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1. Summary. For us a semi-Markov process is a separable process {X„ t ïï 0}

with denumerable state space / such that if

it if Xs = Xt for all O^s^f,
Y, =

U -sup[s:0 = s ^ t, Xs^ X,1       otherwise,

then the two dimensional process {(X„Y,); t = 0} is a strong Markov process

with stationary Borel measurable transition probabilities. In this paper we are

concerned with the limiting distributions of X, and Yt.

In [8], Smith has shown that if the distributions which determine the time

between jumps of the X process (we refer to them as the waiting time distributions)

have a finite first moment, then Xt has a limiting distribution. His techniques

depend on renewal theory results and are applicable to our processes. We extend

the results for limiting distributions to include the possibility of instantaneous

states. By showing that the joint limiting distribution of X, defines an

invariant probability measure on the state space of the two dimensional Markov

process we are able to find a limiting distribution for Y,.

If the waiting time distributions fail to have a finite first moment we find con-

ditions in §4 which insure the existence of limit distributions for the X process.

Conversely, if limit distributions exist we find necessary conditions for the waiting

time distributions. In §5 the waiting time distributions are assumed to be in the

domain of attraction of a stable law (cf. [3]) in which case the conditions on

the waiting time distributions, found in §4, are shown to be both necessary and

sufficient. Here, using results of Lamperti [6], we are able to find a joint limiting

distribution for Xt, Yt.

We conclude with an application to the construction of nonnormal Markov

chains.

2. Notation and preliminaries. Denote the stationary Borel measurable tran-

sition probabilities by p,(i,y;S) where t > 0, (i,y) is an element of the two di-
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mensional state space of the (X„ Yt) process and S is a Borel subset of that state

space, i.e. pt(i,y;S) is a version of the conditional probability of the event

[(X„ Y¡) e S] given the initial state was (i,y). For each point of the two dimensional

state space /x [0,oo), p.(i,y;S) determines a measure on the events in the

Borel field generated by {(X„ Y,),t — 0). We will denote that measure by Pii¡y)[ ' ]■

Let

t inf [s: s = t,Xa # Xf]    if Xu = X, for all 0z%u^t,

\ inf [s: s = t,Xs # X,] - sup[s: s = t,Xs^ Xt]   otherwise.

W, is a random variable for each t ^ 0 and we define for each t e /,

f¡(0 = iD(i,o)[^o^í]

the waiting time distribution function of the state t.

If lim,->o+P¡(0 = 1 we will say i is an instantaneous state. For all noninstanta-

neous states j (denote this set by J) we let

00,1)  = inf[í:í>0,(X(,y;)=(i,0)]

and

0(j,k) = inf[t: t > 9(j,k - 1),LY„ Y,)=(j,0)] for k> 1.

Then  we let Gu(t) = Pa¡O)[0(j,l) = r]  and form the iterated convolutions

G*i\t) = Gu(t),

Gtf(i)   =  j^G*iik-X)(t-s)dGji(s),    k>l,

for ¡' = j we define

t0 if t < 0,
G*°(0 =

Uifi^o.

As a regularity condition on the sample functions we ask that XV{j¿y = j a.s.

(almost surely). Then the random variables 6(j,k), k = 1,2,3,■■• are Markov

times of the process, see for instance [7]. Because the process has stationary

transition probabilities and satisfies the strong Markov property, 0(j, k +1) — 0(j, k)

for k = 1,2,3, •■■ are a sequence of independent identically distributed random

variables, each having the distribution Gjj( • ).

The following is an immediate consequence of this observation.

Lemma 2.1. P(;,o)[0(M) = <] = Gy*(0, k = 1,2,3, - .

We now let Nij, t) = sup [k : 6(j, k) g í] and hence :

Theorem 2.1.  l£r=oi>(;,o)[N(./,0 = k] = 1 for all jeJ and any iel.
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Proof. Since 0(j,k + T) — 0(j,k), k = 1,2,3, ••• are nonnegative, independent

and identically distributed random variables whose sum

£ [9(j, k + D- 9(j, /c)] + 9(j, 1) = 0(j, n + 1)
k = i

and since N(j,t) = k if and only if 9(j, k) = t, it will suffice to demonstrate that the

summands Gif, k + 1) — G(j,k) ate not zero with probability 1.

From the definition of Gj7( • ) it is clear that Gj7( • ) = F/ ■ ) and hence, j e J

implies that the first moment of G3J( • ) is strictly positive. But Gj7( • ) is the

distribution of the summands.

Hence

£ [0(j,k+l)-G(j,k)] = œ
k = l

with probability 1.

Given a t = 0, for almost all ca there exists an integer K(ca) so that

S [0(./,fc+l)-0(i,/c)]>i
fc = i

which implies that 0(j,K(ca))> t and hence N(j,t) ^ K(to). This completes the

proof.

We let
00

H,j(t)   =   E  Gff(t),        i*j,
k = l

and

//,//) = £ gum).
k = 0

Then Hu is a monotone increasing function, finite for each t. In what follows we

will always assume that J / 0 and that lim, „ œ G¡/t) = 1 for all pairs i, j e I.

We now find the distribution of X„

Lemma 2.2.

P(i.o,L*« =J,N(j,t) = fc] = £ [1 - F/i - s)-]dG*k{s)

for k = 1,2,3,". and je J.

Proof. [Xt =j,N(j,t) = fc] - [A-, =7, W, + 0(;',/c,) ̂  í ^ 0(;,fc)] a.s. by the defi-

nition of the quantities involved.

