
SINGULAR PERTURBATIONS
ON THE INFINITE INTERVAL

BY

FRANK CHARLES HOPPENSTEADT(i)

Initial-value problems of the form

i x' =f(t,x,y,e),    x(t0) = x0,
(P.) C = dldt)

ley' = g(t,x,y,E),    y(t0) = y0,

where e is a small positive parameter arise frequently in applications. Here/and x

ate teal /c-dimensional vectors with components/= (/i,••-,/*) and x = (x¡, •••,xL),

respectively, and g and y ate teal /dimensional vectors with components g

= (S¡r--,gj) and y = (y\,---,y¡), respectively. The purpose of this paper is to

investigate the behavior of solutions of (PE) as e -+ 0 + for í0 ^ í < co.

In studying the behavior of solutions of (F£) for small positive e it is convenient

to make use of two systems which are associated with (Pe). The first associated

system, called the degenerate system, is obtained by formally setting e = 0 in

(Pe): This gives

lo   =

= f(t,x,y,0),   x(t0) = x0,
(Po)\

g(t,x,y,0).

The second associated system is obtained by making the "stretching" trans-

formation of independent variable s = (t - ot)[s in (PE) and then setting £ = 0 in

the result: This gives

dx ¡ds = 0,

dy/ds = g(<x,x,y,0).

Since the only solution of dx/ds = 0 is x = ß= constant, this system can be

written in the more convenient form

(BL) dylds = g(a,ß,y,0),   y(0) = y0
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where (oc,ß) are treated as parameters. The system (BL) is called the boundary-

layer system.

In this paper conditions on the functions / and g are found under which the

solution of (Pf) for small s approximates the solution of (P0) on the interval

i0 < t < oo.

The work presented in [3], [4], [5] and [8] deals with this problem when t is

restricted to compact intervals. In order to obtain results these authors impose

various stability conditions on the boundary-layer system (BL). In the papers

[3], [4] and [5] the stability conditions take the form of conditions on the eigen-

values of the coefficient matrix of a certain variational system associated with

(BL). In [8] A. N. Tihonov requires that a certain solution of (BL) be asympto-

tically stable in the sense of Liapunov.

Our treatment of the case when t is allowed to range over the entire positive

real axis requires that both the associated systems (P0) and (BL) satisfy severe

stability conditions. However, these conditions reduce to those needed by Tihonov

when compact t intervals are considered.

The result of this paper is the best possible in the sense that the hypotheses

cannot be substantially weakened. A series of examples accompanying the theorem

investigates the possibility of altering the hypotheses.

1. Preliminaries. In what follows the norm of a vector (or matrix) is taken to

be the sum of the absolute values of the components of that vector (or matrix);

e.g., |x|= I|x,|. Let /=[0,oo), SR = {(x,y)eEk+J:\x\ + \y\z^R}, and let

SR\X and SR|y represent the restriction of SR to Ek and E', respectively.

Let us assume that the functions / and g satisfy the following conditions.

(I) The system (Pf) has a solution x = x(t), y = y(t) which exists for r0 5¡ t < oo.

With assumption (I), an obvious transformation takes system (P0) into an

equivalent system which has x = O, y = 0 as a solution. It is convenient to assume

henceforth that system (P0) has x = 0, y = 0 as a solution for all t0 ^ t < oo.

(If) f,g,fx,fy, g^gx'gy e C(l xSR x [0,e0]). Here./; denotes the matrix with

components (df,¡dx), i,I = l,---,k, and similarly for fy,gx and gr

(III) There exists a bounded, twice continuously differentiable function

y = Y(t, x) such that

g(t,x, Y(f,x),0) = 0 for all (î,x)e/ x Sr]x.

Furthermore, Y(t,x) is isolated in the sense that z ^ Y(r<,x,) and g(í, ,x.,z,0)= 0

for some (t¡,x,)el x SR\X imply |z—Y(i,,Xi)| >P.

With assumption (III) there is no loss of generality in assuming that Y(t,x) = 0

for all (r,x)£/ x SR\X. Indeed, if this is not already the case, the transformation

x = w,

y = z+Y(t,w)
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takes system (PJ into

w' = f(t,w,z+ Y(t,w),s) = F(t,w,z,e),

£z' = git,w,z + Yit,w),e) - E[Y,it,w) + Yxit,w)-fit,w,z+ Y(r,iv),e)]

= Git,w,z,e),

which is of the same form as system (P£) with G(r, w, 0,0) = 0 for all (i, w) e I x SR ,x.

