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1. Introduction.   Loops (G, • ) satisfying the property that

(1) (xyz)y = x(yz-y),

for all x, y, z e G, seem to have first made their appearance in the geometric

considerations of G. Bol [2]. They have also been mentioned by R. H. Brück

[4, p. 116] ; [5, p. 77]. Although we presently single out for attention those loops

satisfying (1), it should be recognized that there exists a duality between those

loops satisfying (1) and those loops for which

(1') y(z ■ yx) = (y ■ zy)x

for all x, y, z e G. For an account of the geometric origins of loops (G, • ) satisfying

(1) and/or (1'), one may consult Brück [5] and the references cited therein.

Loops (G, •) satisfying (1) (or (1')) are more general than Moufang loops.

In fact, it should be clear either from geometric or algebraic reasons that a loop

(G, ■) is Moufang if and only if (G, •) satisfies (1) and (1 '). And it should be equally

evident that Moufang loops are exactly those loops which satisfy (1) (or (1'))

and are di-associative.

It is our purpose in this paper to initiate a study of the algebraic properties of

loops (G,-) for which (1) holds. With this in mind, we now formally state

Definition 1.1. A loop (G •) is a Bol loop if and only if (1) holds for all x, y, z e G.

In §2, basic properties of Bol loops are discussed. For example, it is shown

that Bol loops are right alternative, satisfy the right inverse property, and are

power-associative. Autotopisms are discussed and employed in a manner analogous

to their role in the algebraic theory of Moufang loops. Notably, by using pseudo-

automorphisms, a factorization of autotopisms is effected (see Theorem 2.6)

which is similar to that achieved by Brück [3, p. 300] ; [4, p. 112] for inverse

property loops and by R. Artzy [1] for crossed-inverse property loops. We conclude

§2 by describing situations (see Theorems 2.7 and 2.8) in which a Bol loop is

Moufang — thus amplifying some comments already made in the present section.
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In §3, isotopy theory for Bol loops is considered. By means of geometric argu-

ments (see Brück [5, p. 76]), one can deduce the following: A loop(G, ■) is a Bol

loop if and only if every loop isotopic to (G, •) satisfies the right inverse property.

We choose to present an algebraic proof (see Theorem 3.1) of this isotopy charac-

terization of Bol loops by using techniques similar to those employed by J. M.

Osborn[6]. If (G, •) is a Bol loop satisfying the automorphic inverse property, we

are able to give a necessary and sufficient condition (see Theorem 3.2) for a loop

isotopic to (G, •) to also satisfy the automorphic inverse property. Furthermore,

we obtain a necessary and sufficient condition (see Theorem 3.3) for a loop

isotopic to a Bol loop (G, •) to be, in fact, isomorphic to (G, •)■ We conclude §3

with an isotopic invariant for Bol loops.

The notation and terminology employed throughout this paper appears to be

standard and, for the most part, coincides with that appearing in our compre-

hensive references [3](2), [4]. However, for the convenience of the reader, wc note

the following:

All mappings are tacitly assumed to be single-valued. If T is a mapping of a

set G into itself or some other set and if x e G, then xT shall denote the unique

image of x under T. A mapping T of a set G is a permutation of G if and only if

T is a one-to-one mapping of G onto G. If (G, ■) is a binary system and if x e G,

then the mappings R(x) and L(x) are defined by yR(x) = yx and yL(x) = xy

for all y eG. The left nucleus Nx, the middle nucleus N^, and the right nucleus

Np of a loop (G, •) are defined by

Nx = {all x e G | x ■ yz = xy • z, all y, ze G),

A/„ = {all y e GI x • yz = xy • z, all x, z e G},

Np = {all z e G ] x • yz = xy ■ z, all x, y e G}.

2. Preliminary results. If (G,-) is a loop, then 1 shall denote the identity

element of (G, •) and, for each x e G, xA and xp shall designate those unique elements

in G such that xAx = xxp = 1.

Theorem 2.1. If (G,-) is a Bol loop, then

(i) (G, •) satisfies the right inverse property,

(ii) yx=yp for allyeG,

(iii) (G, •) is right alternative.