Now the strong Markov property of the process tells us that

¿WW) = " \(Xs> *Ùl>£ WM = Pu,olWeu,V = "J = *»•
Hence Wjy,*) and 9(j, k) are independent random variables. Thus the distri-

bution of the sum of 00', k) and Wou¡k) is given by the convolution of their dis-
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tribution functions, which is in this case, according to Lemma 2.1 and the above,

given by

J" [1 - F jit - s)]dG*f(s) = P(M))[X, =j, N(j,l) = fe]

as asserted.

Theorem 2.2.

P(i,o)[*. =./] =   f [1 - F/l - s)]dlluis),      j e J.
Jo

Proof. According to Theorem 2.1,

00

-P(i.o)[*. = /] = 2 P(;,o)[*, =J,N(j,t) = fc].
k-1

Lemma 2.2 gives each of these summands as   jl [1 — F fit — s)~\dGffis) and

summing on k yields the result.

3. Finite expected waiting times. We assume here that the first moment of

the waiting time distribution is finite and that the distributions Gi} are nonarith-

metic, that is, there does not exist an h > 0 so that l^f=0Gjjikh) = Gj7(oo). We

also assume that for each instantaneous state i, lim._0+P(.i0)[.X, = i] = 1. If

jo" sdFjis) = pj and f™ sdGjjis) = pJ} then Smith [8] has shown that for all j e J,

limPli¡0)[Xt=j]=^.
(-►00 t*jj

His proof applies to this more general semi-Markov process but we extend the

result to include instantaneous states.

Theorem 3.1. If j is an instantaneous state then hm,,mPU0)[Xt=j] exists

and is independent of i.

Proof.   Let k e J, then

-P(.,o)LX = J] = Pit,o)lXt =7, Nik, t) = l] + P(„0)[.Y, =j,Nik,t) m ()].

Since there is only one recurrent class,

P(¡,o)[X = U Nik, 0 - 0] ál - G,kit) -> 0       as t -> oo.

We treat the other term as follows,

P<i,0)[*, = /'. Nik, t) è 1] =   f P(i,o)[*, = J, 0(k, 1) s ds]

= Ç P<t,o)lX,-l,=ñP«,o)ÍO(k,l)edS]
Jo

using the strong Markov property for 9(k, 1).
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By definition this is

r P(k,o)[X,-s=j'\dGik(s).I
We now wish to show that for k e J, limI^00P(ki0)[A', = j] exists for all instanta-

neous states j.

According to Theorem 2.1 we have

00

Plk.o){Xt =7'] =   S P(k>0)[Xt =j, N{k, t) = ni]
m = l

oo /»I

=   S        P(ky0)[Xt=i,9(k,m)eds,N(k,t) = m~].
m = l    Jo

But using the strong Markov property for 9(k, m) we have

S       P(tiO)[X/=¿0(fc,ro)eds,¿V(M = m]
m = l   Jo

=   S    Í P(*,o)[*,-s = j,N{k, t-s) = O]P(4iO)[0(fc,m) e <b]
m = l   Jo

00 /•(

=   S     P(*.o)[*«-» = ;. Mfe, « - s) - 0]¿G*m(s)
m = l  Jo

=  J P(*,o)[X«-s = J,N(k,t- s) = Ö]dHkk(s).

If we can show that P(tj0)[X, = j, N(k, t) = 0] is a Riemann integrable function

satisfying the condition

00

S       sup    |P(fti0)[A'i=i,JV(/c,i) = 0]|<co
k = 0   tgiafc + l

then an application of Blackwell's Renewal Theorem [1] to the convolution will

give us the desired limit.

Note first that

(1) lim Pu,o,[Xt =}, N(k, i) = 0] = 1
i->0 +

if not PUi0)[N(k, t) > 0] = ô > 0 for all t > 0. Since we are assuming that

limi_0+P0->0)[.X( =/J = 1 and because N(k,t) > 0 means that N(k,s) > 0 for all

s = t,if P(),0)[N(k,t) > 0] = Ô for all t > 0 then Gjk(t) = Ö for all t = 0 and thus

from the representation of Theorem 2.2
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for all sufficiently small t, this contradicts the fact that lim1_0 + P(/,o)[^i =/'] = L

Thus we see that

Pik,O)ÍXt+h=j,Nik,t + h) = 0]\

= PykwlXt =J,Nik,t) = 0]Pu,o)[Xh =j,Nik,h) = 0].

Hence, from this and from (1) above, given any e > 0 there exists a ô > Oand for

all h such that 0 = h = Ô,

P(t,o)iXt+h =j,Nik,t + h) = 0] = P(k,v£X, =j,Nik,t) = 0](1 - e).

Now P(k,o)[.Xt =j,Nik,t) = 0] is a nonnegative function and

P(kt0)[X, =j, Nik, t) = 0] = I - Gkkit)

where 1 — Gkk is integrable, so if we can show that the discontinuities of the function

are at most denumerable, Pik0)[Xt =j,Nik,t) = 0] will satisfy the conditions

for the Renewal Theorem.

We state the following lemma without proof.

Lemma. If fix) is a nonnegative bounded function such that for any e > 0

there exists an H > 0 independent of x so that for all 0 = h — H, fix + h) —

/(x)(l — e), then f(x) has at most denumerably many discontinuities.

This shows the existence of the limit and proves Theorem 3.1.

We also state the result

Theorem 3.2. For j eJ

f [i - F¿sy]ds
lim P(i,0)[X, = j, Y,uß] = -*>-.
t-»oo Pjj

This theorem was known to Smith [8].