With assumption (III) the degenerate system can be written in the more con-

venient form

(D) x'=/(í,x,0,0),       x(i0) = x0.

The following four hypotheses are the crucial ones.

(IV) The function/is continuous at y = 0, e = 0 uniformly in (î,x)e/ x SR\X,

and /(r,x,0,0) and ffft,x,0,0) are bounded on / x SR\X.

(V) The function g is continuous at £ = 0 uniformly in (t,x,y)el x SR, and

g(t,x, y,0) and its derivatives with respect to t and the components of x and y are

bounded on / x SR.

The last two assumptions are the stability properties required of the two as-

sociated systems. To simplify the explanations, let Jf be the class of all con-

tinuous, strictly increasing, real-valued functions d(r),0 ^ r, with d(0) = 0; and,

let y be the class of all nonnegative, strictly decreasing, continuous, real-valued

functions o(s), 0 ^ s < oo, for which er(s)-»0 as s-»oo.

(VI) The zero solution of (D) is uniform-asymptotically stable. That is, if

x = <D(r, t0, x0) is the solution of (D), there exist d e Jf and er e S? such that

|0(/,í0,x0)|^d(|x0|)»(í-ío) for |x0|^P and 0^ro^r< oo

(cf. Hahn [6, p. 18]).

It is now convenient to define a new form of stability.

(VII) The zero solution of (BL) is uniform-asymptotically stable uniformly

in the parameters (a,ß)el x SR\X. That is, if y = *¥(s,y0,a,ß) is the solution of

(BL), there exist eecff and p £ Sf such that

\^is,y0,a,ß)\z%ei\y0\)pis)

forall0^s< oo, |y0| g P and (a,/?) el x SR]x.

The main result of this paper is then :

Theorem. Let the conditions (I) through (VII) be satisfied. Then for suf-

ficiently small |x0| + |y0| and e the solution of the perturbed system (Pe) exists

for t0zit< oo, and this solution converges to the solution of the degenerate

system (P0) as e->0+ uniformly on all closed subsets of t0 < t < oo.
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The essential difference between this result and all previous results is that the

/-sets on which the uniform convergence occurs are closed but not necessarily

bounded. In particular, sets of the form i0 < ty ^ t < oo are included.

2. Examples. The significance of the hypotheses in the above theorem can best

be understood by considering examples of systems of the form (F£). The first

four examples are concerned with the possibility of weakening any of the hypo-

theses (IV)-(VII) in the above theorem. In each of the examples E.1-E.4 one of

the conditions (IV) - (VII) is weakened, and a system of the form (Pc) is presented

which satisfies the altered hypotheses. In each case there are solutions beginning

arbitrarily near x = 0, y = 0 for which the convergence in the theorem is not

uniform on sets of the form t0 < ty — t < oo.

The last example, E.5, shows that in the case where / and g ate linear in the

components of x and y, it is not possible to replace condition (VI) by a restriction

on the eigenvalues of the coefficient matrix of the degenerate system. Such an

approach was attempted by V. Butuzov [1],

E.l. Let condition (IV) be replaced by

(IV) / is continuous and bounded on 7 x SR x [0,e0].

The system

Íx'   = ( — 1 + sin et)x,     x(0) = x0,

ey'   =  -y, y(0) = y0

satisfies the hypotheses of the theorem with condition (IV) replaced by (IV).

Here f(t, x, y, s) = ( — 1 + sin ei)x is clearly not continuous at e = 0 uniformly

in t   0 <; t < oo. The solution of (1) is

x = x0 exp{ — t + (1 — cos £/) /e}

y = y0exp(-i/e).

The degenerate system associated with (1) (e = 0 in (1)) is

¡x'  =  — x,   x(0) = x0,

h  - o,
which has as a solution

x = x0exp( — t),

y = 0.

Since (1 — coser)/£ does not converge to zero as £->0+ uniformly on any un-

bounded ¿-interval, the solution of (1) does not converge to the solution of (2) as

£-> 0+ uniformly on any set of the form 0 < ty ¿ t < <x>.



1966] SINGULAR PERTURBATIONS ON THE INFINITE INTERVAL 525

E.2. Let condition (V) be replaced by

(V) g and the partial derivatives of g with respect to t and the components of

x and y ate bounded on 7 x SAx[0,eo].