Proof, (i) In (1), let z = yp. Then (xy • yp)y = x(yyp- y) = xy for all x,yeG.

Hence, xy yp = x for all x,yeG.

(ii) In (1), let z = y\ Then (xy-yx)y = x(yy'-y) for all x,yeG. Now using the

right inverse property and the fact that y = (yx)p, we obtain xy = x(yyx-y) for

all x,yeG. Therefore y y x = 1 and, hence, y k = y " for all y e G.

(2) Note that in [3] the term "associator" is used in place of the more current term "nucleus."
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(in) In (1), let z = 1 and get xy y = x- y y for ail x, y eG.

In view of (ii) of the preceding theorem, if (G, •) is a Bol loop, define x"1 by

x_1 = x;'= x" for all xeG. This brings us to the following definition.

Definition 2.1. If x is an element of aBol loop (G, •) and n is a nonnegative integer,

define x" recursively by x° = 1 and x"=x"~1-x for n > 0. For any negative

integer n, now define x" by x" = (x-1)'"' .

Lemma 2.1. ¡f(G, ■) is a Bol loop, then

(2) xyn = xyn-{-y = xyyn'1

for all x,yeG and all integers n.

Proof. Clearly (2) holds for n = 0 and for n = 1. Now assume that, for k > 1,

(3) Xyk = xyk-1-y = xyyk'1

for all x,yeG. (In particular, yk = yk~1y = yy*"1 for all y eG.) Then

xyk+l = x • yky = x(yyk~1 • y) = (xy •yk~1)y = xyk ■ y for all x, y eG. Then, replac-

ing x by xy in (3), we get

xyyk = (xy ■ yk~ l)y = x(yyk~l ■ y) = x(yk~ly •y) = x- yky = xyk+l

for all x, y eG. Thus, (2) holds for all integers n = 0.

Now, for all integers n > 0 and all x, y e G, expression (2) applied to x and

y_1 gives

x(y-l)"+i=x(y-1)"-y~l=xy-"-y-1

and (2) applied to xy and y~l gives

xy^y-1)-*1 =(xyy-1)(y-1)n = xy-n.

Hence, xy~" = xy-"-1 ■ y = xyy~n~l and the proof of Lemma 2.1 is complete.

Theorem 2.2. If(G,-) is a Bol loop, then

(A) xym-y" = xym + "

for all x,yeG and all integers m and n. In particular, Bol loops are power-

associative.

Proof. The desired result clearly holds for n = 0 and, by Lemma 2.1, it also

holds for n = 1.

For any integer n > 1, assume that (4) holds for all integers m and all x,yeG.

Then, by Lemma 2.1, xym+n+1 = xym+n-y = (xym-y")y = xym-yn+1 for all

x,yeG and all integers m. So (4) holds for all x,yeG, all integers m, and all

nonnegative integers n. (In particular, for use below, (y")""1 = y~n for all non-

negative integers n and all y e G.) Replacing m by m — n, we have xym~n-y" = xym
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and, hence, xy"'~" = .\ym-(y")~1 = xym-y~" for all integers n = 0, all integers m,

and all x,yeG.

In particular, ymy" = y"'+"for all y e G and all integers m and n. Consequently,

the Bol loop (G, ■) is power-associative.

We now define autotopisms for loops in the customary manner. (For instance,

see Brück [3, p. 285].)

Definition 2.2. Let U, V, and W be permutations of the set G. Then the ordered

triple (U, V, W) is an autotopism of the loop (G, •) if and only if

xU-yV = (xy)W

for all x,yeG.

Recall that the set of all autotopisms of a loop (G,-) forms a group with the

"componentwise multiplication"

(Uy, Vy, Wy)iU2, V2, W2) = iU,U2, Vy V2, W\ W2) .

Note that the identity element of this group is (/, /, /) where xl = x, all xeG, and

iUMwy1 ~iu-\v-\w-1).

We have occasional need for the following easily proved result.

Lemma 2.2. Let (Í7, V, W) be an autotopism of the loop (G, •) and let mappings

R and L be defined by xR = xpand xL = xx for all xeG.