To show the existence of a limit distribution for Yt we must be able to perform

an interchange of limits, i.e. we have the existence of

S   lim P(i,0yiX,=j,Yt^ß]
je I (->oo

but we want to show the existence of

I'm P(i>0)[Tt r£ ß] - lim  2 P(,,0)[Xt = j, Y, = /?].
í-»00 f-*00   j 6 I

In order to justify the interchange of limits we will first show that we have a

natural invariant measure which is a probability measure. That will yield the

uniformity which allows the interchange of limits.
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The invariant measure is the measure induced on the state space by the joint

limiting distribution of A",, Y,. We define the measure n

(i) for i el, i$J,let

n[ix[0,ßj]= lim P(k¡0)[Xs = i\;
s-*oo

(ii) forje./,let

jT[l - Fjisfjds
*D'x[0,/(]]

I'n

Cleary n( ■ ) is a well defined measure.

We will let Z denote the state space of {(X„ Yt), t > 0}.

Lemma 3.1. n(Z) :g 1.

Proof. Clearly

Im i

and by Falou's lemma

1 = liminf L P(M)[*r =/] =   S   um P(k,o,[Xt = f]
t-»CO        j E / j B I     (-.00

=   £ 7r(j'x[0, co)) = n(Z),
je I

this completes the proof.

Lemma 3.2. n is an invariant measure.

Proof. The Chapman-Kolmogorov equation for the process has the form:

P(*,o)[(*i+s, Tr+J)eB] = £ P,Z)[(X„ Yt)eB-]P(k¡0)[(Xs, Ys)edz\

where zeZ and Be B#(Z) the Borel field of measurable Z sets, and 0 < s, t. For

BeB%(Z), we will use the notation B} = [(;', t):(j,r)eB].

P{k,o,[(X„ Y,)e B] = £ P(,,o)[(^, Y,) e B¡\
Je i

hence by Fatou

■

Iim inf P(M)[(X„ Yt)e B] ^   S   lim P(M)[(*„ T,) «Bj]

= S n(By) = »(B).
/«I
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Thus since any bounded, nonnegative measurable function g can be uniformly

approximated by simple functions,

liminf   f g(z)P(ki0)[(XtYt)edz]=   f g(z)n(dz).
i-»oo        J% Jz

Hence from the Chapman-Kolmogorov  equation,  for any BeB#(Z), since

P(z)[ • ] is bounded, nonnegative and measurable,

n(B)  =   E lim Pikt0)[(Xt + s,Yt+s)eBj]
j e I ( -> oo

=   E   lim   ( Piz)[(Xs,Ys)eBj]P^0)[(X„Yt)edz]
j s I   r-»oo Jz

ä   E    f P(z)[iXs,Ys)eBj]nidz)
jel   Jz

=  j^P,z)[iXs,Ys)eB]nidz).

Suppose there is a B e P*(Z) and an s such that n(B) > J*z P(z)[(Xs, Ys) e B]n(dz).

Let B' denote the complement of B. Then

nCZ) = n(B) + k(B') >   £ P(Z)[(XS¡ Ys) e B]n(dz) + £ P(z)[(Xs, Y) e B']n(dz)

= £ {Plz)[(X , Ys) eB] + Pyz)[(Xs, Y,) e B']}n(dz)

=   Í  ln(dz) = nCZ).

This is a contradiction. Thus

n(B)=  Í P(z)[(X!„Ys)eB]K(dz) for every BeBJfZ), for all s > 0.

Therefore % is an invariant measure.

Lemma 3.3. n(Z) = 1.

Proof. If we normalize n, call it n', then n' is an invariant probability measure.

By bounded convergence

n'(Bj) = lim   f P,Z)[(XS, Ys) e Bf]n'(dz) = f n(Bf)n'(dz) = n(Bf)
s-»ooJ Z Jz

for all j e I and hence n = n'. Therefore n(Z) = n'(Z) = 1, as asserted.

Theorem 3.2. Y, converges in distribution.
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Proof. Given s > 0, by Lemma 3.3 there exists a finite set F çz I so that

(1) 1 - E n(Zj) < 8/2.
jeF

Let JV be the cardinal number of the set F. Then for each j e F there is a T, so

that t = Tj implies

(2) | P(i.o)[*r = /, Y, ¿ ß] - </*[0, fl) | < £/4JV.

There is also a T0 so that for all t 5: T0

(3) 1- E P(¡,0)[Xt=j-\
JeF

= EJA.

Then for all t ^ Max [T0; Tj,jeF~\,

£ P(M„[X» = i> Yt£ß]- £ 7i(j x [0, /?])
j e / j'el '

Ú  | £ P(i,o)[^ =j, Y,£ ß] - E xeij x [0,0])
1 j s F j'eF

+ E  p(i,0)[x,=j,Y,^ß]\ +    E   7ü0'x[0,/?])
je I-F I j€l-F

< c/4 + fi/4 + e/2

from (1), (2), and (3). Thus

lim P<,,o)[r(á]?] = E</x[0,£|).
í-»oo je 7

4. Infinite expected waiting times. Our assumption is now that the first moment

of the distribution F¡, for all i el, does not exist. Thus p¡¡ = co for i e / and hence

the Renewal Theorem tells us that limt^w[H¡¡(t + h) - Hu(t)~] = 0 for all h = 0.

We state the following without proof.