The system

Íx'   =  — x, x(0) = x0,

ey    =  -cos(et)y,     y(Q) = y0

satisfies the hypotheses of the theorem with condition (V) replaced by (V) and

has   as  a   solution

x = x0exp( - /),

y = y0exp( — simtje2).

The degenerate system associated with (3) is

x'  =  -x,   x(0) = x0,
(4)

whose solution is

h   = o,

x = x0exp( - i),

y = 0.

Even though rim£_0 + exP(— sinei/e2) = 0 for each t > 0, this limit is not uniform

in í on any set of the form 0 < ty ^ t < co. Hence, the solution of (3) does not

converge to the solution of (4) as e-»0+ uniformly on sets of the form

0< ty ^t < oo.

E.3. Let condition (VI) be replaced by

(VT) The zero solution of the degenerate system is asymptotically stable.

We first observe that the zero solution of

x'=-x/t,   x(f0) = x0   Oo^l)

is asymptotically stable but not uniform-asymptotically stable. The solutions

are of the form x = x0t0¡t, and so do not tend to zero as í -> oo uniformly in t0.

On the other hand, the zero solution of y' = — y3\2 is uniform-asymptotically

stable. The solution, y = y0/[l + y\(t — to)]1'2 satisfies the inequality

|>'o/[l + J'oa-ío)31/2|á||j'or/2/(í-"í0)1/*|    forint«,.

With this we see that the system

lav'   =

=  -x/(iH-e) + y,     x(i0) = x0,

ley'   =  -y3\2, y(t0) = y0
(5) . ,.. .  . Co^l)
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satisfies the hypotheses of the theorem with (VI) replaced by (VF). Using the

variation of constants formula, the solution of (5) is

x = x0*o It + (£1/2Vo It)   Í' [s l(e + y2o(s - t0))l'2-]ds,

y = e"2y0l(£ + y20(t-t0)y2.

The degenerate system associated with (5) is

- x/i + y,       x(t0) = x0,

0,

x = x0t0¡t,

y = 0.

For y0 "£ 0, the x-component of the solution of (5) is not bounded on any set

of the form 1 = ty ̂  t < oo. Because of this, the solution of (5) does not con-

verge to the solution of (6) as e->0+ uniformly on any i-interval of the

form t0 < ty = t < oo.

E.4. Let condition (VII) be replaced by

(VIT) The zero solution of the boundary-layer system is uniform-asymptotically

stable for each (a, ß) e I x SR |x.

First, we shall see that the system

!x = — x, x(t0) = x0,

Ey' = (a-ll(l + t2))y,     y(t0) = y0

satisfies condition (VIT) but not condition (VII). The boundary-layer system

associated  with (7) is

(8) dy/ds = - y¡(l + a2),       y(0) = y0

which has as a solution y = y0 exp( — s/(l + a2)). Clearly, exp( — s/(l + a2))

does not tend to zero as s -> oo uniformly in a for 0 = a < oo. However, for each

a, 0 — a < oo, the zero solution of (8) is uniform-asymptotically stable.

System (7) satisfies conditions (I)-(VI) and has a solution

x = x0exp(i0 - 0,

y = y0exp{(tan_1 f0 — tan-1 t)/e} exp(i — t0).

The degenerate system associated with (7) is

/x' = -x,        x(t0) = x0,

(6)
ly   =

which has as a solution
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which has as a solution

x = x0exp(r0 — 0,

y = 0.

The y-component of the solution of (7) is unbounded, and therefore, does not

tend to zero as e -* 0+ uniformly on any interval of the form t0 < r, z% t < oo.

E.5. Finally, consider the case where / and g are linear in x and y and inde-

pendent of e. A system of this form is

x' = £(i)x + C(i)y,     x(r0) = x0,

£y' = D(í)y, y(t0) = y0>

where B, C and D are matrices of appropriate dimensions. Condition (VI) in

this case requires that the zero solution of

(10) x' = P(í)x,       x(i0) = x0

be uniform-asymptotically stable. V. Butuzov [1] states that the above theorem

is still valid when condition (VI) is replaced by

(VI") The eigenvalues A¡(0, J-l, —, k, of P(i) satisfy Re(A¡(0) ú -m<0

for all r0 ^ r < oo and some m > 0.

The example presented below uses the fact that condition (VI") does not

necessarily imply the stability of the zero solution of (10) to show that the uni-

form convergence of the theorem need not follow if (VI) is replaced by (VI").