(i) // (G,-) satisfies the right inverse property, then (W, RVR, U) is an

autotopism of(G, ■).

(ii) If (G,-) satisfies the left inverse property, then (LUL, W, V) is an auto-

topism of(G,-).

Theorem 2.3. A loop (G,•) is a Bol loop if and only if, for each xeG,

(P(x)-1, L(x)R(x), R(x)) is an autotopism of (G,•)•

Proof. The loop (G, •) is a Bol loop if and only if a(xb ■ x) = (ax ■ b)x for all

a, b,xeGor, equivalently, if and only if aR(x)~x -(xb-x) = ab-x for all a, b,xe G.

Definition 2.3. A permutation T of a set G is a semiautomorphism of the loop

(G, •) if and only if

1T = 1

and

(xyx)T = (xT-yT)-xT

for all x,yeG.

Definition 2.4. A loop (G,-) satisfies the automorphic inverse property if and

only if x-»xpis an automorphism of (G,-) and satisfies the semiautomorphic

inverse property if and only if x -+ xp is a semiautomorphism of (G, •)•
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Theorem 2.4. If (G,-) is a Bol loop, then (G,-) satisfies the semiautomorphic

inverse property.

Proof. Clearly 1-1=1. Now, for all x,yeG, (xyx)(x~1y~1 -x-1)

= [((xy x)x~ *)y~ l~\x~l = (xyy-1)x_1 = xx_1 = 1. So(xyx)-1 = x_1y_1.x -I

for all x, y e G.

A connection between autotopisms and semiautomorphisms of Bol loops is

afforded by the following result.

Theorem 2.5. If(U,T,U) is an autotopism of a Bol loop (G,■), then T is a

semiautomorphism of (G,-).

Proof. aU-bT = (ab)U fot all a, beG. Setting b = l, we get 1T=1. Let

u = IU. Then, for a = 1, we get U = TL(u). So xTL(u)-yT = (xy)TL(u) for all

x, y eG. That is,

(5) (u-xT)-yT = u-(xy)T

for all x, y e G. Replacing x by yx in (5), we get

(6) [u-(yx)TyyT = u-(yx-y)T

for all x, y e G. Using (5) (with x and y interchanged) in (6), we obtain

[(u-yT)-xTyyT = u-(yx-y)T

for all x,yeG. Then by (1),

u[(yT-xT)-yT] = u-(yx-y)T

and

(yT-xT)-yT = (yx-y)T

for all x, y e G.

Corollary 2.5.1. If (G,-) is a Bol loop and if x2eNp, where Np is the right

nucleus of (G, •), then L(x)R(x)~1 is a semiautomorphism of (G, •).

Proof. Since x2e Np, (I, R(x)~2, R(x)~2) is an autotopism of (G, •). So

(R(x)-1^x)R(x),R(x))(/,R(x)-2,R(x)-2)l=(R(x)-1,L(x)R(x)-1,R(x)-1)

is also an autotopism of (G, •).

As an immediate consequence of the preceding corollary, we have

Corollary 2.5.2. If (G,-) is a Bol loop of exponent 2, then L(x)R(x)~l is a

semiautomorphism of (G, •) for each xeG.

In view of the preceding corollaries, the following examples are of interest.
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Example 2.1. Let (P, +,•) be the ring of integers modulo 2 and let

G = R X R x R. For (/,j, k) and (p, q, r) in G, define

ii,j, k) o (p, q, r) = ii + p,j + q,k + r + jpq).

One can verify by a direct computation that (G,o) is a Bol loop of order 8 with

the property that x2eNp for all xeG. Note that (G,o) is not Moufang.

Example 2.2. Select G as in the preceding example but now, for ii,j,k) and

ip,q,r) in G, define

(i,j, k)o(p,q,r) = (i + p,j + q,k + r + jp(q + 1)).

Then (G,o) is a Bol loop of order 8 and exponent 2. Again (G,o) is not Moufang.

One can construct Bol loops (G, ■) with the property that not all the mappings

L(x)R(x)~l, xeG, are semiautomorphisms. (For such a construction, see

Robinson [7, Chapter V].) Contrast this with the fact (see Brück [4, p. 117])

that all inner mappings of a Moufang loop are semiautomorphisms.

