structure relation for (X,T), and let (Y,T) be the SP uni-

versal minimal set. Then X/S = X f\Y.

Proof. Let SP' denote the property of being a homomorphic image of (X, T)

and satisfying SP. Apply Theorem 8.
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With every topological group T, we have associated the lattice 3t(T) of regular

minimal sets with phase group T. We conclude by showing that the association

is "functorial".

To be precise, let T and T" be topological groups, and let a:T->T'

be a (continuous) epimorphism. We define a map ix = i: 3l(T') -* Si(T)

by i(X',T') = (X',T), where the action of Ton X' is defined by x'/ = x'a(i).

It is immediate that this defines (X',T) as a transformation group, and, since a

is onto, (X',T) is a minimal set. That (X',T) is regular follows from the trivial

facts that x' and y' ate proximal in (X',T) if and only if they are proximal in

(X',T'), and that a map cp:X' -* X' is an endomorphism of (X',T) if and only

if it is an endomorphism of (X', T').

Lemma 3. Let (X',T')e3l(T'), and let (X',T) = ia(X',T'). Suppose

(Y',T)eS$(T) such that (X',T') = (Y',T). Then, there is an action of T on

Y' such that (Y',T')e0l(T), and (Y',T) = ia(Y',T').

Proof. Let y'eY', and s,teT such that a(s) = a(r). We show y's = y't.

Let o:{X',T)-*{Y',T) be a homomorphism, and let x' eX' such that tr(x') = y'.

Now x's = x'a(s) = x'ot(t) = x't, and it follows that y's = y't.

Now, we define the action of T' on 1" by y't' = y't, where te Fis such that

<x(r) = t'. Then y'a(r) = y't, and o-(x'i') = o-(x') t'(x'eX',t' e T') . The remarks in

the preceding paragraph guarantee that this action is well defined.

Let {y'„}, {t'„} be nets in Y' and T respectively, with y„ -» y' e Y', t'„ -> t'e T.

Let x'„,x'eX' with x'n->x' and cj(x'n) = y,',, (so that o(x') = y'). Then

yX = o(x'n)t'„ = o-(x'nt'„) - o-(xT) = cr(x')t' = y't'. That (y's')t' = y'(s't')

(y'e Y',s',t'eT'), and that (y',T') is regular minimal are immediate.

It is clear that the map ix is one to one into. Using Lemma 3, we show that ix

imbeds 0t(T) as a sublattice of ñ(T).

Theorem 9. If X) eM(V) (jeS), then i(VjX'j) = VjKX'j) and

i(AjX^)=AJi(X'J).

Proof. The proof is entirely lattice theoretic. Observe first that X' S; Y' in

SP(T) if and only if i(X') = i(Y') in *(T). Now \JjXfèX'k (fee/), so
¿(V j X'j) = V j KX'j) ■ By Lemma 3, there is a Z' e M{T) such that i(Z') = V ¡ i(X'f).

Then i{Z')Zi{Xj) (jeJ), so Z'= X). But ¿(V jX'j) ̂  V jKX'j) = i(Z'),
so \J jX's = Z'. That is, i(\J jX'j) = V jKXJ>- The Proof of the other equality

is similar.

This discussion may be conveniently summarized by using the language of

categories. Let ft be the category of topological groups and epimorphisms, and

let 3 be the category of lattices and imbeddings. Then the association T-+ !%(T)

and a -> ix defines a contra variant functor from ^to S.
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