Let us take P(i) = U~ ' (0 A (7(f) where

...„       /    cos t   sin t \        .     .        I— l — S\
1/(0 = and   A =    I    n   . j

w       \ -sin t   cost J \    0-1/ ,

C(0 = col (1,1), and D(0 = ( - 1). In this case we have

(if -»(%)+ ('.)'•
ay' =   (-l)y.

The solution of this system which satisfies the initial conditions x,(0) = x2(0)

= 0, y(0) = y0 is

(x*.1)=^<*"'(s)(^'-)'"'

y(r,£)   = y0exp(-r/£)

where

<b(ñ =     ( e'CC0SÍ + (siní)/2]   e"3í[cosí - (sinO/2] \

U \ i [sin t - (eos 0/2]   e " 3<[sin t + (eos 0/2] /
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is a fundamental matrix for

The associated degenerate system is

(IY --»(ï) ♦ (!)'• Ait
y =0

whose solution is X! = x2 = y = 0. A straightforward but tedious calculation

shows that

Xy(t, e) = c(e) y0e' (cos * + (sin 0/2) + 0(exp ( - t¡¿)) as í -> oo

where c(e)->0 as e-»0+ . From this it is clear that Xi(i, e) does not tend to 0

as £ -» 0+ uniformly on 0 < ty g t < oo.

3. Proof of the theorem. First, the stability conditions (VI) and (VII) are used

to construct Liapunov functions for the associated systems (D) and (BL), re-

spectively, (Lemmas 1 and 2). These functions are in turn used to define "tubes"

in 7 x SR which are invariant with respect to the solutions of (F£) for sufficiently

small e, (Lemma 3). Finally, an argument similar to Tihonov's [8] (Lemma 4

here) shows that for sufficiently small £ the solution of (Fe) approximates the

solution of (F0) uniformly on any given compact subset of (f0, oo ).These results

are then combined to establish the uniform approximation of the solution of

(F0) by the solution of (F£) for small £ on sets of the form t0<tl = t<co.

To fix ideas let us state conditions (IV) and (V) precisely. The uniform con-

tinuity of the function / implies the existence of a function v( | y I, e) such that

v(|y|,£)->0 as |y| + £^0 and \f(t,x,y,8)-f{t,x,0,0)\ £ v(\y\,B) for
(r, x, y) e I x SR and 0 g s ^ £0. Also, the uniform continuity of g implies the

the existence of a function p(e) such that p(a)->0 as £-»0+ and \g(t, x,y,s)

— g(r,x,y,0)| z% p(e)îot(t,x,y)eIxSRandO ^ £ ^ e0.

The construction of the Liapunov functions for the systems (D) and (BL) is

accomplished by making use of the following lemma due to J. L. Massera [7]

which we state here without proof.

Lemma 1. Given any ceJ#~,Xe£P and any positive, nondecreasing function

N(s), s = 0, there exists a function G(r) with the following properties:

(i) G and G' are continuous, strictly increasing functions for r = 0 with

G(0) = G'(0) = 0 ;

(ii) The integrals joG(u(s))ds and J" G'(u(s))N(s)ds converge for 0 g u(s)

S¡ c(R)X(s) uniformly in u.
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Let I í»(í, í0, x0) I denote the euclidean norm of the solution of (D). The bound-

edness of the matrix fxit,x,0,0) on / x SR\X implies that the derivatives of

|| <D(f, f0, x) | with respect to the components of x are bounded by a function

of the form K exp K(t—10) for t 2: f0 where K is a constant independent of t, t0,

andx.

If we take for c and A in Massera's lemma d e X and a eZf given by condition

(VI), and for Nis) the function K exp (Xs), there exists a function G corresponding

to these choices with the properties (i) and (ii) above.

Define Vit, x) = $£Gi || <D (i + s, t, x) || ) ds.

The function V has the following properties :

(V-i) VeC iIxSR]x).

(V-ii) Since |x||^|x|, \Vxit,x)\ z% }^G'idiR)ois))KexpiKs)ds =P< oo for

all (l,x)6ixSj|V

(V-iii) Vit,x)z%   f£G(d(|x|)<r(s))ds = bK(|x|) for all (i,x)e/x%.