Definition 2.5. A permutation A of a set G is a pseudo-automorphism of the

lo op (G, •) if and only if there exists an element ceG such that (A, AR(c), AR(c))

is an autotopism of (G,-). Then c is referred to as a companion of A. (See Brück

[4,p.H3].)
We now prove that every autotopism of a Bol loop can be expressed as a product

of an autotopism of the type appearing in Definition 2.5 and the inverse of an

autotopism of the type presented in Theorem 2.3. Specifically,

Theorem 2.6. Let (U, V, W) be an autotopism of the Bol loop (G, -), let u = IU,

and let v = lV. Then A = UR(u)~l is a pseudo-automorphism of (G,-) with

companion c = uvu such that

(U,V,W) = (A,AR(c),AR(c))(R(u)-1,L(u)R(u),R(u))-1.

Proof. By Theorem 2.3, (B(w)-1, L(u)R(u), R(u)) is an autotopism of (G,-).

Hence,

(7) (A,B,C) = (U, V, W)(R(u)-x,L(u)R(u),R(u)),

where A = t/P(w)_1, B = VL(u)R(u), and C = WR(u), is also an autotopism of

(G,-). That is,

aA-bB = (ab)C

for all a,beG. Since IA = 1, setting a = I, we get B = C. Then, for b = 1, we get

B = AR(IB). But IB = lVL(u)R(u) = uvu. Hence, A is a pseudo-automorphism

with companion c = uvu. Substitution of this information into (7) completes

the proof.
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We conclude the present section with two theorems which describe situations in

which a Bol loop is Moufang.

Theorem 2.7.   Let (G, •) be a Bol loop. Then the following statements are

equivalent.

(i) (G, •) is Moufang.

(ii) (G, •) is di-associative.

(iii) xy-x = x-yxfor all x, yeG.

(iv) (G, •) is left alternative.

(v) (G, •) satisfies the left inverse property.

(vi) (xy)-1 = y~1x~1 for all x,yeG.

Proof. From well-known properties of Moufang loops (see Bruck [4, Chapter

VII]), it follows that (i) implies each of the remaining statements.

(v) implies(i): By Theorem 2.3, (P(x)_1, L(x)R(x), R(x)) is an autotopism of

(G,-) for all xeG. Now by (v) and Lemma 2.2, (JR(x)~1J, R(x), L(x)R(x)) is

also an autotopism of (G,•) for all xeG where J :x-+x~l. But in an inverse

property loop, JR(x) ~lJ = L(x) for all xeG. So (L(x), P(x), L(x)P(x)) is an

autotopism of (G, •) for all xeG and this is equivalent (see Bruck [4]) to (G, •)

being Moufang.

(iii) implies (i): Using (iii) in expression (1), we obtain (xyz)y = x(yzy) for

all x,y,zeG and (G,•) is Moufang.

To complete the proof, it suffices to show that each of (ii), (iv), (vi) implies (iii).

(ii) implies (iii): This is obvious.

(iv) implies (iii) : (x • xy)x = (xx • y)x = x(xy • x). So (x • xy)x = x(xy • x) for all

x,yeG and (iii) holds.

(vi) implies (iii): By Theorem 2.4, (xyx)-1 = x-1y-1-x-1 for all x,yeG.

But, by (vi), (xyx)-1 = x-1(xy)-1 = x_1 -y-1x-1 for all x,yeG. So

x~1y~1-x~l = x_1 ■y~lx~1 for all x,yeG and (iii) holds.

Theorem 2.8. A Bol loop (G,-) is Moufang if (G,•) satisfies any one of the

following:

(i) inverse property,

(ii) crossed-inverse property (see Artzy [1]),

(iii) weak inverse property (see Osborn [6]).

Proof. Assume that (G, •) satisfies (iii). Then (xy)~ ' x = y ~ ' for all x, y e G. So,

by the right inverse property, (xy)-1 = y-1x-1 for all x,yeG. By Theorem 2.7,

the Bol loop (G,-) is Moufang. Since each of (i) and (ii) implies (iii), the proof is

complete.

