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1. Introduction. The object of this paper is to consider finite topological

spaces: i.e. spaces having only a finite number of points. Most of the results

obtained are clearly valid for spaces having only a finite number of open sets.

In §2, an analysis of the homeomorphism classification of finite spaces is made

and a representation of these spaces as certain classes of matrices is obtained.

In §3, the point-set topological properties of finite spaces are considered. The

topics covered are separation axioms, connectivity, mappings, and function spaces.

In §4, the classification of finite spaces by homotopy type is made, reducing

homotopy problems back to related homeomorphism problems. In §5, a clas-

sification of finite //-spaces is made. It is shown that all such are of the obvious

types. In §6, the homotopy classes of mappings of a finite simplicial complex

into a finite space are examined.

General references and definitions may be found in [2], [4], and [5].

The author is greatly indebted to Professor I. M. James for suggesting these

questions and for discussions on these topics. The author is also indebted to the

National Science Foundation for financial support during this work.

2. Homeomorphism classification.

Proposition 1. Let F be a finite topological space with topology 3~. There

exists a unique minimal base °lt for the topology.

Proof. For each xeF, let Ux be the intersection of all open sets of F which

contain x. Since F is finite, this is a finite intersection and so Ux is open. Let °U be

the collection of all Ux. It is immediate that ^l' is a base for 3" and that any base

for i?~ contains tft.

Note. Spaces having this property, i.e. that any intersection of open sets is

open, were considered by Alexandroff [1].

Proposition 2.    Let F be a finite set, % a collection of nonempty subsets of F.

Then 31 is the minimal base for a topology of F if and only if:

il)\J{A\ AeK} = F,
(2) if A,Be% there exist sets Cae3I such that AC\B = {JCa, and

(3) // Ax e 31 and {JXAX e % there exists a ß such that Aß = U<,4f
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Proof. Conditions 1 and 2 are the usual conditions that 31 is a base for a

topology. If °U is the minimal base, then °U cz % Then if A e 51, A is a union of

elements of °li since % is a base, but by condition 3 and Qlc%, A is one of the

sets of °li of which it was the union.

If °ll is a minimal base, (1) and (2) are trivial and if Ux = [J U¡, then there is a j

such that x e Uj, so Ux c Uj by definition of Ux, so that (3) is satisfied.

Proposition 3. Let F and G be finite spaces with minimal bases <?i and ir. Then :

(a) J/ G is a subspace of' F,V' = {U n G | Ue°U}.

iff) If F x G is the product space, then the minimal base is

%x-r = {UxV\Ue<%,Ve r}.

Definition. Let Ji' be the set of all square matrices (ai}) with integral entries

such that:

(l)««èl,
(2) i#j=>a,7= -1,0, or 1,

(3) i =¡é ;=>«.,. : — ttji, and

(4) for any sequence (¿i,i2,--,¿s), s > 2,  ¿i t¿ i2 # •■• ̂  fs such that

If A,Be Ji' and there is a permutation matrix Twith T4T~' = B, then say A

is equivalent to B. Let Ji be the set of equivalence classes of elements of Ji'.

Theorem 1.    The homeomorphism classes of finite topological spaces are in

one-to-one correspondence with Ji.

Proof.   Let F be a finite topological space with minimal base ali. Choose an

ordering of W so <% = {Uy,U2,---,Ur}. Define a matrix (au) i,j = !,•■■,r, by:

Number of x e F 3 Ux = U¡   if j = i,

1 if U¡ => Uj and 3 no ka U¡ => Uk => l/y

-1 if Í/,- => t/; and 3 no ka U¡ => Uk zo U¡      if j # i.

0 otherwise

Trivial verification shows that (au)eJ/'. Choosing a different order on % gives

a permutation of {1, ••■,!•} and hence F determines an element of Ji.

If f:F->G is a homeomorphism, then / induces a map of minimal bases,

which preserves inclusions and numbers of elements in each base set, so F and G

determine the same element of Ji.

If F and G give the same element of Ji then by proper ordering of bases, they

give the same matrix. A homeomorphism is easily constructed, thus showing

that the function to Ji is monic.
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To see that the function to J( is onto, let A = (a,,)e J£', with A an r x r

matrix. Let S = {(a,b)eZ x Z\ 1 = a = r,l = b = aaa} and  for  i = l,»»»,r, let

[(a,b)eS
U,=

a = i or a i= i and 3 chain (iit ••», is),

i = ¿i ?»■ ¿2 # — # ¡5 = a with aili2 = ■•■ = a. J-
It is easy to verify that the collection of U, is a minimal base for a topology on S,

and that with this topology S gives the matrix A.

It should be noted that the size (r x r) of the matrix is the number of sets in the

minimal base and that the trace ( Eai;) of the matrix is the number of points in

the space.

3. Point-set topology. First, it is clear that if a finite space is T, then it is in fact

discrete. However, T0-spaces are more useful and one has:

Proposition 4 (Alexandroff [1]). A finite space F is T0 if and only ifUx= Uy

implies x = y.