(V-iv) Since || x | = \ x \ ¡k1'2 and | <D(t+s, t, x) \\ ̂  || x || ¡2 for 0 z% s g, || x || ¡2Kf,

Vit,x)   = Jo G(||$>(í + s,í,x)|)ds

^ (| x | ¡2Kfkl/2)Gi\ x | ¡2k1'2) = ari\ x \)

for (r,x)£/ x Sjji^. Here K{ denotes the upper bound of/(t,x,0,0) on / x SR¡X.

(V-v) Since    F(r, 0>(', r0, x0)) = }TGi ¡*(s. fo, *o)| )*»  dF(i, 0(f, i0, x0))/dr

= - G(||0(r,io,x0)||) for all (r0,x0)e/ x Sfi|x and ie/. This fact is written as

n(t,x) = -G(|x|).
We observe that the functions bv and av defined in (V-iii) and (V-iv) above are

strictly increasing, continuous functions of | x | with avi0) = bvi0) = 0. A function

with the above properties (V-i) - (V-v) is called a Liapunov function for the system

(D).
The following lemma establishes the existence of a Liapunov function for the

system (BL) which is, in a sense, uniform in the parameters (a, ß) e I x SR^X.

Lemma 2. Under the hypotheses of the theorem, there exists a Liapunov

function Wiy,a,ß)for the system (BL) for each ia,ß)el x SR|X with the following

properties :

(i)    WeC'iSR^xIxSRU).

(ii) There exists a constant Q < co such that | Wyiy, a, /?) | g Q,\ Wxiy,oi,ß)\ z^Q,

and | ̂ (y.a.pOl â Q for all i*,ß,y)el x SR.

(iii) There exist continuous, strictly increasing functions awi\y\) and bw(\y\)

independent of (<x,ß) such that aw(0) = bw(0) = 0 and aw(\y\) ^ W(y,a,ß)

S MM) f°r aîl («»ft^e/ x SR.

Proof of Lemma 2. The proof is accomplished by using Lemma 1. Let

^(s.yo.a./O denote the solution of system (BL).
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We first show that |Yy(s,j;,a,/3)| is bounded above by a function of the form

Ky exp(Kys) for0gs< oo and (a,ß,y)el x SR where Kt is a constant inde-

pendent of (a,ß,y). This follows immediately from the boundedness of gy(a,ß,y,0)

for (a,ß,y)el x SR and the fact that x¥y(s,y,a,ß) is a fundamental matrix for

the system

dzlds = gy(a,ß,V(s,y,a,ß),0)z.

Next, we see that similar estimates are valid for | *Pa(s, y, a, ß) j and | xVß(s,y,ot,ß)\.

A well-known formula ([2, p. 25]) for the determinant of a fundamental matrix

for a linear system gives

detVy(s,y,<x,ß) = exp if  trgy{ct,ß,V{s,y,a,ß),0)ds\

ï: exp{-jKys}.

With this we can find a constant K2 such that \x¥~1(s,y,a,ß)^K2eK2S fot

(tx,ß,y)el x SR and 0 = s<<x>. The function "F^s,y,a,ß) is a solution of the

matrix differential equation

dZ Ids = gy(a, ß, "f(s, y, a, ß), 0)Z + g,(a, ß, «P(s, y, a, ß), 0).

Applying the variation of constants formula gives

Vx(s,y,<x,ß) = Vy(s,y,a,ß) f V;1{u,y,«,ß)g,{a,ß,'¥{u,y,a,ß),0) du.
Jo

Thus, we can find a constant K3 which is independent of (a,ß,y) such that

\yx(s,y,a,ß)\=K3exp(K3s)

for 0 = s < oo and (a,ß,y)el x SR. A similar argument shows that we can find a

constant KA independent of (a,ß,y) such that |^(s,y,a,ß)\ ^ 7C4exp(7C4s) for

0 ^ s < oo and (a,ß,y)el x SR. Taking K to be the largest of Ky, K2, K3 and

7C4, we have |«F/s,y,a,j!)| = £exp(Ks), \y¥x(s,y,a,ß)\^ £exp(Ñs) and

|^(s,y,a,/3)| ^ £exp (Ks) for 0 ^ s < oo and (a,ß,y)el x SR.

For y # 0, the inequality

\d\\^(s,y,a,ß)\\ldy\^\^y(s,y,a,ß)\,

implies 13 | ̂ (s, y, a, /?) | ¡dy \ = K exp ( Es) for 0 g s < oo and (a, ß, y) e I x SR.