In view of Theorem 2.8, it should be pointed out that a Bol loop may satisfy

the automorphic inverse property without being Moufang. This is certainly

illustrated by Example 2.2. For an important class of Bol loops satisfying the

automorphic inverse property see Robinson [7, Chapter V].
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3. Isotopy theory of Bol loops. For a general discussion of isotopy the

reader may consult Brück [3, Chapter 1].

Definition 3.1. Groupoids (G,-) and (H, o) are isotopic (and (H, o) is an

isotope of (G, •)) if and only if there exist one-to-one mappings U, V, and W of

G onto H such that

(8) xUoyV = (x-y)W

for all x, y e G.

The following two lemmas and their proofs are well known (see Brack [3,

Chapter I]) and are included here for reference purposes.

Lemma 3.1. Let (G,-) be a quasigroup and let fgeG. For all x,yeG, let

(9) xoy = xR(g)-1-yL(/)-1.

Then (G, o) is a loop and (G, •) and (G,o) are isotopic.

A loop (G, o) obtained from a quasigroup (G, •) in the manner described in the

preceding lemma is called a principal isotope of (G,-).

Lemma 3.2. // the quasigroup (G,-) and the loop (H,o) are isotopic, then

(H,o) is isomorphic to a principal isotope of (G, •).

Now let (G, •) be a loop which satisfies the right inverse property and let/, g eG.

For all x,y e G, define x o y by (9). For xe G, recall that xx and x''are those unique

elements in G such that xA-x = x-x''= 1. Since f-g is the identity element for

(G,o), for each x e G, let xPodenote that unique element in G such that x o xpo =/• g.

Define mappings L, R, and R0 by

(10) xL = x\ xR = x", xR0 = x?"

for all x e G. Then, for all x e G,

xR(gy1-xR0L(fy'=f-g

and, by the right inverse property for (G, ■),

xR(gy1=(fg)-(xRüL(frlR).

So we have

(11) R0 = R(g)-,L(fgytLL(f).

Note that (x o y) o yR0 = x, for all x, y e G, if and only if

(xR(gy » ■ yL(fy l)R(gy1-yR0L(fy l - x

for all x, y e G. The latter holds, replacing x by ug and y by fv, if and only if
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iu-v)Rig)-1-if-v)R0Lif)~1 = U'g

for all u,veG or, using the right inverse property for (G,•), if and only if

iu-v)Rigyl=iu-g)-ifv)R0LifrxR

for all !i,tieC. Now, using (11), this is equivalent to

<f,g) = (P(g),L(/)R(g)-1L(/-g)-1,P(g)-1)

being an autotopism of (G,-)- We have, therefore, proved the following:

Lemma 3.3. Let (G, •) be a loop satisfying the right inverse property, let f

geG, and let xoybe defined by (9) for all x,yeG. Then the principal isotope

(G,o) also satisfies the right inverse property if and only ifa(f, g) is an autotopism

of(G,-).

The following theorem constitutes an isotopy characterization of Bol loops.

Theorem 3.1. If (G,-) is a loop, then the following statements are equivalent.

(i) (G, •) is a Bol loop.

(ii) Each loop isotopic to (G, •) satisfies the right inverse property.

(iii) Each loop isotopic to (G, ■) is right alternative.

Proof. By virtue of Lemma 3.2, we need only be concerned with principal

isotopes of (G, •)•

It is immediate from Definition 1.1 that a loop (G,) is a Bol loop if and only if

Lixy)Riy) = Liy)Riy)Lix) for all x,yeG or, equivalently, if and only if

(12) Riyy'Liy)-1 = Hx)R(y)-^xy)-1

for all x,yeG.

Assume that (i) holds. Then (G, •) satisfies the right inverse property and iRig^1,

Lig)Rig)> Rig)) is an autotopism of (G,•) for each geG. Taking the inverse of

this autotopism and using (12), we see that cx(fg) is an autotopism of (G,-) for

all fgeG. So, by Lemma 3.3, statement (ii) holds.