Note.   Thus F is T0 if and only if its matrix has only l's on the diagonal.

Proof. If F is T0 and x ^ y, there is an open set V such that xeV, y $ V (or

y e V, x $ V). Thus y f Ux (or x £ Uf) so Ux # Ur Conversely, if Ux = Uy implies

x = y and u,veF such that every open set containing one contains the other, then

v e Uu, u e Uv, so  Uu = Uv and u = v.

For T0-spaces, the partial order by inclusion on <?/ gives a partial order on the

space, and thus x — y is equivalent to Ux c Uy or xe Uy. For non-T0-spaces, one

may also write x ^ y for x e [/,,, and the proposition then becomes : F is T0 if and

only if x ^ y and y ^ x implies y = x.

Now, consider connectivity. First, each set Ux is connected, for if A,B are open,

Ux ezz A\j B, then x is in one set, say xeA and so Ux ezz A. Thus a finite space is

locally connected. The usual open-closed argument shows:

Proposition 5. Let F be a connected finite space, and x and y in F. Then

there exists a sequence z0,z¡, -■■,zs of elements of F such that z0 = x, zs = y ami

for each i (0—i = s—l), either z,-Sjz;+1 or z, — z,+ i.

Proposition 6. Let F be a finite space, x,yeF and x = y. Then there is a

path in F whose ends are x and y.

Proof.   Let
( y t = o

0:/ = [O,l]-+Fby eb(t) = \
I x í > 0

If V is any open set in F and

(1) veF,thenx^vsoxe[/,c V and eb~xCV) = I.

(2) x e V, y i V, then eb' l(F) = (0,1].

(3) x$V,thene¡>-\V)=0.
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Thus cb is continuous.

Combining Propositions 5 and 6, one has immediately:

Corollary 1. Connectedness and path-connectedness are equivalent for

finite spaces.

Next, consider functions.

Proposition 7. Let F and G be finite spaces, f : F-*G a function, f is con-

tinuous if and only if x t% y implies f(x) ^f(y).

Proof Iff is continuous, x £j y, then U f(y) is open so/_1(C/y(y)) is open and

contains y. Thus it contains Uy and hence x (x e Uy). Thus f(x) e Uf(y) or

f(x) gj/(y). Conversely, suppose x £j y implies/(x) gj/(y), and let Kbe open in G.

If y ef~ \V), f(y) e V so UfW c V. Then if x e Uy, x = y and so f(x) £f(y) or

f(x)eUf(y). Thusf(x)eVot xefV). Since f~l(V) = \Jyef.¡(v)Uy, it is open

and so / is continuous.

Proposition 8. Let F be a finite space, f a continuous map of F into itself.

Iff is either one-to-one or onto, then it is a homeomorphism.

Proof. Since F is finite, one-to-one and onto are equivalent. Since / is one-

to-one, A-*f(A) defines a 1-1 correspondence/': 2*->2F. lff'(A) belongs to the

topology &~ cz 2F,f(A) is open and by continuity and the 1-1 nature off, Ae3~.

Since &~ is finite and ffT) => f,f gives a 1-1 correspondence S"-*ïé'. Thus A

open implies f(A) open, and/-1 is continuous.

Finally, consider spaces of maps. Let X be any topological space, F a finite

space and let Fx denote the space of continuous maps of X into F, with the compact

open topology. If f,geFx, write g gj/ if g(x) =f(x) for all xeX.

Proposition 9. The intersection of all open sets in Fx containing the map f

is {geFx\g^f}.

Proof Let Vf be the intersection of all open sets containing / and

Wf = {geFx\gi%f}. For any compact set K cz X and open set UczF, let

(K, U) = {g e Fx\ g(K) c [/}. If g e Vf and x e X, then x is compact, Uf(x) is open

and/e({x}, Ufix)). Thus ge({x}, Uf(x)) or g(x)eUf(x). Thus g(x) = f(x) for any

x e X, or g e Wf. If g e Wf and (K, U) is any sub-basic open set of Fx containing/,

then for all x e K, f(x) e U. Then g(x) =f(x) or g(x) e Uf(x). Since U is open and

contains/(x), it contains Uf(x). Thus g(x)e U for all xe K, or ge(K, U). Thus g

belongs to all open sets containing/or ge Vf.

Note. If X is also a finite space, Fx is finite and the order on functions is the

same as the order given by the compact open topology.

One has the standard result (see [3]):

Lemma 1.   Let X and Y be topological spaces. Suppose that for all peX the
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compact neighborhoods of p form a base for the neighborhood system of p. Then :

(a) If eh: X x I-* Y is continuous, so is ep': I -* Yx: i-> 0( , i).

(b) // 0 : / -> Yx is continuous, so is $ : X x I -* Y : (x, r) -> 0(i) (x).

In particular, these conditions are satisfied if X is a finite space.

Thus one has:

Corollary 2. If F and G are finite spaces, the homotopy classes of maps of F

to G are in one-to-one correspondence with the components of G .