Similarily, d \ V(s, y, a, ß) || ¡da | ̂  tfexp ( Ks) and 151| ¥(s, y, a, /?) || ¡dß \ = Kexç( Es)

for 0  = s < oo, (a, ß, y) e I x SR and y ^ 0.

If we take for c and X in Lemma 1, ee Jf and pe^ given by condition (VII),

and for N(s) the functionKexp (Ks), there exists a function 77 with the following

properties. The functions 77(u) and H'(u) ate continuous, strictly increasing

functions for u = 0 with 77(0) = T7'(0) = 0, and the integrals
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/•GO /»CO

Hiuis))ds   and #'("(») K exp i Es) ds
Jo Jo

converge uniformly in u for 0 ^ u(s) ^ e(R)p(s).

Define fT(y,a,j8)= J"0œ//(|| ¥(s,y,a,j3)|) ds.

It follows that W is the desired Liapunov function for the system (BL). Indeed,

(W-i) WeC'(SR]yxIxSR]x).

(W-ii) Let ß = $%H'(e(R)p(s))K exp (to) ds. Then, | Wy(y, a, ß) \ è Q,

| W;(y,a,J?)| ^ Q, and | IT„(y,a,ß)| ^ ß for all (a,/3,y)e/ x SR.

(W-iii) Let a^|y|) = (|y|/2K?j1/2)//(|y|/2/1/2) where Ke is an upper bound

for g(i,x,y,0) on / x SR. Then Wiy,a,ß) ^ a^ly]) for all (a,p\y)e/ x SR.

(W-iv) Let bwi\y\)= ¡%H(e(\y |)p(s))ds. Then, ITTy,a,/J) ̂  M|y|) for all

ia,ß,y)eIxSR.

(W-v) Since

W(V(s,y0,a,ß),a,ß) =  JJh(|| Viu,Vis,y0,a,ß),a,ß) ¡)du

=  £tf(||¥(u,3-o,a,/0||)¿«,

dWC*is,y0,x,ß),*,ß)lds  =   -//(| ¥(S,y0,a,j3) fl).

Clearly, a^ and br defined in (W-iii) and (W-iv) are strictly increasing, con-

tinuous functions  with awiO) = bw(0) = 0.

This completes the proof of Lemma 2.  Let

lie) = inf{|x| : Vit,x) = c for some tel},

m(c) = sup{|x|: V(t,x) = c for some f£/},

lyik)  = inf{|y|: Wiy,t,x) = k for some (î,x)e/ x Sr\x},

and

mt(K) = sup{|y|: Wiy,t,x) = ;c for some (í,x)e/ x SR\X}.

With these definitions it is clear that for c and k sufficiently small, say 0 < c < c°

and 0 < k < k°, 0 < lie) z% mic) < oo and 0 < Z,(k:) ̂  m,(K) < co. Also,

/m(c)-»0 as c->0 and m,(ic)-»0 as k-»0.

Lemma 2 is now applied to prove the following fundamental lemma.

Lemma  3.   Let the hypotheses of the theorem be satisfied. Given any c < c°,

for sufficiently small k there exists e(c,k) ^ £° such that the "tube" described by

rc,K = {it,x,y)eIxSR: Vit,x) ^ c and Wiy,t,x) ^ k}

is invariant with respect to solutions of(Pe), 0 < £ < e(c, k). That is, any solution

°f iPs)> 0<e<e(c,k), which meets FCK cannot leave it thereafter.

Proof of Lemma 3.   The derivative of V along solutions of (P0) is

V0'it,x) = V,it,x) + Vxit,x)f it, x,0,0).
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At the same time, V0'(t,x)= — G(|x||) (property V-v), so

V,(t, x) + Vx(t,x) ■ fit, x,0,0)  =  - G(| x fl)

=  - G(|x|/fc1/2).

Combining this with the boundedness of | Fx(f,x)| on 7 x SR\X and smoothness

condition (IV) gives the following estimate for the derivative of V(t,x) along

solutions of (F£):

Vt'(t,x) = Vt(t,x)+Vx(t,x)-f(t,x,y,e)

(11) = Vo'(t,x)+Vx(t,x)[f(t,x,y,s)-f(t,x,0,0)-]

=  - G(|x|/fc1/2) + Fv(|y|,£)

for (f,x,y)e7 x SR and 0 < s = s°.