Now assume that (ii) holds. In particular, (G, •) satisfies the right inverse property

and, by Lemma 3.3, a(f,g) is an autotopism of (G,) for all fgeG. Recall that

«(/,g) « iRig), Y,Rig)~ Vhere Y = L(/)P(g)-^(/g)-\ Soag-bY= (flb)P(g)" 1
for all a, b e G. For a = 1, we get Y = Rig) lLig) ~\ Comparing the two expres-

sions for Y, we get RigY^ig)'1 = L(/) P (g)- » Lifgfl for all fgeG. So (12)

holds for all x,yeG and (G,•) is a Bol loop.

Recall that isotopy is an equivalence relation on the set of all loops. Hence,

from the equivalence of (i) and (ii) of Theorem 3.1, it follows that each loop

isotopic to a Bol loop is a Bol loop. It is evident, therefore, that (i) implies (iii).

Now assume that (iii) holds. That is,

(13) [xRigT1 • yLify^Rig)-'■ yLif)~' m xRigT1 ■ [yRig)~ * ■ yLif)~'jLifT *



350 D. A. ROBINSON [June

for all x, y, f, g eG. For x = g and y =f in (13), we get g" =fR(gy1L(fy1

for ail/, ge G. Consequently,

(14) Rig)-1 = Rig1)

for all g eG. Letting x = g, replacing y by yL(f) in (13), and using (14), we obtain

(15) f(ygx-y) = (fyg*)y

for all f,g, y eG. Hence, (G,-) is a Bol loop and the proof of Theorem 3.1 is

complete.

From Theorem 2.8 and from the fact that every loop isotopic to a Moufang

loop is Moufang (see Brück [3, p. 304]), we get the following :

Corollary 3.1.1. If the Bol loop (G,-) is isotopic to the loop (H,o) and if(H,o)

satisfies any of the following properties:

(i) inverse property,

(ii) crossed-inverse property,

(iii) weak inverse property,

then (G,-) and (H,o) are isotopic Moufang loops.

In the case of Bol loops, Lemma 3.2 can be somewhat improved. (For a proof

of the following lemma, see Brack [4, p. 129]. Although Bruck's result is stated

for Moufang loops, his proof holds more generally for Bol loops.)

Lemma 3.4. Let (G,•) be a Bol loop. Each loop isotopic to (G,-) is isomorphic

to a principal isotope (G,o) where xoy= xR(f)-yL(f)-1 for all x,yeG and

some f eG.

Theorem 3.2. Let (G, •) be a Bol loop with the automorphic inverse property,

let feG, and let

xoy = xR(f)-yL(fyl

for all x,yeG. Then (G,o) satisfies the automorphic inverse property if and

only iffeNk where Nk is the left nucleus of (G,-).

Proof. Define the mappings L, R, and R0 as in (10). Since (G, •) is a Bol loop,

we may let J = L = R. Then using (11) with g—f1, we get

(16) R0 = R(f)JL(f).

The loop (G,o) has the automorphic inverse property if and only if

(17) (xR(f) ■ yL(fy1)R0 = xR0R(f) ■ yR0L(fy »

for all x,ye G. Using (16), setting x = uR(f)~l, and setting y = vL(f), expression

(17) becomes

(u-v)R (/) JL (/) = uJL(f) R (/) • vL(f) R (f)J.
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The latter holds for all u, v e G if and only if

a = (JL(/)P(/), Lif)Rif)J, Rif)JLif))

is an autotopism of (G, ■)• Since (G, •) satisfies the automorphic inverse property,

iJ,J,J) is an autotopism of (G,-)- So a is an autotopism of (G, •) if and only if

ß = aiJ,J,J)iRif-1)-\ L(f-1)R(f-1), P(/-1))

is an autotopism of (G, •)• Since (G, •) is a Bol loop,

xL(/)P(/)L(/-1)R(/-1) = [/-1(/x-/)]/-1=[(/-1/-x)/]/-1=x

for all xeG. That is, L(/)P(/)L(/_1)P(/-1) = /. Also, since J is an automor-

phism of (G,-), we have R(f)J = JRif'1) and L(f)J = JL(f~1). Thus,

ß = (L(f-x),I, R(f)L(r1)R(f'1)).