Corollary 3. If f,g: F-+G andfz^g, then fis homotopic to g by a homotopy

which keeps pointwise fixed the set {xep|/(x) = g(x)}.

Proof. Since GF is finite, Proposition 6 applies and applying (b) of the lemma

to the path given produces the desired homotopy.

4. Homotopy-type classification.

Definition.   Let F be a finite space

(a) x e F is linear if3y>xaz>x implies z ^ y,

(b) xeF is colinear if3y<xaz<x implies z z% y.

Definition. A finite space F (with base point p) will be called a core if F is T0

and has no linear or colinear points (except possibly p).

Definition. A core of the finite space F (with base point p) is a subspace F, of

F (with the same base point) such that F, ((Pi,p)) is a core and such that P, is a

strong deformation retract of P.

Theorem 2.    Let F be a finite speice iwith base point p). Then F has a core.

Proof, (a) Let °tt be the minimal base for the topology of F, and for each

U e°U, let xve U such that UXu = U (choosing p for Up). Let F' be the subspace

of all x,;. For each xeF, let/(x) = xv where U =UX. Then xv e Ux or xv = fix) :£ x.

If x ^ y, xeUy so /(x) e Ux ezz Uy = Ur(yy or f(x) ^/(y). Thus / is continuous

and fz% identity.

ByCorollary 3,/is homotopic to the identity by a homotopy fixing F', so F'

is a strong deformation retract of P. Further F' is T0.

(b) Let F be a finite space, xeF a linear point. Then F — xis a strong defor-

mation retract of P. To see this, let/ : F -» F by f(z) = z if z # x, f(x) = y, where

y > x such that z > x implies z'—y. If u z% v:

(1) u = x,v = x, then f(u) =f(v),

(2) u = x, v # x, then /(«) = y, /(t>) = v and i> > x so v - y giving f(u) ^ f(v),

(3) u # x, í; = x, then /(m) = u z% x < y =f(v), and

(4) u i¿ x, t; # x, then /(i/) = » -g u = /(y).

Thus /is continuous and clearly/^ identity. By Corollary 3,/is homotopic to

the identity by a homotopy fixing F — x.

By reversing the inequalities, one has
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(c) Let F be a finite space, x e F a colinear point, then F — x is a strong de-

formation retract of F.

(d) Now let F be any space and form subspaces G¡ of F by :

(1) G, = F' as in (a),

(2) if G¡ is defined and has a point x ( # p) which is linear or colinear, let

Gi+i = Gl-x.

Since F is finite, this process must terminate. Let F y be the terminal subspace.

Fyis T0, being a subspace of F' and has no linear or colinear points (other than

perhaps p). Thus F y (or (Fy,p)) is a core. Since each G¡ is a strong deformation

retract of G¡-.y, and Gy is a strong deformation retract of F,F¡ is a strong de-

formation retract of F.

Thus Fy is a core of F.

Theorem 3. Let F (or (F,p)) be a core. Then any map f: F -> F (preserving

base point) which is homotopic to the identity (relative to base points) is the

identity.

Proof Let f:F-*F (f(p) = p) and suppose / = identity. Then for all xeF,

f(x) = x. If x is a maximal point of F, then /(x) = x implies f(x) = x. Then

suppose x e F and for all z > x, f(z) = z. Then for all z > x, z =/(z) ^/(x) by

continuity off. Since/(x) ^ x, either x is linear or/(x) = x. Since the only possible

linear point is p, and/(p) = p, this gives/(x) = x. By induction,/is the identity.

Similarly, / gj identity implies / = identity.

By Proposition 5, the component of the identity in FF (or the subspace of base

point preserving maps) is a single map, the identity. By the relation between

homotopy and components, this gives that any / homotopic to the identity must

be the identity.

Theorem 4. Let F, G be finite spaces (with base points p and q) and with

cores Fy, Gy. Then F is homotopy equivalent to G if and only if Fy is home-

omorphic to Gy (relative to base points).

Proof. Since a core of a space is a strong deformation retract, it has the same

homotopy type as the space. Thus if F y and Gy ate homeomorphic, both F and G

have the same homotopy type as Ft. Also, if F and G have the same homotopy

type, Fy is homotopy equivalent to Gy. Let/: Fy -» Gy, g: Gy -> Fy be a homotopy

equivalence. Then gf and fg are homotopic to the identities. By Theorem 3,

they are equal to the identities, and so g =/ _1and/,g are homeomorphisms.

Remarks. (1) By Theorem 4, it is meaningful to talk of "the core" of a finite

space, as the homeomorphism class of the cores of the space.

(2) In any homotopy equivalence class of finite spaces there is a representative

with a minimal number of points. This minimal space is a core and its homeo-

morphism class is the core of any space in the homotopy class.
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(3) If F is a finite space, the cores of F are the minimal strong deformation

retracts of F in the partial order by inclusion.

Corollary 4. Let F be a finite space. Then F is contractible if and only if

some point of F is a strong deformation retract of F.

Proof. F contractible is equivalent to F has the homotopy type of a point,

which is equivalent to the core of F being a point.