Similarly, we obtain an estimate for the derivative of W along the solutions of

(F£). The derivative of W along the solutions of (F£) is

W,'(y, t, x) = (1 ¡e) Wy(y, t, x) ■ g(t, x, y, s) + Wt(y, t, x)

+  Wx(y,t,x) -f(t,x,y,£).

The derivative of W along the solutions of (BL) is

dW(y,t,x)¡ds = Wy(y,t,x) -g(t,x,y,0).

At the same time, dW(y,t,x)¡ds= -77(|y|)g - H(\y\¡j112) (property W-v).

Thus,

Wy(y, t, x) ■ g(t, x,y, 0)á-77(| y \ /j1'2)

for (t,x,y)el X SR. Combination of these remarks with property (W-ii) and

smoothness conditions (IV) and (V) gives

Wt'(y,t,x) = (lle){Wy(y,t,x)- g(t,x,y,0)

+ Wy(y, t, x) ■ [g(t, x, y, e) - g(t, x, y, 0)]}

(12) +  ^(y,f,x)+lFx(y,f,x)-/(i,x,0,0)

+  Wx(y, t, x) ■ [f(t, x, y, e) - f(t, x, 0,0)]

è (1 Is){-H(\y\/j1'2) + ßp(£)} + ß[l +Kf + v(|y|,s)]

for (/, x, y) e I x SR and 0 < £ ̂  £°.

The boundary of the set

TC.K = [it,x,y)eIxSR: V(t,x) = c and W(y,t,x) = k]
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is the union of two sets:

Tt = {(i, x, y) £ / x SR : V(t, x) = c and W(y, t, x)z%k},

and

T2 = {(r, x, y) £ / X SR : V(t, x) ^ c and W(y, t, x) = k}.

Given c, 0 < c < c°, we shall find k(c), 0 < k(c) < c, with the property that

for each k, 0<k^k(c), there exists e(c,k), 0 <e(c,k) <e°, such that Vf is

negative on T, and Wf is negative on T2 provided 0 < £ < e(c,k).

Indeed, for (r,x,y)Er., |x|ïï/(c) and a^(|y|)^K. Let us choose 0<k(c)

< min(K°,c) and 0 < e' g e° such that aw(\ y |) ^ k(c) and 0 < £ < e' imply

v(|y|,£) <G(/(c)/Jc1/2)/P. Itthen follows from(11) that F£'(j\x) <0 for (r,x,y)

e rx provided 0 < s < e' and 0 < k < k(c).

For (r,x,y)er2,|y| ^ lyQc). Let us choose 0<e(c,k)<e' such that

/i(£)<//[/1(K)///2]/2ßand

1 /£ > 2ß[l + k, + (G(P)/P)] ¡H[lyiK)/i1'2]

for 0 < e < e(c,k). It follows from (12) that Wf < 0 on T2 for £ < £(c,jc).

From this it is clear that any solution of (P£), 0 < £ < £(c,k), which meets the

boundary of FCK, 0 < k < kíc), proceeds into the interior.

This establishes Lemma 3.

The existence of solutions of (P£) for sufficiently small £ and | x01 + | y01 follows

immediately from Lemma 3. Take c., 0 < k, ^ k(c,), and 0 < £, = sicy,Ky)

such that the tube Fc¡Kí lies in the interior of / x SR and is invariant with respect

to solutions of (P£), 0 <£<£.. It then follows that solutions of (Pe), 0 < £ < £,,

whose initial-values lie in D = {(x,y)£SR: F(r0,x) g Cy and Wiy,t0,x) ^k,}

exist for r0 g í < oo.

The following lemma was first proved by A. N. Tihonov [8]. A proof is presented

here for two reasons : The proof gives some insight into the behavior of the sol-

utions of (P£) for t near t0, and Lemma 3 provides a simple proof of this lemma.

Lemma 4. Under the hypotheses of the theorem, for any (x0, y0) e D the

solution ofiPf) tends to the solution ofiPf) as e->0+ uniformly on any set of the

form t0 < ty ̂  t ^ T.

Proof of Lemma 4. Let x = eb(t, e), y = i¡/(t, e) be the solution of (P£) for

some (x0,y0) e D. By the remark above, this solution exists for r0 = t ^ T provided

0<£ <By.