Hence, (G,o) satisfies the automorphic inverse property if and only if ß is an

autotopism of (G,-)-

Now assume that ß is an autotopism of (G,-). Then

xL(/-')-y = (xy)P(/)L(/-1)P(/-1)

for all x,yeG. For y = 1, we get L(/_1) = P(/)L(/-1)P(/-1). Therefore,

/? = (L(/-1), /, LCT1)) and f'1 e:Nx. Hence, /eiVA.

On the other hand, suppose that/e Nx. Then y = (L(/), /, L(f)) is an autotopism

of(G,-). But/eA7A implies that L(/)-1 = L(fl) = P(/)L(/-1)P(/-1). Hence,

ß = y~l and ß is an autotopism of (G,•)•

Corollary 3.2.1. Let (G,-) be a Bol loop with the automorphic inverse property.

Then all loops isotopic to (G, •) satisfy the automorphic inverse property if and

only if(G,-) is a commutative group.

Proof. Suppose that every loop isotopic to (G,-) satisfies the automorphic

inverse property. Then feNx for all/eG. Hence, (G,-) is a group. Furthermore,

y-1x-1 =(xy)_1 =x-1y_1 for all, x,yeG. So (G,-) is commutative. The

converse is evident if one recalls (see Bruck [3, p. 255]) that; every loop isotopic

to a group is an isomorphic group.

The next corollary is immediate.

Corollary 3.2.2. Let(G,-)be a Bol loopwith the automorphic inverse property.

Then every loop isotopic to (G, •) is isomorphic to (G, ■) if and only if (G, •) is

a commutative group.

Theorem 3.3. Let (G,•) be a Bol loop, letfe G, and let x o y = xR(f)■ yL(f)~x

for all x,yeG. Then (G, ■) and (G,o) are isomorphic if and only if there exists a

pseudo-automorphism of(G,-) with companion f
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Proof. The loops (G, •) and (G,o) are isomorphic if and only if there exists a

permutation T of G such that xTo yT = (x• y)T for all x,yeG or, equivalently,

if and only if xTR(f)-yTL(f)~1 = (x-y)T for all x,yeG. The latter holds if

and only if a = (TR(f), TL(f)~~x, T) is an autotopism of (G, •). And a is an auto-

topism of (G,-) if and only if ß = a,(R(f)~l, L(f)R(f), R(f)) is an autotopism

of (G,-). But ß = (T, TR(f), TR(f)).

Corollary 3.3.1. Let (G, •) be a Bol loop, letfe G, and letxoy= xR(f) • yL(f) l

for all x, y eG. If feNp, where Np is the right nucleus of (G,-), then (G, ■) and

(G,o) are isomorphic.

Proof. feNp implies that f:x->x is a pseudo-automorphism of (G,■) with

companion /.

Corollary 3.3.2. Let(G,-) be a Bol loop. Then every loop isotopic to (G,-)

is isomorphic to (G, •) if and only if each element in G is a companion for a

pseudo-automorphism of(G,•).

Proof. This is an immediate consequence of Lemma 3.4 and Theorem 3.3.

We deem it appropriate at this stage to raise the following question: If (G,-)

is a Bol loop which is isomorphic to all of its loop isotopes, is (G, •) necessarily

Moufang?

We now wish to present an isotopic invariant for Bol loops. For this purpose,

we introduce the "core" of a Bol loop (G,-). It should be noted that our con-

struction reduces to that of Brück [4, p. 120] when (G, •) is Moufang.

Definition 3.2. Let (G,-) be a Bol loop. For all x,yeG, define x + y by

x + y = xy-1 -x. The groupoid (G, +) is called the core of (G, •).

Lemma 3.5. Let (G,■) be a Bol loop, let feG, and let xoy = xR(f)-yL(f)~1

for all x,yeG. Let T be a permutation of G and let (G, +) and (G, ©) be the

cores of(G,-) and (G,o) respectively. Then

(18) xT®yT = (x + y)T

for all x,yeG if and only if

(19) [(/x-y-,)x]T-] =[(/x)T-' -(fy)T" Jy(fx)T~x

for all x,yeG where J:x-»x_1 .