5. Finite //-spaces. There are two definitions of//-space which will be considered

here.

Definition. An //-space (of type 1) is a triple (F,p,p) where F is a space,

p e F is a base point and p : F x F -> F is a map such that

F x F —^-> F

F V F

commutes up to homotopy, where F \J F = {(x, y)epxp|x = p or y = p}

ande is the collapse, c(x,p) = x, c(p,x) = x.

As is obvious, if G is any space, G u p = F (disjoint union) admits an //-space

structure. It will be shown that all finite //-spaces of type I are equivalent to one

having this form: i.e. the component of the base point is contractible.

Definition. An //-space (of type II) is a space F (with base point p) and a map

p: F x F->F such that

Py-.F xF-^F xF:(x,y)-»(x,p(x,y)),

and

p2:FxF-+FxF:(x,y)^(y,p(x,y))

are homotopy equivalences.

Definition. Two //-spaces (F,u), (G,v) (with base points) are said to be

equivalent if there exists a homotopy equivalence/: F->G, g:G-*F such that

the diagrams

F x F —^   F G x G —%  G

fxf

G x  G —^->   F F x F —^-»  F

commute up to homotopy.

Proposition 10. // P and G ((F,p) and (G,q)) are homotopy equivalent,

there is a one-to-one correspondence between the H-space structures on F and

those on G.

/and   g x g
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Since any finite space is homotopy equivalent to its core, one may consider

first the situation for cores. Temporarily, all spaces considered will be with base

point.

Proposition 11. Let (F,p,p) be a finite H-space (either type) and let(F,p)

be a core.  Then the maps

9l:F-+F'.x->pix,p),

and

62:F->F:x-+p{p,x)

are homeomorphisms.

Proof.    If the H-space is of type I, one has

FJiL*FxF-JL>F
vp     f       c

F   V    F

commutative up to homotopy, or 0¡ is homotopic to the identity, hence is the

identity by Theorem 3.

If the H-space is of type II, let cb2 be the homotopy inverse of p2. One has

FJ^F xF-l^F x fAf-Afx FJ±->FxFJlL+F.

Oy a,

Now, on the image of F, (px) o n2 is the identity, so

atö, = 7t, ° cb2 ° p2 ° (xp) ~ 7T[ o (xp) = identity.

Since (F, p) is a core, <x{0y is the identity. Since 0¡ is then one-to-one, it is a home-

omorphism by Proposition 8.

Proposition 12.    Let (F,p) be a core, xeF. Then:

(1) x is less than two distinct maximal points, or

(2) x is maximal, or

(3) x is linear under a maximal point; hence x = p; and

(!') x is greater than two distinct minimal points, or

(2') x is minimal, or

(3') x is colinear over a minimal point; hence x = p.

Proof. Let A be the set of points not satisfying (1), (2) or (3), and let x be a

maximal element of A. Since xeA, x is not maximal in F and there is a z > x.

Let B = {z|z > x} #0. If any element of B satisfies (1), then x satisfies (1).

If p$B, then every element of B is maximal, and since B doesn't contain two
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maximals, B must consist of one point, z. Then w > x => w = z, so x is linear

under a maximal and satisfies (3). Thus peB. Since p > x, x is not linear, and

there is a y > x such that y^ p. Since y is not type (1) or (3), y is maximal. Let w

be maximal with w = p. Then y, w are maximal, y, w > x and since w~—p,y^p,

w # y.

Hence x satisfies (1), but xeA. Thus A is empty.

Proposition 13. Let (F,p) be a core, (F,p,p) an H-space (either type). Then p

is both maximal and minimal.

Proof, (a) p doesn't satisfy (1) or (!').

If m, m' are maximals, m,m' > p, then since p( ,p) is a homeomorphism,

p(m,p) is maximal, and since p(p, ) is a homeomorphism, p(p,m') is maximal.

Since m'> p, (m,m')>(m,p) and so by continuity of p, p(m,m') = pim,p).

Since m>p, (m,m')>(p,m') and pim,m') — pip,r,')■ By maximality, p(p,m')

= p(m,m') = p(m,p). Taking m' = m, p(p,m) = p(m,^i) = p(m,p), and so for

any m,m', p(p,m') = p(m,p) = p(p,m). Since p(p, ) is a homeomorphism, this

gives m = m'.

Similarly, p cannot satisfy (1').

(b) p doesn't satisfy (2') and (3).

Suppose p satisfies (2') and (3).

For r ^ 0, F contains a subset Dr= {p = u0,u,,---,ur; m0,•■•,».,-.} with it,

minimal, m, maximal in F and such that

(1) m, > x if and only if x = u, or ut+i (i = 0,---,r — 1),

(2) y > u0 if and only if y = m0,

(3) y > Uy (i = 1, —»r — 1) if and only if y = /n¡_[ or m¡,

(4) p(x, m¡) = pirn,, x) = m, if x = mk or t/t, fc ;£ i and 1 rg » = T — 1.