Lemma 4.1. For every distribution function F on [0, oo) and every C > 0,

00

0 g E sup    [F(x + C) - F(x)] < oo.
k = 0      HlSHl

This means that F(x + C) — F(x) which is of bounded variation is Riemann

integrable and hence the Renewal Theorem and representation of Theorem 2.2

immediately yield

Lemma 4.2.

lim {P<m[Xt+h =;] - Pn.olX, =/]} = 0
f-*00

uniformly for allOSh ^Hfor all H > 0 and all i,jel.
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This then implies

Lemma 4.3.

lim {P(j,0)[Xt = j] - P(,.o)[*, =./']} - 0 for all i, j e I.
(-»00

Proof. From the strong Markov property at the Markov time 0(j, I) we have

P<»,0)[*««/]   =   £PU.vtXt-.-ñrÍGiA»)-

Given R > 0,  according  to  our  assumption,  there  exists  an   H > 0  so  that

1 - e < G,jiH) = 1 and by Lemma 4.2 there exists a T > 0 so that

\PU,olXt + h =/] - Pu,0)lX, =/] | < e

whenever t = T and 0 zi h z% H.

Thus for all / ^ T + H, we have the following:

I Pu.olX, =j]-P0,n)[X, =/] | - |pu,o,[X, =/] - j Pu,e»lX,-, =j]dGu(s)

=    Pu.o)lX,=n -   Í Pu,olX,-,=j]dG,jis)   +E
Jo

=  I PUlolX,=j] - P0,0)[X, = j]G,jiH) \ + cGuiH) + E

g 3e.

This concludes the proof.

Definition 4.1.   Let

¡Gjkit) = P(j,o)[Xu = k,Nii,u) = 0 for some u, 0 g u <? t],       j +k.

We think of this as the "taboo" probability of a visit to state k before a visit

to state / up to time t with the  initial distribution concentrated at j.

Definition 4.2. Let ¡Gfkxis) = ¡G,kis), and form the convolutions

= £ fip-*\iG^is)  =        fi^-'Ks-^dßait),        n>l,

then we write ,H,kis) = E?.uG£is).

Lemma 4.4.

P<i.o,[Xt = /] = £ { £    D - F jit - s - u)]d,H,jiu) j dH„is),      i # j.

Proof.   This is a straighforward application of the strong Markov property

based on the last visit to the state /.
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Corollary 4.1.

sup      f [1 - Fj(t - s)-]dHn(s) < oo.
OglSoo     Jo

Proof.   Suppose the conclusion is false, then for every integer n, there exists a

number T„ > 0 so that

j;
\l-FJ(t-s)-]dHii(s)>n.

Clearly T„ -» oo as n -» oo.

Now there is a positive number K and a positive number T depending on K

so that ¡H¡j(T') > K. Consider then for O^H T',

I f  " [1 - Fj(t + h - s)-]dHu(s) -   f [1 - Fj(t - s)]dHK(s)\
i Jo Jo >

=   I f W - s) - Fj(t + h- s)-]dHu(s)     +   f '    1 dHn(s).
I Jo Jo

As in Lemma 4.2 the first quantity approaches zero as t becomes infinite. The

second expression also approaches zero as t becomes infinite according to the

RenewalTheorem. Hence for any e > 0, there exists a T" so large that t > T" implies

f     [1 - F Jit + h- s)-]dHu(s) and   f [1 - Fj(t - s)-]dHu(s)
Jo Jo

are within e in value for all 0 = h ^ T". That means then that for T„ = T",

£       [1 - Fj(Tn + h- s)-]dHn (s) > n -8

and consequently, for t = T„ + h + T"

Í   f   "[I - Fj(t - s - u)]dHii{u)dlHlj{s) >(n- e)K.
Jo Jo

But from Lemma 4.4 thus quantity is bounded, this this is a contradiction.

Hence súpoos«, J"ó[l — Fj(t — s)~\dHH(s) < oo, as asserted.

Theorem 4.1.  If [I - F¡(sy] = o([l - Fj(s)~\)for some jel then

lim Pyk,0)[X, = i] = 0
(-»00

forlall kel.

Proof. Given e > 0, by Lemma 4.4
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Pu.olXt = O   = £ { £     [1 - F,(t - s - u)]djHj,iu)^ dHjjis)

=   £'{ £' [1 - F,it - s - u)]dHjjiu)} djHj,is)

after a change in the order of integration and a change of variable.

By our assumption, there exists an S so that for s = S, [1 — Fj(s)] <

(e/2)[l - Fjis)], and since limx_œ[//¿,(x + s) - H,/x)] = 0, there is a T>0 so

that if x = T, Hjjix + S) - ffyf» < 8/2.

Thus for all s = S + T

V[l-F,is-u)]dHjjiu)=   V   [l-F,is-u)]dHjjiu)
Jo Jo

+ V   [l-F,is-u)]dHjjiu)
Js-S

= (e/2) £ [1 - Fjis - u)]dHjjiu) + e/2

= ie¡2)Pu,0)[Xs=j]+E¡2 = E.

Then since G^/co) = Gj;(co) = 1 we see that jHj,i<x>) < oo, so that for any

e' > 0, there exists Sx so that for s — Sx,

£S[1 - F,(s - u)]dHjjiu) < ie'l2)jHj,iœ)

and if we let P = sup0ásSoo Jô [1 — F,is — u)]dH„iu), there exists Tt so that

t = Ty implies ̂ ¡(oo) - ,-#,¡(0 < £'/2P.

Then for r ^ Sj + Ty

£'{ £' '[I - F,it - s - «)]<?//,.»} djHj,is) < e'.