Let us first show that | \b(t, e) | -> 0 as £ -> 0 + uniformly for t y ;S t — T. That is,

for any y > 0 we must find E(y) z% £! such that | ̂ (i.fi) | < y for ty g t g Tprovided

0<£<£(y). Taking k(v)<k. such that |y|<y for a^(|y|) ^k(v), we apply

Lemma 3 to obtain £ÍCy,KÍy)) such that any solution of (P£), 0 < e < 6(cl5ic(y)),

which meets the set rciK(ll) cannot escape. It is thus sufficient to show that for

sufficiently small e, (í1,<p(/1,s),t/f(r1,a)) e rciK(yi.
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Take 6(y) > 0 such that | y | ^ 9(y) implies bw{\ y |) = tc(y). From Condition

(VII) we have that | ̂ (s, y0, t0, x0) | -»• 0 as s -> oo, so there exists s y > 0 such that

Sy = s < oo implies |*P(s,y0.io»Xo)| < ö(y)/2. Let x = cpy(s,e), y = ipy(s,s) be

be the solution of

dx ¡ds = ef(t0 + es, x, y, e),     x(0) = x0,

dyjds = g(t0 + ss, x, y, e),       y(0) = y0.

We see from this system that \py(s, e)-*y¥(s, y0, t0, x0) as e -> 0+ for each 0 ^ s < oo.

Thus, there exists e2 < minf^ — i0)/si>ei} such that \ipy(s¡,e) — xP(s1,y0!ro>:'co)|

<6(y)/2 for 0<e<e2. Since \p(t,e) = ipy((t - t0)¡e,e), \ \p(t, e) | < 0(y) for

í = r0 + esy and 0 < e < e2. Also, £2 < (ty — t0)fsy implies r0 < r0 + esy < ty for

0<8<£2. Thus, for each 0 < e < e2, W(ip(t,e),t,x) = bw(\ip(t,e)\) = K(y) for

t = t0 + esy', i.e., (t0 + es¡,cp(t0 + ssi,s),\p(t0 + es1,E))eTCuK(y) for each 0<e

<e2. Hence, by Lemma 3, aw(\ip(t,e)\) ^ W(\p(t,e),t,x) ^ h(y) for tl = ti%T

provided  0 < e < min{E2,E(c1,ic(y))} = e(y).

It remains to show that </>(?,£) converges to the solution of (D) as £->0+ uni-

formly for ty = t ^ T. This is accomplished by observing that x = cp(t,s)

satisfies

x ' = /((, x, ip(t, e), e),       x(f o + es y, e) = x0 + ô(e)

where ô(e) -* 0 as £ -» 0+ . By a well-known theorem on continuous dependence

of solutions on a parameter and on initial conditions [2, p. 29], it follows that

cp(t, e) -> <S>(t), the solution of (D), as £->0+ uniformly on t1 = t=T.

This completes the proof of Lemma 4.

The proof of the theorem is now easily completed. Given any n > 0 and ty > t0,

we must verify that there exists an e(n) > 0 such that | cp(t, e) — <S>(t) | + | \p(t, e)\ < n

for ty g t < oo and 0 < e < e(n). Here again, x = cp(t,e), y = ip(t,e) denotes the

solution of (F£), and x = <D(í), y = 0 denotes the solution of (F0).

Choose c2 > 0 such that rc2>lc(C2) c/x S^/3 where k(c2) is given by Lemma 3.

Furthermore, choose 0<r<n/3 such that |x|^r implies bF(|x|)^c2 and

| y | ^ r implies bw(\ y \) g, k(c2).

Condition (VI) implies <5(r) -» 0 as t -> oo, hence there exists Tn > ty such that

| <¡){t) | < r ¡2 for t= Tr Lemma 4 provides an e(r) > 0 such that 0 < e < e(r)

implies | (/>(f, £)-$(/) | + |i//(t,£)| <r/2 for ij g í ^ T,. Thus, |<p(i,e)l + |^(f,e)|

^ | cp(t,e) - *(/)| + |O(i)| + | ip(t,e)| implies |<p(Tn,e)\ + \\p(Tv,e)\ < r for

0<£<£(r). That is, (Tn,cp(Tve),ip(Tn,e))eTC2Mc2) for 0 < s < e(r). Lemma 3

implies that cp(t, e), \p(t, e) remains in rc2K,C2) for t ^ T, provided 0 < £ < e(c2,7C(c2)).

Thus, it follows that | cp(t, e) - 0(01 + | <A(t, e) | < n for i1 g r < oo provided

0 < £ < min{£(r),£(c2,K(c2))}.

This completes the proof.
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