(5) p(x, u¡) = p(w¡, x) = u, if x = «!(.,  k < i  or x = uk,  kz%i  and 0 ^ i ^ r.

(6) p(x, m¡) = p(x, p) = /<(x, «,) ; p(m„ x) = p(p, x) = p(w¡, x) for all x £ Dr.

For r = 0, this is true; since then D0 = {p = i/0} and one has only to verify

that p is minimal and that pip, p) = p.

Assuming F contains Dr, one can show it must contain Dr+{.

First, mr exists. If r = 0, by assumption, there is a unique x > p, which is a

maximal, m0. If r > 0 there is a maximal mr > ur, mr£Dr, for ur ¥= p, and ur is

not maximal («r < mr_.) so uT is less than two maximals, only one being in Dr.

If there are two maximals, m,m' $Dr with m,m' > ur, then p(m,ur) = p(m,p) is

maximal (p( ,p) a homeomorphism) p(m,ur)^ p(ur,ur) = tir (continuity of p)

pim,ur)£D, for p( ,p) is a homeomorphism. As in (a), p(m, wr) = p(ur, m)

= p(m,m) = p(m,m') = p(m',uf) = p(ur,m') — p(m,p) = p(m',p) and being maxi-

mals over u„ all are equal to m, or m'.

There is no z with ur< z < mr, else z is not maximal and z ,¿ p, so z would lie

under two maximals. Since «,. can lie under only mr_y and mr, z < ror_,, con-

tradicting assumption (1) for Dr
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Assumption (6) verifies the multiplication rule (4) for mr, and one need only

verify (6) for mr. For this, let 6 : F -» F : x -> p(x, mr) (or p(mr, x)). If x £ D„

0(x) = p(x, mr) — p(x, ur) = p(x, p) (or 0(x) ja p(p, x)). If x is maximal, so is

p(x, p) (or p(p, x)) and 0(x) = p(x, p) (or p(p, x)). Then if for all y > x, 9(y)

— Áy^P)' an<i if z > p(x,p); since p( ,p) is a homeomorphism, there is a z' > x,

with p(z',p) = z. Then z' > x => z' ^ör and so z = ô(z') ^ 0(x). Since p(x,p) i= p,

p(x, p) is not linear and so 0(x) = p(x, p).

Since mr # p, mr not minimal, there is a wr+1 < mr, ur+l minimal, ur+i £Dr.

Applying the same arguments as with mr, except for reversed inequalities, verifies

all hypotheses (l)-(6).

By induction F contains Dr for all r = 0. Since F is finite, this is a contradiction.

(c) p doesn't satisfy (2) and (3').

By reversal of inequalities in arguments for (b), one can construct a countable

set in F.

(d) p doesn't satisfy (3) and (3').

For if it did, one can find a set D'r cz F,

D'r= {Z0 = P. Zl,-".Zr;«0»"-»«r-i; W0, •••,/«,_, *(,-!)}

with Uj minimal, m¡ maximal and such that

(1) m¡ > x if and only if x gj z¡ or z¡+1, 0 gj i gj r — 1.

(2) M¡ < x if and only if x = z, or zi+1, 0 gj i gj r — 1.

(3) x > z0 if and only if x = m0 ; x < z0 if and only if x = u0.

(4) x > z¡ if and only if x = m¡ or m,_,, 1 gj / gj r — I,

x < z,- if and only if x = ut or u¡_ ls 1 gj i gj r — 1.

(5) mr-y >Zr>Mr_!.

(6) p(x, z,) = p(z¡, x) = Zy if x = mt, wt ; /c < i or x = zk, k gj i ; 0 gj i gj r.

p(x,m¡) = p(m¡,x) = {m¡ if x = mk,zk,k gj i; x = wt,fc < i; z¡ if x = mJ

and

p(x, m¡) = p(u¡, x) = {u¡ if x = uk, zk, k gj i ; x = mt, fc < i ; z¡ if x = w,}

for 0 gj i gj r - 1.

(7) For x $ D'r, p(x, m¡) = p(x, z¡) = p(x, u.) = p(x, p) and p(m¡, x) = p(z¡, x)

= p(ui,x) = p(p,x).

Clearly D'0 = {p = z0} c F and the argument is by induction on r, similar to

(b). First mr and ur exist as a maximal over zr and a minimal under it. The standard

argument gives uniqueness. The relations p(x,m) ^ p(x, zr) — p(x,ur) give all of

the multiplication table except p(ur,mr) = p(mr,ur) = z,+ 1. This will in fact

define zr+1, once equality is known.

Since ur ^ p, ur is not linear and there is a z>u,9z|z,. Choose a minimal

such z and call it zr+1. Since mr ^ p, mr is not colinear and there is aw <mraw

S Z|» Choose a maximal such w and call itwr+1. By choice of zr+1,wr + 1,z,+ 1ín¡,
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wr+1 £D'r and there can be no h or k such that ur<h< zr+1 or mr > k> wr+i.