Now by Lemma 4.3 the result follows.

Theorem 4.2. // [1 - F,is)] - Af,[l - Fjis)] = o([l - Fjis)]) + o([l - F,is)])

+ guis) w/iereE"=0suptáSs/i+i |gfJ(s)| < oo then for i ¿j

lim {P(i.o)[*, = ¿] - Ay/^/coiP^o^X, = /]} = 0.
(-»00

Proof. Let s > 0 be given. If X,¡ = 0 then we have [1 - F ¡is)] = o([l - Fjis)])

+ o([l - F,(s)]) + g,j(s).

From Corollary 4.1,

sup     f [1 - F fie - s)]dH„(s) = K
OS(<oo Jo

< 00
Oii'-oo  Jo

so that
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lim      f o([l - Fj(t - S)])i///,,(S) = 0,
(->oo        Jo

Hm      | gij(t - s)dHu(s) = 0
r-»oo       Jo

for any gu satisfying the condition of this theorem and finally it is obvious that

lim       f o([l - F,(i - s)-])dHu(s) = 0.
(->oo        Jo

Hence in this case the limit exists and is zero.

We assume then that Xtj # 0. By Lemma 4.4 and Fubini's theorem we have

Pii,0,lX, = f]    =   jo'{ £    '[I  - Fj(t - S - «)]<///„•(«)}   dflyfiß).

We first consider

f'[l-F,(t-«)]dff«(«)

= j\xu[l - Fj(t - u)] + o([l- Fj(t-«)]) + o([l - F;(i-1/)]) + gij(t-u)}dHu(u).

Let B = supogsg00[Hli(s + l)-/Y1,(.s)], B<co sincelim^o0[///i(s+l)-//li(.s)] = 0.

By assumption we can choose Tt so that

(0 £        sup   |siy(s)|<e/4B.
kgjTi |   kgs^k + 1

Since |gfy| is bounded, let B' = sup0ssgooUij|.

Now let T2 be so chosen that s = T2 implies

(ii) |o([l-F,(5)])|<fi|l-F,(S)|/4K.

Similarly o([l - Fj(s)~]) and o([l - F¡(s)~]) are bounded so let

B" =   sup { |o([l - Fj(s)l)| + |o([l - Ft(s)-])\}.
OSsáoo

Obviously we can find T3 so that t = T3 implies |J0o([l- F¡(í-s)])íi//í1(s)|<e/4.

Now if T4 = Max(T!, T2, T3) we choose T5 so that if t = T5

(iii) HU(T4 + t)- Hn(t) < fi/4(B' + B").

Then if t = T4 + T5,
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I I" [1 _ F.(t - uy\dHa(u) -   \ Xu[l - Fj(t - u)]dHn(u)\
i Jo Jo ' •

g   I  f    4{o([l-FJ(t-u)-]) + o([l-Fi(t-uy]) + giJ(t-u)}dHii(u)
1 Jo

+  f       {o([l - Fj(t - «)]) + o([l- Fit - «)]) + gij(t - u)}dHu(u)
Jt-T,

=   I  f    '{«([l-F/í-iO^ + oíD-F^-iO])}^^)!
1 Jo l

+   |J"    4fy(<-«MH«(«)

+  I  f     {o([l-P/í-«)]) + o([l-i:'iO-«)]) + fl/í-«)}dH«(«)

ge/4x|i     '[l-F//-«)]dH„(«)    +   |e/4  f     [l-Frff-»)]^«
I Jo I       Jo

+        £      sup    | g;j(t -s) I [//,,(/< + 1) - //i((k)]
fc=0    ISsSfc+l

+ \B' + B"\ [Hu(t) - r/,,(i - T3)] < e/4 + e/4 + e/4 + e/4.

lim  ( f'[l - F,(< -«)]£///„(«)- Ay  f[l - F,(i - u)-]dHu(u)) = 0.
r->oo   1 Jo Jo /

Now by Lemma 4.2, and the integral representation we have,

lim     f    ' [1 - F,.(r + h - ufjdHuiu) -   f [1 - F,.(f - u)]dtf(l(«)
(->oo      Jo Jo

Consequently we conclude that

lim     Ay Í [1 - Fj(t - «)3dH«(«) -  f     [1 - Ft(t + h- u)]dHu(u)
t->m Jo Jo

^ lim   I XtJ f   [l-F/í-M)]dHít(u)-   f [1 - F;(i - u)-]dHu(u)
(->oo   I Jo Jo

i r* ¡•t+H
+ lira [l-Fiit-uftdHuiu)- [l-F^t + h-u^dH^u)

(-►00   I   Jo ./O

for all 0 = htiH for all H > 0.

By Lemma 4.5 we can choose H so that

(ÍV) ,Jïy(cO) - ,Hy(H) < «/Ay   SUP       (   Í   [1   - Fj(s - «)]dffH(«)]
Oás<oo I Jo )

0.
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and Ts large enough that when I > Ts wc have for all 0 — h z% H,

(v) k7 [' [l-Fjit-u)]dH„iu)-  V    [l-F,it + h-u)]dH„iu)  <E¡,H,jicx>).
I      Jo Jo

Now for all t^Ts + H,

| V(i.o>[*. =/] - iHuico)P(f,0)[X, = /] |

- | ki £'{ £[1 - Fjis - u)]dH,iu)y,H,jit - s) - ctf 0-(go)£' [1 ~F,(t - «)] di/„(«)

á Ul7 f     ( V[z-Fjis-u)]dH„iu)\d,H,jit-s)-,H,jico)ï[l -FJU-uftdHtyiu)
I     J'-hUo 1 Jo

+ |Aiy£   (£[l-F/s-u)]díí«(«)JdíJílXí-s)   .