Proof. Define R0 as in (10). Then, using (11), we get R0 = R(f)JL(f). Then

x © y  = (x o yR0) o x

=  [xR(f)-yR0L(fyl-}R(f)-xL(fTl

= [xR(f)-yR(f)J2R(f)-xL(fy1.
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Then (18) holds for all x,y e G if and only if

[xTR(f)-yTR(f)J]R(f)-xTL(fy1 = (xy-1-x)T

for all x,yeG. Replacing x by xL(f)T ~x and y by yR(f)~1T ~ \ the latter holds

if and only if

(xL(f)R(f)-y-l)R(f)-x = {[xL(f)T-1-yR(f)-lT-iJ]-xL(f)T-1}T

for all x,yeG. And, using Bol loop properties, this can be rewritten as

{iifx)(fy-x-f)]x}T-x={(fx)T-l-[f(f-1yf-1)]T-xJ}-(fx)T-1

for all x,yeG. Now letting z =/_,y/_1, we get

[(/x-z-')x]T-'=[(/x)T-1-(/z)T-1J]-(/x)T-1

which is, aside from an obvious notational change, expression (19).

Theorem 3.4. The core is an isotopic invariant for Bol loops. More precisely,

isotopic Bol loops have isomorphic cores.

Proof. In view of Lemma 3.4, we consider only those isotopes (G, o) where

xoy = xP(/)-yL(/)-1 for all x,yeG. Let (G,+) and (G,©) be the cores of

(G, •) and (G,o) respectively.

Since (G,-) is a Bol loop, (fx-y'x)x=f(xy~x-x) for all x,yeG. Then

[(/x • y " x)x]L(f) ~ ' = xy ~x • x for all x,yeG. And

[(/x ■ y - x)x] Uff1 = [(/5c) L (/)"» • (/y) L(/) " ' J] • (/x) L(/) -x

for all x,yeG. Hence, (19) holds for all x,yeG with T = Iff). So, by Lemma

3.5, (G, +) and (G, ©) are isomorphic.

As one final application of Lemma 3.5, we present the following characterization

of Moufang loops.

Theorem 3.5. A Bol loop (G, •) is Moufang if and only if, for each principal

isotope (G,o) where x o y = xR(f) ■ yL (f)~ ',

x + y = x@y

for all x,yeG where (G, + ) and (G, ©) are the cores of(G,-) and (G,o) respectively.

Proof. If (G,•) is Moufang, then x + y = x@y, all x,yeG, for a 1 principal

isotopes (G,o) of (G,-). (See Bruck [4, p. 121].)

Now suppose that x + y = x®y for all x,yeG and all principal isotopes

(G,o) of the form indicated above. Then, by Lemma 3.5 with T = I,

(/x-z"1)x = [(/x)(/z)-1](/x)

for all x, z, fe G. In particular, for x=f~1, we get z~xf~x =(/z)-1 for  all

z, fe G. So, by Theorem 2.7, the loop (G, ■) is Moufang.
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Addenda. Recently G. Glauberman (On loops of odd order, J. Algebra 1

(1964), 374-396) has studied automorphic inverse property loops satisfying our

condition (1'). He, furthermore, assumes that each element of such a loop has

finite odd order and refers to such loops as B-Ioops. Those results so kindly

attributed to the author by Dr. Glauberman in his paper appear as Theorem 2.2

of the present paper.

References

1. R. Artzy, Crossed-inverse and related loops, Trans. Amer Math. Soc. 91 (1959), 480-492.

2. G. Bol, Gewebe undGruppen, Math. Ann. 114(1937), 414-431.

3. R. H. Brück, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946),

245-354.

4. -, Asurvey of binary systems, Springer- Verlag, Berlin, 1958.

5. -, What is a loop!, Studies in Modern Mathematics Vol. 2, Math. Assoc. America,

Prentice-Hall, Englewood Cliffs, N. J., 1963, pp. 59-99

6. J. M. Osborn, Loops with the weak inverse property, Pacific J. Math. 10 (1960), 295-404.

7. D. A. Robinson, Bol loops, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1964.

Georgia Institute of Technology,

Atlanta, Georgia