One then has the inequalities

Kw,+ uP) = ¿»Or+ i»«r) = liimr,ur) ^ p(mr,zr+ y) = pip,zr+1)

and

u, = p(z„ ur) ^ p(m,, ur) z£ pimr, zr) = mr

so pimr,uf) lies between p(wr+1,p) and pimr,p) = mr and between ur = p(p,ur)

and p(p, zr+1). Since nothing lies properly between K, and zr+1 or mr and wr+1,

this is only possible if p(mr,ur) = p(p,zr+1) = p(wr+1,p). Uniqueness of zr+1 and

wr+1 follow and then clearly zr+1 = wr+1 = p(mr,ur). zr+1 = p(ur,mr) is obtained

by the same reasoning.

(e) Combining steps (a)-(d) with Proposition 12, it follows that p is both

maximal and minimal.

Theorem 5. Let F be a finite space. A necessary and sufficient condition that

there exists an H-space of type I (F,p,p) is that p be a strong deformation

retract of its component in F. A necessary and sufficient condition that there is

an H-structure of type I on F for some base point is that a component of F is

contractible.

Proof. By Proposition 13, p is a component of the core of F and hence p is

the core of its component.

Theorem 6. Let F be a finite space. A necessary and sufficient condition

that there exists an H-space of type II (F,p) is that every component of F be

contractible. A necessary and sufficient condition that there exists an H-space of

type II (F,p) with base point p is that every component of F is contractible and

that p is a strong deformation retract of its component.

Proof. If p e F is a base point, let (Ft,p) be a core at p. By Proposition 13, p is

a component of F. and hence is a strong deformation retract of its component.

Further p is neither linear nor colinear, so F y is a core of F. (As well as (Fy,p)

being a core of (F,p).)

Then by Proposition 10, with or without base point, there is an //-space (F',p')

where F' is a core of F. Analogous to Proposition 10, for any zeF', the maps

0i : F' -* F': x~*p'(x,z),

02:F'-+F':x-*p'iz,x),

are homeomorphisms. Let m be any maximal point of P', u any minimal point.

Then p'im,u) is maximal, since m is and p'( ,u) is a homeomorphism, and is

minimal since u is and p\m, ) is a homeomorphism. Thus since p'( ,u) is a

homeomorphism, m is minimal, and since p'im, ) is a homeomorphism, u is

maximal. Thus F' is discrete, or every component of F is contractible.
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6. Mappings of a finite complex.

Proposition 14. Let X be any topological space and F a finite space. If

f,geFx with g=f, then f and g are homotopic.

Proof. Let H : X x I -> F be given by H(x, i) = f(x) if / > 0, and H(x, t) = g(x)

if í = 0. Let U be any open set in F. Forany(x,i)eH_1(fJ), there is a neighborhood

V of (x,i) contained in H~\U). If t > 0, V = f~1(U) x (0,1] and if t = 0,

V— g~1(U) x [0,1]- Thus H gives the required homotopy.

The remainder of this section will be devoted to the study of mappings of a

finite simplicial complex into a finite space, with emphasis on relating homotopic

maps by means of inequalities. Another approach to the study of such homotopy

classes is contained in the work of McCord [6], by which one has for any complex

K an associated finite space F and a map f:K-+F inducing isomorphisms of

homotopy groups.

Lemma 2. Let K be a finite simplicial complex, L a closed subcomplex, F a

finite space, peF, and f:(K,L)-+(F,p) a continuous function. Then there

exist closed subsets

K° - K z> K1 => K2 => - => Kr => Kr+1 =0,

finite collections E, i = 0,---,r, of closed subsets B ofK' with f constant valued

on B, and closed subsets KB of K' for Bel.1, such that:

(1) L¿0 implies Lei0;

(2) K? is a neighborhood of BinK{(Be E*) with KBcz{zeK \f(z) gj f(B)} ;

(3) K'=U KB for Bel';

(A) If B,B' are distinct elements of l1 and yeKB C\KB>, then y belongs to the

boundary in K' of KB.

(5) Ki+1 = {yeKi|3B#B' in E'with yeKBr\KB.}; and

(6) If Bel, Cel\j>i, and KBnKc^0, then f(C) gj/(B).

Proof. In order to show this, a construction will be given to produce Io,

the sets KB for Bel0, and the subset K1, together with a specific structure of K1

as a finite simplicial complex of dimension less than that of K. Taking L1 to be

empty, one then performs the same construction on K1. Iteration then gives the

sets K\ collections ll, and sets KB. Since dimK,+1 <dimK', this process must

terminate, giving all objects of the lemma. It will be clear from the construction

that all parts of the lemma are valid, except for part (6), which will be proved last.

To begin the construction, let F be an open set containing Land having closure

contained in the set U = {z eK|/(z) gj p} (if L=0, take V=0). For each

point x e K, let Vx be an open set containing x and having closure contained in

both Ux = {zeK|/(z) gj/(x)} and the open star Sx of x in K (i.e. Sx is the in-

terior of the set U ¿F for all x e ct, a a simplex of K).
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Let A be a finite set of points of K — L for which the sets Vx, xeA, cover K — V.