Now for t - II z%sz% t, by (v)

K Íb - F/« - «)]<W„(«) -  ib - F,(s - u)]dHu(u)   < El,H,j(œ).
1    Jo Jo

Hence

ta f       Í f b - Fj(s - u)]dH„(u)} d,H,j(t - s)
l      J(-w 1 J n I

- ,Huico) j'[l - F,it -u)]dH„iu)

< f  k. ¡[l-Fjis -u)]dH„iu)
Jt-H\       .10

- A/oo)/,//,///) £'[1 - F,it - u)] dH„iu) j rf.tf./i - s)

á i//ÍJ(ff)[«/¡.r/iy(oo) + e/^/JÎ)] è 2e.

Also by (iv),

I l» £'   {£  [1 - Fjis - «)]«*»«(«)) 4H«(í - s)

Hence since s is arbitrary

lim R7P(I.,0)[X, = /] - (HiJ(oo)P(i.o)[X, - i]} = 0.

¿6.

Therefore since Ay # 0, the result follows.
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The condition of Theorem 4.2 is very nearly a condition on the ratios of the

tails of the distributions, it is easily seen that one can define quantities X¡, for

i e I in such a way that if X¡ # 0, then Xu = A,/Ar

Theorem 4.3. If I is a finite set and the hypotheses of Theorem 4.2 are satisfied

for all i,jel then

lim P(;,o)[X, = Í] = A, /j A, +     £     A, ,ffy(oo)} /or i e /.
(-►oo I  l je /; ¡*i I

Proof. Let the cardinal number of / be JV. According to Theorem 4.2 we have

for all i, j el for which X¡ ̂  0,

lim {Pa,o)[X, = i] - (Al/AJiH(/oo))P{(,o)[^ = j]} = 0.
(-.00

There exists T large enough that if t = T, X¡ # 0

KA^/ooVA/IP^oTX, = i] - P(i,0)[X, = /J | < fi/JV,

if Ay = 0

\Pu,o)[Xt=ß\<ElN.

Thus since £je,PiL0)[X, =f] - 1 for all t > 0,

E P<,.0>[X, = Í] - P(i.o)[*. = '"] -     £    (A;«H,/oo)/A/)P(l.o)[Jf, = i]    ^ «.
je / JmI;Jfi

Thus the result is established.

We now state a corollary to Theorem 4.2.

Corollary 4.2. If £je/Xj¡H¡j(co) = oo and irte conditions of Theorem 4.2

are satisfied then

lim P(l>0)[*, = i] = 0.
t-»00

Proof.   Given 0 < e < 1 we find a finite set S so that £je sXJiHij( oo))-1 < e.

Let JV be the cardinal number of the set S.

For sufficiently large t, Theorem 4.2 says that

| (Xj ,HU( oo)/A,)P(/i0)[Xf = /] - P(/,0)[X, = i] | < £/JV

so that

1 ^ £Pu.o,[AW]^   £   (AJ.if/iJ(ao)/A1.)P(i,0)[X( = /]-fi
j eS ¡s S

and by our choice of S we have,

P{l(0)[Af, = i]g(l+8)A,e

but e is arbitrary and the conclusion follows.
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Our best clfort toward answering the question of necessary conditions is sum-

marized by

Theorem 4.4.   If l\mt^œP,ÎS))[X, =j] = Kj and lim,-,00P{ii0)[Ä'l = /] = n¡, then

if nj # 0

lim
r-xso

r [i - F,is)]ds    „, .
Jo m 7tMH,/oo)

fr[l-P/s)]ds %s

Proof.   Consider   \\ P(i¡())[Xs = j] [I - F,CT- s)]ds which equals

(i)      £   { £J £ b - Fjis - u - x)]d,H,j(x)]dH„(u)} [1 - F,(T- s)] ds

by Lemma 4.4. All integrands are nonnegative and bounded and all measures are

finite on the range of integration, we apply Fubini's theorem to integrate on s

first. Hence

0fo ( (, [£ í-1 "F;(s " " "x)] [i " f,{t~ s)]i/;f/ij(x)]ds)dHn(i1

= £    { £ j     [1 - Fj(s - u - x)] [1 - F,(T- s)]dsl dflt¿x)\dHuiu).

Now observe that this integral is symmetric in [1 — Ff] and [1 — F¡] so that

we can interchange their roles in the original form of the expression found in (i).

Therefore, (i) is equivalent to

r í£ jo' "[i~f,(s~x~i')]í/;//;j(x)](,h¡i(u)} [i"Fj{T~*•

Again by applying Fubini's theorem to interchange the two integrals with respect

to ¡H,j and H„ measures, we get

fo (Jo   [ Jo   X[l " Fi(S " X " ")]rfi/,i(l')]  Wx)) f1 - F¿T~ S>-»<*S

= £ { £p(i,o)LYs-x = i]d,H,jix)} [l-FjiT-s)]ds by Theorem 2.2.

Now by Lemma 4.5, ,HU defines a finite measure on [0, oo ) so that by the

hypothesis that Iim,_00P(,i0)[A', = i] = n, we see that

l-m       P(¡,o)lXs-x = i]d,H,jix) = ri, »if,/oo).
«-♦oo    Jo
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Thus, given e > 0 there exists Ty so that for t = Ty we have that

¡Hij(co)-iHu(t)<E,

and there is a T2 so that whenever t = T2.