Let Z° ezz 2K be the finite collection consisting of the sets {x} for x e A and the

set Lif L#0 . Clearly/is constant valued on each set Bel,0.

Then Z° is a finite collection of disjoint closed subsets of K, so there exist

disjoint open sets WB, B e Z°, with B <= WB.

There is then an integer n such that for any closed simplex er of the nth bary-

centric subdivision Kin) of K:

(a) ö O V # 0 implies ö ezz U,

(b) ér n Vx # 0, x e A, imp lies rJ c [7X O Sx, and

(c) rJ O B ± 0, B e Z°, implies rJ c Wu.

For any free simplex er of X(n) (i.e. not a face of any other simplex) let 0(cr) e Z°

be defined by:

(d) if S C\B # 0 for some BeZ° (unique by (c)), let 0(cr) = B,

(e) if 5 O B = 0 for all B e Z°, and rr n ? * 0, let 0(a) = L (F ?t 0 implies

Lei.0),

(f) otherwise there is at least one xe A with í O F, -¿ 0, and let 0(<r) = {x} eZ°

for one such xeA.

Then for each B e Z°, let KB be the closed subcomplex of K(n) which is the

union of all ö for all free simplices o of K(n) with 0(<r) = B.

By choice, (1) is satisfied. Since KB contains all simplices meeting B, KB is a

neighborhood of Bin K, and KB c U if B = L, KB <= [/,, if B = {x}, x e A, so (2)

is satisfied. Since for all free simplices er of K(n), er is contained in some KB, (3) is

satisfied. For B # B' in Z°, the sets XB and KB- intersect only along boundary

points, giving (4).

The set X1 is then defined to be the set of points belonging to two or more of

the sets KB for B e Io. Thus (5) is satisfied, and further K1 is a closed subcomplex

of K(n), with dimX^dimK.

Having iterated the procedure completes the lemma except for the proof of (6).

Suppose then that Bel,', Ce V, j > i, and KBC\KC^ 0, and let xeKB(~\ Kc.

Since xeKJ, x belongs to all sets Kk for i^k^j, and by (3), there exists a

Ck e £*, C, = B, Cj = C, with x e KCk. It then suffices to prove (6) when ;' = / + 1

since one would then have /(C) úfiCj-f) Ú — èf(C,+ 1) á/(B). Thus, suppose

./ = / + 1. By choice, C = {y} for y e K'+ ' and Kc ezzUyn Sy, so x e Sr Now Ki+ *

is a subcomplex of K'(n) for some », as is also KB. Thus K,+ i C\KB is a sub-

complex containing x, so KB contains any simplex of Ki+X which contains x.

Since x e Sy, x belongs to a simplex of K'+ ' which contains y, and hence yeK„.

Thus f(C)=f(y)z%f(B) by (2).

Lemma 3. Let K, L, F, p, and f be as in Lemma 2. Then there exists a finite

collection Z = S° U ••• Ul' of sets B ezz K such that:

(1) f is constant valued on each BeZ;

(2) L#0 implies Lei.0;



338 R. E. STONG [June

and there exist disjoint subsets TB cz K,for Bel, such that:

(3) X is the union of the sets TB, Bel;

(4)BczTB;

(5) fßcz{zeK|/(z)g/(ß)};

(6) if Bel, TB is an open subset of Z' = K — \^JTC, the union being for

CelJ, j > i; and

(7) TBC\TCÍ0 implies f(C) g/(B).

Proof. Let 1 = 2°u •■■ U 2/ be given by Lemma 2, giving (1) and (2) by

choice of 1.

The sets KB, Belr, ate disjoint closed sets of K (since Kr+i = 0) and they

have disjoint open neighborhoods VB in K. Let WB be an open set of K containing

KB such that:

(a) WBcz{zeK \f(z) gj/(B)} (by Lemma 2, (2)),

(b) WBnKc¥=0,Cel, implies KBC\Kc±0 (by normality of K),

(c) WB O C # 0, C e 1, implies C = B (for by Lemma 2, (2), (4) and (5), the

sets Ce 1' and KB, Be2J are disjoint if i=j), and

(d) WB cz VB.

Then let TB, Belr, be an open set containing KB with TB cz WB.

Inductively, suppose TB has been defined for Bel',j > m, satisfying:

(a') KJ cz \JTc, the union being for Celk,k^ j,

(b') B cz TB,

(c')  TBcz{zeK\f(z)^f(B)},

(d') If BelJ, TB is an open subset of Zj (see (6)) containing ZJ nK¡, and

(e')  CC\TBÍ0 implies B = C, if Ce 1J, Bel1, i £ j.

This is clear for m = r — 1, with the choices made for TB, Belr.