\P«,o)[X, = i]-n,|<8,

hence for all s = Tt + T2,

(71, - e)Gfi;;( oo) - e) < f Pit,o)lXs-x = í]dtH,Jix) < (n, + s)(iHy(oo) + e).
Jo

Let Us) = So Po.oJLX.-x = QdtH^x), then
(ii)   lim^ojLís) = n¡ ,í/y( oo ),

(iii) OgL(s)á|H|/(oo)
for all 0 ^ s < oo .

We now write

(iv) f 'P(i,o,[*s = Í] [1 - F,it - s)]ds = f L(6) [1 - Fj{t - 0] dS-
Jo Jo

All we need to show now is that only the tails of these integrals are important

in the limit.

Let e' > 0 be given so that 0 < e' < n¡, then by the hypothesis and from (ii)

we can choose T3 so that s = T3 implies \P(i,o)[X„=ß —«j\< e' and

(v)   |L(s)-«„ffyioo)| <e'.

Now choose T4 so that for all T=T4

(vi)  fi'-  ¡T0[l-Fj(s)-]ds>T3.

This is possible by the assumption that the first moment of the distribution is

infinite.

Then for all t^T3 + T4 and from (iii), (iv) and (v)

f 3 Po,o)lX, =i] [1 - Ft(t - s)]ds + (*, - e') f   [1 - Fit - ■)] ds
Jo Jt3

=   tHtJ( co ) f ' [1 - Fj(t - s)-]ds + (nltHtj( oo ) + s') f   [1 - F/l - s)]ds.
Jo Jt3

Now O á 1 - F ¡(s) $ 1, Oá 1 - F/s) g 1 for all s so that

(«i - e')  {£[1 - Ftâlds - T3j

tHtJioo)T3 + (nttHtJ{cx>) + £') J" [1 - Fj(s)-]ds.et*

Divide both sides of the above inequality by J0[l — Fj(s)~\ds and use (vi) to

conclude
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V [l-F,is)]ds
in. _ ey o-e,á lffy(oo)e- + in„H,jico) + e').

j[l-Fjis)]ds

The obvious symmetric argument yields the inequality,

T3 + (rtj + s') £ [1 - F,(s)]ds = (n„H,j( oo ) - e') {£'| l-F/s) | ds - T3 j

which, after we divide both sides by J0[l — Fj(s)]ds  and  use   (vi) as  before,

gives us the result.

5. Waiting time distributions in the domain of attraction of a stable law.

Theorem 5.1. If F, and Fj are in the domain of attraction of a stable ¡aw

with exponent a and ß respectively where 0 <a, ß < 1 and the respective Laplace

transforms 1 — ep, and 1 — ep} satisfy the condition

lim-?rfA = L where 0 ^ L< oo,
¿-0+ 1 - <t>M)

then

Proof. F, and Fj being in the domain of attraction of a stable law implies that

1 — F,(s) ~ h^s'* and 1 — Fj(s) ~ hj(s)s~ß as s -+ oo where h, and hj are slowly

varying functions, i.e. h is called slowly varying if limt-tafh(ct)¡h(t) = 1 for all

c>0, cf. [3,p. 175].

According to [2, p. 460] our hypotheses imply lim,_00[l — F At)] /[l -P/0] = L

and hence [1 - P,(i)] = L[l - P/i)] + o([l - F jit)]).

Thus if L= 0 Theorem 4.1 implies the result. If Li= 0 Theorem 4.2 implies the

result.

Lemma 5.1 relies on the classical results of Karamata [4] for functions of

slow growth.

Lemma 5.1. For distributions F,, Fj in the domain of attraction of a stable

law with exponent a, 0 < a. < 1,

\\l-F,(s)]ds
Un, zh-

'    Jo [1~fj(s)]c/s

implies

.-.„ [i-P/0]
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Proof. The ratio of the Laplace transforms of 1 — F¡ and 1 — F¡ is the same

as the ratio of the Laplace transforms of J0[l — Fy(sy\ds and J*0[l — F/5)}ds.

Now by hypothesis, if Ik(t) = J¿fjl — Fk(sy]ds, then lim^^/tO) = go, k ■» i,j.

If e > 0 is given, there is a T so large that for all t — T,

(i) ¡ttO-U/OlÉtf/O.
Consider now

i  /*°° i        /*°°
e-'WO-U/lp   |        e""|/,(0 - U/Ol*

I Jo I       Jo

(2) =  J" e-s,| W) - LIj(t) \dt + J"° e-«\ I it) - Llj(t) \dt

ii Jo   e~s,\ W) - LIj{t) \dt + £ J" -s'lj(t)dt

using (I).

Since /,(/) and Ij(t) ate each bounded by t for all t ^ 0, the first term in (2) is

bounded by F2(l + L) so that (2) is bounded above by

/* oo p 00

T2(l + L) + £        e-stIj(t)dt z% T2(l +L) + s i    e "%(
oo

i(t)dt.

But lim^nljit) = oo so that for all s > 0, s sufficiently small we have

T2(l + L)

/:

< e.

e-s'Ij(t)dt

Thus dividing by  fâ e " Ij(t)dt in (2) we have

i» 00

e-s'Iy(t)dt

Ihn  +J4-= L.
s_0+      Vï/Ddi

Thus

J» OO                                                 /»OO
e-'ï^dt              e-s'[l - F¡it)]dt

_0_ Jo_

(œe-s'Ij(t)dt       fV*[l-F/í)]dl
Jo Jo

for all s,

hence the limits are equal. But the limit of the ratio of the Laplace transforms

shows the limit of the ratio of the distributions.