Then define sets TB, Belm, as follows. Zmis a closed subset of K, having been

formed by removing open sets from Zm + 1, and by (e'), the sets C e 1 ', t gj m, are

contained in Zm, so the sets KB nZ™, Bel'", ate nonempty. By (a') and Lemma

2: 5), the sets KB C\Zm are disjoint closed subsets of Zm, and let VB be disjoint

open neighborhoods in Z mof the sets KB C\Zm. Then let WB be an open set of

Z'" containing KBC\Zm and such that:

(1) WBcz{zeK\f(z)=f(B)}, (by Lemma 2,(2));

(2) WBr\Kc^0 implies Zmr\KB C\KC ̂  0 (normality);

(3) WBnC^0 implies C = B (for WB n C ï 0 implies C e 1 \ i gj m, by (a'),

and so C and KB ate disjoint if i < m, C and KB C\Zm are disjoint for i = m);

(A) WBnTc^0 implies Tcr\KB(^Zm^0 (normality);

(5) WBczVB.

Then let TB be open in Zm, containing KBC\Zm with TB cz WB.

Properties (a')-(d') are then trivial for j>m — 1, and (e') is trivial except

when B e 1m. If C.C\ fB j- 0, C e 1, then C e l' for i gj m by (a') ; and then by (3)

in the choice of WB, C = B.



1966] FINITE TOPOLOGICAL SPACES 339

By induction, the sets TB are defined for all BeZ, property (3) of the lemma is

just (a'), (4) is (b'), (5) is (c'), (6) is part of (d'), leaving only property (7) to be

proved. Suppose then that B, C e Z with TB(~.TC¥= 0, with B e Z1', C e ZJ. If

; < i, Tc c ZJ and does not meet TB by (6). If j = /', the sets TB and Tc are disjoint

by TBezzWBc= VB. Thus j > i, and by property (4) of WB,T cC\KBC\Zl ^ 0, so

Tc n KB # 0 and Wc O KB # 0. By property (2) of Wc, KCC\KBC\ Z> # 0, so

KBr,Kc¥=0 with BeZ', Celj and j > i. By (4) of Lemma 2, this gives

f(C)z^f(B), giving property (7).

Theorem 7. Lei K be a finite simplicial complex, L a closed subcomplex,

F a finite space, peF, and 31 the space of continuous functions h: (K,L)-^(F,p)

with the compact open topology.

(a) ///e9I, there exists a ge9i such that {heça\hf^g} is a neighborhood

off in 91.
(b) If ff'etyL are homotopic (relative to L), there exist elements 0;e3I,

0 í£ i = s, with 0O =/, 0S =/', and for 0 — i < s, either ep, ;£ 0i+1 or eb, = 0¡+1.

Proof. With the notation of Lemma 3, each xeK belongs to a unique TB,

BeZ, and let g(x)=f(B).

IfL#0, LeZ.andLc TL so g(x) = f(L) = p for all x in L

g is continuous. If xei, xeTB say, and let Cj^.-CneZ be the sets C for

which x e Tc, x $ Tc. There is then a neighborhood N of x with N r\TA^ 0

only if .4e {B, C., •••,C„}. For zeW, g(z) takes one of the values f(B) or/(C,)-

Since TB n f c. # 0, /(C¡) ^/(B) = g(x) by (7) of Lemma 3. Thus there is a

neighborhood N of x with zeJV implying g(z) = g(x), and hence g is continuous.

Thus ge9l.

Let 93 = {« e 9I| /i(fB) <= [//(B) for all B e Z}. 93 is open in 9Ifor each TB is compact

and each Uf(B) is open. Then/e 33, for if x e TB,f(x) Sf(B) by (5) of Lemma 3.

If «e23, xeK, then xeTB for some B and since we93, /i(x) ^/(B) = g(x).

Thus ft ̂  g, so /e 93 c {« e 911 ft ̂  g}, completing part (a).

Now let H: K x I -> F be a homotopy of/and /' (rel L). Let J ezz I be the set

of t e I for which there is a finite set ep, e 91, 0 ^ i ¿j m, with 0O =/, 0m = // ( , t)

and such that for 0|i<m either 0¡^0i+1 or 0¡+1^0¡. Clearly, OeJ by

taking 0O=/, m = 0. If reJ with corresponding elements 0¡e9I, let 0m+1 be a

map for which {ft|/z^0m+1} is a neighborhood of //( ,r). There is then an

e > 0 such that 11 — s\ < e implies H ( ,s)e{h\h z% epm+1}, so 0m+2 = H( ,s) if

11 — s | < e shows that J contains a neighborhood of r. Thus J is open. Similarly,

if teJ, there is a g such that {/ie9l|fti=g} is a neighborhood of//( ,t) and

hence there is an £ > 0 such that 11 — s | < s implies //( , s) g g. Since t e J'

there is a t' e J with 11 — t' | < e, and so elements ep¡ e 91, 0 ^ j ^ n, ebn = H( ,t')

which give i'eJ. Letting 0„+I = g, 0„+2 = H( ,t), one has teJsoJ is closed.

Thus J = / and (b) is proved.
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Corollary 5. Homotopy classes of maps f:(K,L)-*(F,p) are in 1-1 cor-

respondence with the components of '21, i.e. path components and components

coincide in 31.
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