Thus for this class of distributions the conditions of §4 on the distributions are

both necessary and sufficient.
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In this context we can also discuss the joint limiting distribution of X„ Yt.

Let 0"ij,t) = d(j,N(j,t) + 1), i.e. 0" is the next arrival time to statej after time /.

The strong Markov property allows us to view 0"(j,t) as a sum of independent

random variables so that

Lemma 5.2.

P, [0"(},t) iï t + tu] = f'[1 - Gjjit + tu - s)]dlljj(s)
Jo

O'.O)

for all u> 0.

Proof.

Pu,olO"(j,t) = t + tu,N(j,t) = k]

=   £ Pu.0)le"<J> 0 = * + tu, N(j, t) = k, 9(j, k) e ds]

=   J -Pü.o>[0*Ü'. t-s) = t + tu- s, N(j, t-s)= O]P(J¡o)[0(j, k) 6 eis]

by the strong Markov property of the process at the time 0(j',/c).

Now

P(yjO)[0"O', t - S) = t + tU - S, NQ, t - S) = 0] = 1 - Gjjit + tu - s)

so that this can be written as,

j\l - Gjjit + tu - s)]dGj*is).

But

00

Pa,ol0"ij,t) = t + tu] = E   Pu,ol0"ij,t) = t + tu,NU,t) = k]
ft =0

oo       /• ( çt

=   E        [1 - Gjjit + tu - s)]elGjj(s) =        [1 - Gjjit + tu - s)] dff,/s).
*=o Jo Jo

Lemma 5.3.

Pu.olX, =j, Y, Z ßt] = £   ' [1 - Fjit - s)]dHjjis) for 0 zg ß < 1.

Proof.   This is proven exactly as Theorem 2.2 with the added restriction on

Y, causing no difficulty.

Lemma 5.4. If limr^„Pü>0)[X. = f] = %j^0 and if I - Fjit) ~ hjit)t~" where

0 < a< 1, then
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l-G,/0~M0'-'and lim M--p-
i-»oo   "jjw       "j

Proof.   From the representation P(j,o)[X, =/] = Jó[l "" Fj(t — s)~\dlljj(s) we

see that

Ce-2<P      fX     ñdt-    V-MW
Jo   '    *W*.-./]<« = A[1-(?W(A)]  '

where GjV(A) = f? e'^dGjjit). This follows since tfjV(s) = Ef-oG^s).

Now if Iimt_,00Pyi0)[.X't = j] = nj then

/•oo

J    •-%.o)[Jf,-/]A~-f   asA^0 +

1 - cPj(X)
hni-L  ,.x  = ft,-

and hence

Since

1 - </>/A) ~ T(l - a)fti-y)A« as X -0+

the result follows from known results for slowly varying functions.

Theorem 5.2.   Iflim,^JPu>e^Xt =f] = Kj and 1 - F/i) ~ hj(t)t~', 0 < a. < 1,
r/ien

lim  Py,0)[^=;,y,áj8t] = ^^^ D-tl + p)-1*.
(-•oo » Jo

Proof.    By Lemma 5.2,

Po,o)[Ö"0',s) è s + su] - J   [1 - Gjjis + su - v)-]dHjj(v).

This is then a problem in summing independent random variables each with

distribution function Gjj and asking for the distribution of the "excess". This

problem has been considered by Lamperti, [6], his result is,

lim  P(j.o)[ßV,s) - s è su] = C S'"(7ia)  v-"(l + vTldv
s-»oo Ju t"

for u > 0, and 0 < a < 1.

Thus

im  P(j,o)lß"(J>s) ¡= * + sw]   =   'im        [1 — Gy(s + su — t»)]dHy(ii)
-*oo s-*oo    Jo

œsin(rax)     _„_   .   ._

lim
9



424 JAMES YACKEL

From Theorem 5.4, since [1 - F/íí] - 7r,[l - G^/í)] = "([1 - G¡fit)~\) Theorem

4.2 applies, and we have

Tij   lim       [l-Gjjis + su-v)]dHjjiv) =   Iim       [1 - Fj(s + su -v)]dHjj(v).
s-»oo    Jo s-»oo    Jo

Thus according to Lemma 5.3,

lim  pu,o)iXs+su =j, Ys + su = su] =   lim        [1 - Fj(s + su - v)]dHjj(v)
s-»oo s-»oo    Jo

fœ sininoc)     _„,.       ,-t ,
=  Tij-—- o    (1 + v)   *dv.

J u "

Now let s + su = t and ß = u¡l + u. The result then follows.

Application. We merely note here that these results can be used to construct

nonnormal Markov chains. Take for instance a two state discrete parameter

semi-Markov process {X„} for which lim„^00P(1 0)[X„ = 1] does not exist. This

can be easily done according to §5 if we merely choose two distributions in the

same domain of attraction in such a way that the ratio of the slowly varying

functions does not have a limiting value.

Then

Pa,olX„ = 1] = 1 {P(y,olXk - 1, Yk = 0] - P(1>o)[X« = 2,Yk - 0]}
k = 0

does not have a limit as n -> oo .

It is easily verified that for the Markov chain iXn, Y„) the invariant measure v

satisfies the condition v(l,0) = v(2,0) so that one of the conditions for normality,

see [5], will be easily seen to be violated.
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